

NLR – Dedicated to innovation in aerospace

Centralized Versus Decentralized Team
Coordination Using Dynamic Scripting

C u s t o m e r
National Aerospace Laboratory NLR

NLR-TP-2014-424 - January 2015

N a t i o n a l A e r o s p a c e L a b o r a t o r y N L R
A n t h o n y F o k k e r w e g 2
1 0 5 9 C M A m s t e r d a m
T h e N e t h e r l a n d s
T e l + 3 1 (0) 8 8 5 1 1 3 1 1 3
w w w . n l r . n l

UNCLASSIFIED

EXECUTIVE SUMMARY

UNCLASSIFIED

Report no.
NLR-TP-2014-424

Author(s)
A. Toubman
J.J.M. Roessingh
P. Spronck
A. Plaat
H.J. van den Herik

Report classification
UNCLASSIFIED

Date
January 2015

Knowledge area(s)
Training, Simulation and Operator
Performance

Descriptor(s)
Machine Learning
Multi-Agent Systems
Autonomous Agents
Computer Generated Forces
Air Combat

This report is based on a presentation held at the 28th European Simulation and Modelling
Conference - ESM'2014, Porto, Portugal, October 22nd – 24th, 2014.

Centralized Versus Decentralized
Team Coordination Using
Dynamic Scