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Problem area 
As the use of simulations for military training becomes more 

prevalent, the need for properly behaving computer generated 

forces (CGFs) increases. Previous research employed Dynamic 

Scripting, a transparent machine learning method, to 

automatically generate behavior for virtual agents. A team 

coordination method was added on top of Dynamic Scripting, to 

allow a team of learning agents to learn coordination of their 

actions through the use of messages. However, designing multiple 

learning agents with a range of possible interactions proved to be 

difficult. Can this be improved? 

Description of work 
In this work, we designed a new team coordination method for 

use with Dynamic Scripting. Whereas in previous work all agents 
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in the team were learning behavior using Dynamic Scripting, in 

this work we centralized the learning in one agent. This ‘master’ 

agent learns both for itself, and indirectly for its teammates. By 

sending messages to its teammates, the ‘master’ agent is able to 

direct their actions. The results of simulated encounters are fed 

back to the ‘master’ agent, which can then reevaluate what 

messages it should send, and what actions it should take itself.  

Results and conclusions 
Because of the reduced complexity of the learning problem (one 

learning agent instead of two), the centralized team coordination 

method is able to reach better behavior faster than the 

decentralized method. Also, because the non-learning agent is 

mostly reactive, it is expected that it will be much easier to design 

rule bases for the teams when developing new scenarios. 

Applicability 
Dynamic Scripting is applicable in any domain where behavior can 

be defined in discrete if-then rules. Coupled with our team 

coordination method, Dynamic Scripting should be an excellent fit 

for military simulations where fine-grained control over 

automatically learned behavior is needed. After the automated 

learning, the selected behavior rules remain available for manual 

editing. 
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Summary 

Computer generated forces (CGFs) must display realistic behavior for tactical training simulations 

to yield an effective training experience. Traditionally, the behavior of CGFs is scripted. However, 

there are three drawbacks, viz. (1) scripting limits the adaptive behavior of CGFs, (2) creating 

scripts for realistic behavior is difficult and (3) it requires scarce domain expertise. A promising 

machine learning technique is the dynamic scripting of CGF behavior. In simulating air combat 

scenarios, team behavior is important, both with and without communication. While dynamic 

scripting has been reported to be effective in creating behavior for single fighters, it has not often 

been used for team coordination. The dynamic scripting technique is sufficiently flexible to be 

used for different team coordination methods. In this paper, we report the first results on 

centralized coordination of dynamically scripted air combat teams, and compare these results to 

a decentralized approach from earlier work. We find that using the centralized approach leads to 

higher performance and more efficient learning, although the effectiveness of the tactics that are 

found seems bounded by the reduced complexity. 
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Abbreviations 

Acronym Description 
CAP Combat Air Patrol 

CGF Computer Generated Force 

CTCM Centralized Team Coordination Method 

DS Dynamic Scripting 

DS+C Dynamic Scripting + Coordination 

TP Turning Point 
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1 Introduction 

Our point of departure is the problem of controlling computer generated forces (CGFs) in military 

training simulations. These CGFs need to exhibit realistic behavior for simulations to have the 

highest possible educational value. In the real world, military units often operate in teams, such 

as infantry fireteams, carrier battle groups, or air force fighters. The coordination between team 

members is of specific interest to our research. In earlier work (Toubman, Roessingh, Spronck, 

Plaat, & Van den Herik, 2014), we investigated team coordination by using communication 

between CGFs. The CGFs then automatically learn team behavior, including the required 

elements of communication, using a machine learning technique called Dynamic Scripting (DS). 

 

DS is a reinforcement learning technique that tries to find optimal combinations of behavior rules 

in a rule base. Since DS works with predefined behavior rules, the learning process is more 

transparent than with, e.g., subsymbolic methods. In (Toubman et al., 2014), we took advantage 

of this transparency by implementing a communication scheme inside the behavior rules used by 

DS to study the resulting communication patterns. So, the DS algorithm would automatically 

discover which messages and responses led to winning behaviors. 

 

Our previous work required utilizing two concurrently learning agents, resulting in two instances 

of DS of which the learned rules were interdependent. This complicated interpreting of the 

resulting rules and may have slowed down rule convergence. To reduce the complexity of the 

setup, both computationally and for the human maintainer, in the current paper we investigate a 

setup with a single instance of DS. By using one instance of DS to control the agents, we are 

essentially transforming the agent system to a centralized system. The main research question of 

this paper is therefore: “Does using this centralized system actually reduce the complexity, and 

will it result in a more effective and efficient learning process?” The paper is, as far as we know, 

the first to study centralized communication of dynamic scripts. We find that, in general, it 

significantly outperforms previous work. 
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2 Related Work 

Coordination in multi-agent systems has been a subject of active research since the rise of 

interest in distributed artificial intelligence (Ossowski & Menezes, 2006). Various models, 

languages and applications have been developed over the years. So far, the lesson learned is that 

there is no one-size-fits-all solution. 

 

Coordination methods can be divided into centralized and decentralized methods. Coordination 

is called centralized when a single actor collects information and decides on the best action for all 

agents in the system. The choice between centralized and decentralized methods is not a clear 

one, as it has been shown that sometimes both methods can successfully be applied (Jennings, 

Sycara, & Wooldridge, 1998; Panait & Luke, 2005). 

 

The difficulty of designing coordination methods has called for the use of machine learning. 

Through machine learning, agents can learn (1) what actions to coordinate and (2) how to 

coordinate them. Various methods for learning coordination have been developed. Examples 

include (Balch & Arkin, 1994; Biggers & Ioerger, 2001; Bonarini & Trianni, 2001; Kidney & 

Denzinger, 2006). Ho & Kamel (1998) present a classification of coordination methods, along with 

common problems: (1) determining convergence, (2) the complexity of the methods, and (3) 

attaining good performance. Additional problems include (4) dealing with extra agents, and (5) 

cross-domain applicability. 

 

Most agent coordination research focuses on abstract, puzzle-like domains with a limited number 

of possible actions, such as the well-known predator-prey domain (Ho & Kamel, 1998; Stone & 

Veloso, 2000). Instead, we are looking to generate behavior for agents in air combat simulations, 

with complex environments including hostile agents, and an array of actions with various 

parameters. Recent efforts in this domain are few. Among others they include the use of neural 

networks (Su, Lai, Lin, & You, 2012; Teng, Tan, Ong, & Lee, 2012) and differential evolution 

 
Figure 1: Diagram of the Dynamic Scripting Learning Process 
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(Salling, Rensfelt, Stensbäck, & Ögren, 2013). However, these methods lack transparency, which 

is in our view an essential property of behavior models for training simulators, as they need to be 

understood by training instructors. This is the main reason why we turned to DS for our research. 

 

DS (Spronck, Ponsen, Sprinkhuizen-Kuyper, & Postma, 2006) is an online learning technique 

based on reinforcement learning. The learning process is initiated with a rule base that contains 

behavior rules for a certain agent. DS selects a certain number of rules from this rule base using 

weighted random selection. The selected rules form a script that governs the behavior of an 

agent during a trial. Then the weights of the rules that were activated during the trial are 

adjusted based on the agent’s performance. This way, the chance to be selected again increases 

for rules that lead to desired behavior, and decreases for rules that lead to unwanted behavior. 

Full details on the DS algorithm can be found in (Spronck et al., 2006). 

 

In (Toubman et al., 2014), we extended regular DS with a team coordination method which we 

called “DS+C.” In DS+C, agents are allowed to communicate with each other. The communication 

is done through behavior rules. In this way, the DS algorithm was able to learn which messages 

and which responses lead to good behavior. With DS+C, the agents were able to win more 

encounters than with regular DS, and do so earlier on in the learning process. This was especially 

the case against an unpredictable opponent. Agents using DS+C were better equipped to defeat 

an opponent that used different tactics throughout the learning process. 

 

DS+C has only been tested on a small scale. The experiments in (Toubman et al., 2014) used a 2-

versus-1 scenario in which two learning ‘blue’ agents intercepted one ‘red’ agent that used a 

static script. Both ‘blue’ agents had their own rule base together with their own instance of the 

learning algorithm. In essence, learning took place concurrently, and in a distributed manner 

(Jennings et al., 1998; Sen & Weiss, 1999). While this scheme produced good results, it is not 

expected to scale easily as each learning agent needs rules that know about each other agent 

with whom it communicates, and resulting traces proved difficult to interpret. 

 

While DS is not computationally expensive per se (the actual simulations require the largest share 

of the computational power), interlinking multiple instances such as in DS+C creates an 

increasingly difficult optimization problem as both agents try to optimize their rule selections 

simultaneously. Also, on a design level, it is easy to add a new agent with a self-contained rule 

base, but it is harder to design a rule base for a learning agent that simultaneously has to learn to 

coordinate with other agents. This difficulty increases with the number of agents and functional 

requirements (Turner & Jennings, 2001). So, while multiagent systems are inherently scalable 
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(Stone & Veloso, 2000), the issue here is that DS+C agents require knowledge in their rule bases 

about the other team members. This is not only a problem when designing rules for the agents 

before any learning takes place, but also during a possible review phase, when the agents have 

learned and their behavior is reviewed and manually tweaked. For these reasons, we tried to 

reduce the complexity of DS+C while keeping its benefits, by moving to centralized coordination. 
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3 Dynamic Scripting with Centralized Team 
Coordination 

The overarching goal of this type of research and previous research is to generate behavior for 

CGFs in training simulations in an easy way using machine learning. To increase the realism of 

these CGFs, we looked at adding team coordination (Toubman et al., 2014). Therefore, we have 

added coordination rules to the rule bases of the agents, allowing them to send their own actions 

and to react to the others intentions. 

 

For the approach presented in this paper, we addressed the scaling issue by reducing the number 

of learning agents to one per team. The ‘master’ agent will direct one or more ‘slave’ agents 

through the same communication mechanism used in DS+C. In the new case, however, only the 

master agent will optimize its own rule base, which will govern both the behavior of the master 

and the slave agents. In this way, we expect to obtain similar team behavior while reducing the 

learning complexity. 

 

DS generates scripts by selecting rules from a rule base. In (Toubman et al., 2014) we exploited 

this mechanism by formulating rules that send out messages in addition to performing actions 

like turning and firing, and thereby enabling DS to find effective exchanges of messages. In the 

current paper, we use the same mechanism in the same way, only in one direction. We will refer 

to this new method as the centralized team coordination method (CTCM). It consists of two 

phases. 

 

First, a rule base is designed for the master agent with behavior rules of which certain 

combinations might be able to solve partly the task at hand. In the case of our air combat 

simulation, such rules allow the agent to evade incoming missiles, or make heading changes to 

avoid detection. Creating several variants of each of those rules enables a wider range of possible 

behavior. As with DS+C, executing these rules also makes the agent broadcast a message to its 

slave agents with the intention of its current action. 

 

Second, a separate rule base is designed for the slave agents. Apart from some default rules with 

fallback behavior, the rules in the rule base are triggered only by the reception of messages from 

the master agent. For the slave agents, variants of rules can be added, to define a wider range of 

behavior. These variants have to be triggered by distinct messages from the master agent. The 

rule base of the master agent can also contain rules that are duplicates of each other, except for 
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the message that they send. This way different behavior for the slave agent can be tried while 

keeping the behavior of the master agent the same. The DS rule selection process allows us to try 

out automatically various combinations of behavior in the master and slave agents. 

 

Of course, to make decisions, agents need to be able to observe their environment. The master 

agent bases its decisions on its own observations for both its own behavior and for the slaves’ 

behavior. In our case this happens through sensors such as the radar. However, if the slave 

agents are also capable of making observations, it enhances the master agents situational 

awareness and therefore its ability on improved decision making. Therefore, the slave agents are 

allowed to send messages back to the master agent using rules. The master agent does not 

actively respond to these messages, but uses the information from the slave agents to base its 

new decisions on. This gives the master agent a broader view, but not a completely global view 

on the environment of its team. 

 

The rule base of the master agent is optimized using DS, while the rule bases of the slaves are 

not. Throughout the learning process, the DS algorithm selects rules from the rule base and 

forms a script for the master agent. The master agent uses this script during a trial in its 

environment. The selected rules also implicitly dictate the behavior of the slave agents. 

 

 

 
Figure 2:  The ‘Blues’ (left) Fly Towards 
‘Red’ (right), Who Is Flying a CAP 

 

Figure 3: Screenshot of the Simulation 
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4 Method 

The application of the CTCM was tested in the same custom air-to-air combat simulation used in 

(Toubman et al., 2014), together with the same parameters for DS, allowing a close comparison. 

The approach is summarized there as follows. In the simulation, a formation of two blue fighters 

(“the blues”, i.e., a lead and a wingman) had to eliminate a single red fighter. The red fighter flew 

a Combat Air Patrol (CAP) (see Figure 2) to defend an area of airspace. The mission of the blues 

was considered successful if they eliminated the red fighter without any losses on their own side. 

The mission of red was to eliminate all fighters it detected. Figure 3 shows a screenshot of the 

simulation. 

 

For this application, the blue lead was made the master agent, and the blue wingman was made 

the slave agent. The lead used two default rules: one rule to let the lead fly to the area where red 

flies its CAP, and also to send a message to the wingman to let it fly in formation, and the other 

rule to set the lead’s radar to search mode1. Both rules were only used when no other rules 

applied. The default rules were added to each script generated by the DS algorithm. The rule 

base of the lead further contained rules for locking the radar onto red, rules for firing missiles at 

red from various distances when the lead had a radar lock on red, and various rules for evading 

red’s missiles and radar locks. Finally, the lead’s rule base contained several rules that reacted to 

messages from the wingman containing certain observations by sending messages for an actual 

action back to the wingman. All of these non-default rules also send a message to the wingman. 

 

As the wingman did not learn in the case of CTCM, its entire rule base functioned as its script 

during encounters. The rule base of the wingman mostly contained rules that were activated by 

certain messages from the lead. For example, these rules included rules for different formations 

and turning maneuvers. The wingman also had some default rules that did not require messages 

to activate, such as the following rules (a) to let the wingman fire a missile at red whenever it had 

the opportunity, or (b) to fly in a default formation with the lead if no other formation message 

was received. Finally, the wingman also used some rules to communicate certain observations to 

the lead. 

 

For a fair comparison, new rules were added to the DS+C rule bases that allowed the agents to fly 

in several recently added formations. Apart from these additions, the DS+C rule bases are the 

                                                                 
1 In search mode a wide area is scanned with pulses of short radio waves. 
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same as the original ones used in the previous experiments. (The complete CTCM and DS+C rule 

bases are omitted here for brevity.) 

 

Red used three basic tactics: a default tactic, in which it flies a Combat Air Patrol and engages any 

intruders it detects; a short range tactic, which is the same as the default tactic but red is only 

allowed to fire missiles from a close distance; and an evading tactic, which is the same as the 

default tactic but red tries to evade incoming missiles. Alternative tactics were also added, which 

were the same as the three basic tactics but in which red flies the CAP in the opposite direction. 

Finally, red was given a mixed tactic which consisted of the three basic tactics and their 

alternatives. When using the mixed tactic, red would use one of the six tactics until it lost an 

encounter, at which point it would switch to a new randomly selected tactic. 

 

Because the CTCM only employs one learning agent, instead of the two learning agents used in 

DS+C, we conjecture that CTCM will be able to learn faster than DS+C. However, as DS+C has two 

agents trying out different combinations of rules, it is expected that DS+C can be more creative 

than CTCM and therefore come up with better solutions. In other words, we conjecture that the 

CTCM will be more efficient but not more effective than DS+C. 

 

To measure effectiveness, we can simply look at the resulting win/loss ratios. However, it is hard 

to determine the efficiency of agents using DS, due to the random sampling of rules during the 

learning process. Therefore, we re-use the Turning Point function (TP(X)) from (Toubman et al., 

2014). In brief, we look at the results with a moving window of 20 consecutive encounters. Once 

blue reaches X% wins in this window, we say that a certain turning point has been reached in the 

learning process. By varying X we can adjust the strictness of this measure. 

 

To investigate the efficiency and effectiveness of the CTCM, and compare them to that of DS+C, 

simulations were run in which the blues used either of these methods, and red used one of its 

seven tactics. 
  



  

   NLR-TP-2014-424 | 15 

 

5 Results 

For each of the seven tactics, results were averaged over 100 learning episodes. Each learning 

episode consisted of 250 encounters. 

 

For each tactic of red, the TP(X) was calculated for the blues, with X being 50%, 60%, 70% and 

80%. These values were chosen because they represent the most interesting range; below 50% 

blue is still losing, and above 80% blue will be experiencing rare winning streaks. 

 

The mean TP(X) results, together with the standard deviations, are shown in Table 1. Two-tailed 

two-sample t-tests were performed on the pairs of methods for each tactic. Table 1 shows the p-

values for pairs that differ significantly at the a = 0.05 significance level (indicated with asterisks). 

In 21 out of the 28 comparisons, a significant difference is found, of which 19 are in favor of 

CTCM.  

 

Figure 4 shows the cumulative sum of blue wins using both coordination methods, measured 

over all tactics. The CTCM reaches 115917 wins out of 175000 total encounters, while DS+C only 

manages to win 95815. 

 

Figure 5 shows rolling averages (window size 20) of blue’s win/loss ratio against each of red’s 

tactics individually. The CTCM is able to reach a higher win/loss ratio than DS+C against each 

tactic, apart from the alternative default tactic. Also, CTCM seems to reach its plateau phase in 

the learning curves before or at the same time DS+C does. Of special note is the graph for the 

evading tactic, which does not contain a plateau phase but instead depicts a continuously 

increasing win/loss ratio. 

 

 
Figure 4: Cumulative Wins 
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Figure 5: Learning Curves 
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6 Discussion 

The CTCM was developed as a team coordination method based on DS+C, but with a reduced 

complexity of learning, which should result in faster and possibly more effective learning. Indeed, 

it is clear that this is the case. The data in Table 1 shows that learning milestones, measured as 

turning points, are reached significantly earlier. Figure 4 also supports this notion, showing a 

steep increase in the number of wins. 

 

Regarding the effectiveness of the coordination methods, Figure 5 shows a distinct difference in 

performance for five out of seven tactics. For the default (alt.) and mixed tactics, the learning 

curves end at a very similar performance level. 

 

Before trying to explain these differences, it should be noted that in these experiments, the 

performance of DS+C does not match that of the original paper (Toubman et al., 2014). After 

investigation, it was found that continued improvements of the simulation environment have led 

to a slight advantage for the red agent. While this change in performance is disadvantageous for 

our line of reasoning, the results listed here provide a fairer view. 

 

We conjectured that the CTCM would manage higher efficiency than DS+C. This also turned out 

to be the case. Because the CTCM only employs one learning agent, the non-learning agent 

becomes a predictable factor in the environment of the learning agent. In the case of DS+C, with 

two learning agents, the learning agents will have to adjust their behavior to the other’s behavior 

as well, increasing the complexity of the learning problem. With the CTCM, fewer combinations 

of behavior rules are possible. Assuming two agents, a script size s, and a rule base containing r 

rules for both agents, at the moment the DS algorithm selects rules to be used, there are �𝑟𝑠� 

possible combinations of scripts for the CTCM, whereas for DS+C, this number increases to �𝑟𝑠�
2
. 

Without taking into account the weight optimization performed by DS, this already indicates that 

optimal scripts are likely to be found faster when using CTCM. 

 

The smaller amount of possible scripts should also result in less creativity in the development of 

solutions against the enemy’s tactic. Therefore, we conjectured that CTCM would not be more 

effective than DS+C. However, the opposite is the case, as CTCM showed higher win/loss ratios, 

and a higher total amount of wins. A possible explanation is again the lower number of 

combinations of scripts. As CTCM rapidly proceeds to find an optimal solution, DS+C struggles to 

do the same. However, it is interesting to see that against each tactic, CTCM hits a specific cap on 

performance (0.7 for five different tactics, see Figure 5). This means that even though the 
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performance of CTCM rises rapidly, it is unable to find a perfect solution in each simulation. This 

again might be a result of the lower possible creativity. Using the same line of reasoning, it can be 

argued that the relatively poor performance of DS+C is caused by a too large amount of possible 

script combinations for the particular problems we are trying to solve (i.e., the seven tactics). If 

this is the case, there might also be a sweet spot between the rules used with CTCM and DS+C, 

with a more diverse rule base for more creative solutions, possibly together with a learning 

method for the second agent as a middle ground between no learning and full DS that does not 

cause the team behavior search space to explode. 

 

Preliminary results from extra trials with a new fitness function show that the fitness function 

plays a large role in the difference in performance of the CTCM and DS+C. By giving larger 

rewards and punishments, the CTCM is able to climb to even higher performance levels, as it 

benefits greatly from the ability to quickly move in and out of local optima. At the same time, the 

DS+C agents have a hard time optimizing their scripts, as both agents are trying to optimize their 

scripts at the same time.  
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7 Conclusion 

In this paper, we presented a centralized team coordination method (CTCM), which is based on 

an exchange of messages within a rule-based system such as used in earlier work, but with only 

one learning agent. The main research question of this paper was: “Does using this centralized 

system actually reduce the complexity, and will it result in a more effective and efficient learning 

process?” Based on the results from our experiments, we may conclude that the CTCM is a good 

alternative to more complex solutions with more learning agents, to let a team of virtual fighter 

pilots learn effective behavior. The CTCM was able to reach milestones significantly faster, while 

maintaining a better performance during the learning process. Some of the tactics used by the 

enemy fighter pilot still present a problem to our learning agents, leaving space for further 

research. Future research should especially look into a better fitness function for air combat 

simulations as the key element to further performance increases. 
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Appendix A Rule bases 
 

The tables in this appendix give the priorities and textual descriptions of the rules used in the 

experiments. 

 

Appendix A.1 Rules used by the blues (CTCM) 
 

Table 2: Rules in the rule base of the blue lead when using the CTCM 

Priority Rule 
1 If no other rule applies, put my radar in ‘search’ mode. (default rule) 

1 If I am 20 km or more away from the target area, then turn towards the target area, put my 

radar in ‘search’ mode, and send message ‘default-formation' to wingman. (default rule) 

2 If my radar is not in ‘search’ mode and I see no enemies on my radar, put my radar in  ‘search’ 

mode, and send message ‘searching’ to wingman. (default rule) 

2 If I see an enemy on my radar, lock my radar onto this enemy, and send message ‘engaging’ to 

wingman. (default rule) 

2 If my radar is in ‘lock’ mode, and I see an enemy on my radar, and there is no missile flying at 

this enemy, and I have missiles left, and this enemy is alive, and I am 50 km or less away from 

this enemy, fire a missile at this enemy, and send message ‘firing’ to wingman. (default rule) 

3 If I am 20 km or more away from the target area, then turn towards the target area, put my 

radar in ‘search’ mode, and send message ‘twoship-formation-left’ to wingman. 

3 If I am 20 km or more away from the target area, then turn towards the target area, put my 

radar in ‘search’ mode, and send message ‘twoship-formation-right’ to wingman. 

3 If I am 20 km or more away from the target area, then turn towards the target area, put my 

radar in ‘search’ mode, and send message ‘trail-formation’ to wingman. 

3 If I am 20 km or more away from the target area, then turn towards the target area, put my 

radar in ‘search’ mode, and send message ‘wall-formation-left’ to wingman. 

3 If I am 20 km or more away from the target area, then turn towards the target area, put my 

radar in ‘search’ mode, and send message ‘wall-formation-right’ to wingman. 

6 If I detect an enemy on my radar warning receiver, and I do not detect an enemy on my radar, 

and my radar is in ‘search’ mode, turn approximately towards the enemy on my radar warning 

receiver. 

6 If I detect an enemy on my radar warning receiver, change my heading to my current heading + 

90 + my approximate bearing to the enemy on my radar warning receiver, and send message 

‘evadingRWR’ to wingman. 
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6 If I detect an enemy on my radar warning receiver, change my heading to my current heading + 

90 + my approximate bearing to the enemy on my radar warning receiver, and send message 

‘evadingRWR’ to wingman. 

6 If there is a missile flying at me, and there is an enemy on my radar warning receiver, change 

my heading to my current heading + 180 + my approximate bearing to the enemy on the radar 

warning receiver + a random factor in the range [-22.5,22.5], and send message ‘break180’ to 

wingman. 

6 If there is a missile flying at me, and there is an enemy on my radar warning receiver, change 

my heading to my current heading + 90 + my approximate bearing to the enemy on the radar 

warning receiver + a random factor in the range [-22.5,22.5], and send message ‘breakp90’ to 

wingman. 

6 If there is a missile flying at me, and there is an enemy on my radar warning receiver, change 

my heading to my current heading - 90 + my approximate bearing to the enemy on the radar 

warning receiver + a random factor in the range [-22.5,22.5], and send message ‘breakm90’ to 

wingman. 

9 If my radar is locked onto an enemy, and I have missiles left, and the enemy on my radar is 

alive, and I am no more than 50 km away from the enemy, and there is no missile flying at the 

enemy, fire a missile at the enemy, and send message ‘firing’ to wingman. 

9 If my radar is locked onto an enemy, and I have missiles left, and the enemy on my radar is 

alive, and I am no more than 60 km away from the enemy, and there is no missile flying at the 

enemy, fire a missile at the enemy, and send message ‘firing’ to wingman. 

9 If my radar is locked onto an enemy, and I have missiles left, and the enemy on my radar is 

alive, and I am no more than 70 km away from the enemy, and there is no missile flying at the 

enemy, fire a missile at the enemy, and send message ‘firing’ to wingman. 

9 If my radar is locked onto an enemy, and I have missiles left, and the enemy on my radar is 

alive, and I am no more than 80 km away from the enemy, and there is no missile flying at the 

enemy, fire a missile at the enemy, and send message ‘firing’ to wingman. 

9 If my radar is locked onto an enemy, and I have missiles left, and the enemy on my radar is 

alive, and I am no more than 90 km away from the enemy, and there is no missile flying at the 

enemy, fire a missile at the enemy, and send message ‘firing’ to wingman. 

1 Do nothing. 

1 Do nothing. 

1 Do nothing. 

1 Do nothing. 

1 Do nothing. 

1 Do nothing. 
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7 If I received message ‘newRadarObservation’, send message ‘breakp90’ to wingman. 

7 If I received message ‘newRadarObservation’, send message ‘breakm90’ to wingman. 

7 If I received message ‘newRadarObservation’, send message ‘engageInformed’ to wingman. 

7 If I received message ‘newRadarWarningReceiverObservation’, send message ‘breakp90’ to 

wingman. 

7 If I received message ‘newRadarWarningReceiverObservation’, send message ‘breakm90’ to 

wingman. 

7 If I received message ‘newRadarWarningReceiverObservation’, send message 

‘engageUninformed’ to wingman. 

7 If I received message ‘newMissileFlyingAtMe’, send message ‘breakp90’ to wingman. 

7 If I received message ‘newMissileFlyingAtMe’, send message ‘breakm90’ to wingman. 

 

Table 3: Rules in the rule base of the blue wingman when using the CTCM 

Priority Rule 
1 If no other rule applies, put my radar in ‘search’ mode. (default rule) 

1 If lead is not alive, turn towards the target area, and put my radar in ‘search’ mode. 

3 If I received message ‘default-formation’, put my radar in ‘search’ mode, and fly 10 km to the 

right of and 10 km behind lead. 

8 If I see an enemy on my radar, lock my radar onto that enemy, and turn towards that enemy. 

9 If my radar is locked onto an enemy, and there is no missile flying at that enemy, and I have 

missiles left, and I am no more than 80 km away from the enemy, fire a missile at the enemy. 

3 If I received message ‘twoship-formation-left’, and I am not flying in formation, put my radar in 

‘search’ mode, and fly 20 km to the left of and 20 km behind lead. 

3 If I received message ‘twoship-formation-right’, and I am not flying in formation, put my radar 

in ‘search’ mode, and fly 20 km to the right of and 20 km behind lead. 

3 If I received message ‘trail-formation’, and I am not flying in formation, put my radar in ‘search’ 

mode, fly 20 km behind lead. 

3 If I received message ‘wall-formation-left’, and I am not flying in formation, put my radar in 

‘search’ mode, and fly 20 km to the left of lead. 

3 If I received message ‘wall-formation-right’, and I am not flying in formation, put my radar in 

‘search’ mode, and fly 20 km to the right of lead. 

9 When I see a new enemy on my radar, send message ‘newRadarObservation’ to lead. 

9 When I detect a new enemy on my radar warning receiver, send message 

‘newRadarWarningReceiverObservation’ to lead. 

9 When there is a new missile flying at me, send message ‘newMissileFlyingAtMe’ to lead. 

6 If I received message ‘breakp90’, turn 90 degrees to the right. 
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6 If I received message ‘breakm90’, turn 90 degrees to the left. 

6 If I received message ‘engageInformed’, turn towards the enemy. 

6 If I received message ‘engageUninformed’, turn approximately towards the enemy. 

 

Appendix A.2 Rules used by the blues (DS+C) 
 

Table 4: Rules in the rule base of the blue lead when using DS+C 

Priority Rule 
1 If I am 20 km or more away from the target area, turn towards the target area, put my radar in 

‘search’ mode, and send message ‘default-target’ to wingman. (default rule) 

2 If my radar is not in ‘search’ mode and there is no enemy on my radar, put my radar in ‘search’ 

mode, and send message ‘searching’ to wingman. (default rule) 

2 If I see an enemy on my radar, lock my radar onto that enemy, and send message ‘engaging’ to 

wingman. (default rule) 

2 If my radar is locked onto an enemy, and there is no missile flying at this enemy, and I have 

missiles left, and I am no more than 50 km away from this enemy, fire a missile at the enemy, 

and send message ‘firing’ to wingman. (default rule) 

2 If I see an enemy on my radar, and there is a missile flying at this enemy, lock my radar onto 

this enemy, turn towards this enemy, and send message ‘supporting’ to wingman. (default 

rule) 

6 If I detect an enemy with my radar warning receiver, and I do not see an enemy on my radar, 

and my radar is in ‘search’ mode, turn approximately towards the enemy on my radar warning 

receiver, and send message ‘engagingRWR’  to wingman. 

6 If I detect an enemy with my radar warning receiver, change my heading to my current heading 

+ 180 + my approximate bearing to the enemy on the radar warning receiver + a random factor 

in the range [-22.5,22.5], and send message ‘evadingRWR’ to wingman. 

6 If I detect an enemy with my radar warning receiver, change my heading to my current heading 

+ 90 + my approximate bearing to the enemy on the radar warning receiver + a random factor 

in the range [-22.5,22.5], and send message ‘evadingRWR’ to wingman. 

6 If I detect an enemy with my radar warning receiver, change my heading to my current heading 

- 90 + my approximate bearing to the enemy on the radar warning receiver + a random factor 

in the range [-22.5,22.5], and send message ‘evadingRWR’ to wingman. 

6 If there is a missile flying at me, and I detect an enemy on my radar warning receiver, change 

my heading to my current heading + 180 + my approximate bearing to the enemy on the radar 

warning receiver + a random factor in the range [-22.5,22.5], and send message 

‘evadingMissile’ to wingman. 
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6 If there is a missile flying at me, and I detect an enemy on my radar warning receiver, change 

my heading to my current heading + 90 + my approximate bearing to the enemy on the radar 

warning receiver + a random factor in the range [-22.5,22.5], and send message 

‘evadingMissile’ to wingman. 

6 If there is a missile flying at me, and I detect an enemy on my radar warning receiver, change 

my heading to my current heading - 90 + my approximate bearing to the enemy on the radar 

warning receiver + a random factor in the range [-22.5,22.5], and send message 

‘evadingMissile’ to wingman. 

9 If my radar is locked onto an enemy and I have missiles left and I am no more than 50 km away 

from the enemy, fire a missile at the enemy, and send message ‘firing’ to wingman. 

9 If my radar is locked onto an enemy and I have missiles left and I am no more than 60 km away 

from the enemy, fire a missile at the enemy, and send message ‘firing’ to wingman. 

9 If my radar is locked onto an enemy and I have missiles left and I am no more than 70 km away 

from the enemy, fire a missile at the enemy, and send message ‘firing’ to wingman. 

9 If my radar is locked onto an enemy and I have missiles left and I am no more than 80 km away 

from the enemy, fire a missile at the enemy, and send message ‘firing’ to wingman. 

9 If my radar is locked onto an enemy and I have missiles left and I am no more than 90 km away 

from the enemy, fire a missile at the enemy, and send message ‘firing’ to wingman. 

1 Do nothing. 

1 Do nothing. 

1 Do nothing. 

1 Do nothing. 

1 Do nothing 

1 Do nothing. 

6 If I received message ‘evadingRWR’ or ’evadingMissile’ and I see no enemies on my radar and I 

detect no enemies on my radar warning receiver, turn approximately towards the enemy 

detected by wingman. 

6 If I received message ‘locking’ or ‘firing’ or ‘supporting’ and I see no enemies on my radar and I 

detect no enemies on my radar warning receiver, turn towards the enemy detected by 

wingman. 

6 If I received message ‘evadingRWR’, change my heading to my current heading + 180 + my 

approximate bearing to the enemy on the radar warning receiver + a random factor in the 

range [-22.5,22.5], and send message ‘evadingRWR’ to wingman. 

6 If I received message ‘evadingRWR’, change my heading to my current heading + 90 + my 

approximate bearing to the enemy on the radar warning receiver + a random factor in the 

range [-22.5,22.5], and send message ‘evadingRWR’ to wingman. 
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6 If I received message ‘evadingRWR’, change my heading to my current heading - 90 + my 

approximate bearing to the enemy on the radar warning receiver + a random factor in the 

range [-22.5,22.5], and send message ‘evadingRWR’ to wingman. 

 

 Table 5: Rules in the rule base of the blue wingman when using DS+C 

Priority Rule 
1 If lea d is alive, put my radar in ‘search’ mode, and fly 40 km to the right of and 40 km behind 

lead. (default rule) 

1 If lead is not alive, and I am 20 km or more away from the target area, turn towards the target 

area. (default rule) 

2 If my radar is not in search mode and I see no enemies on my radar, put my radar in ‘search’ 

mode, and send message ‘searching’ to lead. (default rule) 

2 If I see an enemy on my radar, lock my radar onto that enemy, and send message ‘engaging’ to 

lead. (default rule) 

2 If my radar is locked onto an enemy, and there is no missile flying at that enemy, and I have 

missiles left, and I am no more than 50 km away from that enemy, fire a missile at that enemy, 

and send message ‘firing’ to lead. (default rule) 

2 If there is an enemy on my radar, and there is a missile flying at that enemy, lock my radar onto 

that enemy, turn towards that enemy, and send message ‘supporting’ to lead. 

2 If lead is alive, put my radar in ‘search’ mode, and fly 20 km to the left of and 20 km behind 

lead. 

2 If lead is alive, put my radar in ‘search’ mode, and fly 20 km to the right of and 20 km behind 

lead. 

2 If lead is alive, put my radar in ‘search’ mode, and fly 20 km behind lead. 

2 If lead is alive, put my radar in ‘search’ mode, and fly 20 km to the left of lead. 

2 If lead is alive, put my radar in ‘search’ mode, and fly 20 km to the right of lead. 

6 If I detect an enemy on my radar warning receiver, and I see no enemies on my radar, and my 

radar is in ‘search’ mode, turn approximately towards the enemy, and send message 

‘engagingRWR’ to lead. 

6 If I detect an enemy with my radar warning receiver, change my heading to my current heading 

+ 180 + my approximate bearing to the enemy on the radar warning receiver + a random factor 

in the range [-22.5,22.5], and send message ‘evadingRWR’ to lead. 

6 If I detect an enemy with my radar warning receiver, change my heading to my current heading 

+ 90 + my approximate bearing to the enemy on the radar warning receiver + a random factor 

in the range [-22.5,22.5], and send message ‘evadingRWR’ to lead. 

6 If I detect an enemy with my radar warning receiver, change my heading to my current heading 
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- 90 + my approximate bearing to the enemy on the radar warning receiver + a random factor 

in the range [-22.5,22.5], and send message ‘evadingRWR’ to lead. 

9 If my radar is locked onto an enemy, and I have missiles left, and I am no more than 50 km 

away from the enemy, fire a missile at that enemy, and send message ‘firing’ to lead. 

9 If my radar is locked onto an enemy, and I have missiles left, and I am no more than 60 km 

away from the enemy, fire a missile at that enemy, and send message ‘firing’ to lead. 

9 If my radar is locked onto an enemy, and I have missiles left, and I am no more than 70 km 

away from the enemy, fire a missile at that enemy, and send message ‘firing’ to lead. 

9 If my radar is locked onto an enemy, and I have missiles left, and I am no more than 80 km 

away from the enemy, fire a missile at that enemy, and send message ‘firing’ to lead. 

9 If my radar is locked onto an enemy, and I have missiles left, and I am no more than 90 km 

away from the enemy, fire a missile at that enemy, and send message ‘firing’ to lead. 

1 Do nothing. 

1 Do nothing. 

1 Do nothing. 

1 Do nothing. 

1 Do nothing. 

1 Do nothing. 

6 If I received message ‘evadingRWR’ or ‘evadingMissile’ and I see no enemy on my radar and I 

detect no enemies with my radar warning receiver, turn approximately towards the enemy 

that the sender is evading. 

6 If I received message ‘locking’ or ‘firing’ or ‘supporting’ and I see no enemy on my radar and I 

detect no enemies with my radar warning receiver, turn towards the enemy that the sender 

sees. 

6 If I received message ‘evadingRWR’, change my heading to my current heading + 180 + my 

approximate bearing to the enemy on the radar warning receiver + a random factor in the 

range [-22.5,22.5]. 

6 If I received message ‘evadingRWR’, change my heading to my current heading + 90 + my 

approximate bearing to the enemy on the radar warning receiver + a random factor in the 

range [-22.5,22.5]. 

6 If I received message ‘evadingRWR’, change my heading to my current heading - 90 + my 

approximate bearing to the enemy on the radar warning receiver + a random factor in the 

range [-22.5,22.5]. 
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Appendix A.3 Rules used by red 
 

Table 6:. Rules in the rule base of red for the default tactic 

 

Priority Rule 
1 In any case, change my state to ‘cap1’, and put my radar in ‘search’ mode. 

1 If I am more than 5 km away from the first waypoint, and my state is ‘cap1’, fly towards the 

first waypoint. 

1 If I am no more than 5 km away from the first waypoint and my state is ‘cap1’, change my state 

to ‘cap2’. 

1 If I am more than 5 km away from the second waypoint, and my state is ‘cap2’, fly towards the 

second waypoint. 

1 If I am no more than 5 km away from the second waypoint, and my state is ‘cap2’, change my 

state to ‘cap1’. 

2 If I detect an enemy on my radar warning receiver, and I see no enemies on my radar, and my 

radar is in ‘search’ mode, turn towards the detected enemy. 

2 If I see an enemy on my radar, turn towards that enemy. 

5 If I see an enemy on my radar, and I am no more than 90 km away from that enemy, lock my 

radar onto that enemy, and turn towards that enemy. 

6 If my radar is locked onto an enemy, and I am no more than 100 km away from that enemy, 

and there is no missile flying at that enemy, and I have missiles left, fire a missile that that 

enemy. 

 

For the short range tactic, red used the rule base for the default tactic, but would fire a missile 

from no more than 50 km away (instead of 100 km). 

 

For the evading tactic, red used the rule base for the default tactic, with the following rule added: 

 

Priority Rule 
9 If there is a missile flying at me, and I detect an enemy on my radar warning receiver, change 

my heading to my current heading + 180 + my approximate bearing to the enemy on the radar 

warning receiver + a random factor in the range [-22.5,22.5]. 

 
 

 



 

 

 
 
 
 
 
 

 
W H A T  I S  N L R ?  
 

The  NL R  i s  a  D utc h o rg an i s at io n th at  i de n t i f i es ,  d ev e lop s  a n d a p pl i es  h i gh -t ech  know l ed g e i n  t he  

aero s pac e sec tor .  Th e NLR ’s  ac t i v i t i es  ar e  soc ia l ly  r e lev an t ,  m ar ke t-or i en ta te d ,  an d co n d uct ed  

no t- for - p ro f i t .  I n  t h i s ,  th e  NL R  s erv e s  to  bo ls te r  th e gove r nm en t ’s  i n nova t iv e  c apa b i l i t ie s ,  w h i l e  

a lso  p romot i ng  t he  i n nova t iv e  a n d com p et i t iv e  ca pa c i t ie s  o f  i t s  p ar tn er  com pa ni e s .  

 

The NLR,  renowned for i ts leading expert ise,  professional  approach and independent consultancy,  is  

staffed by c l ient-orientated personnel who are not only highly ski l led and educated,  but a lso  

continuously  strive to develop and improve their  competencies. The NLR moreover possesses an 

impressive array of  high qual ity research fac i l i t ies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NLR – Dedicated to innovation in aerospace 
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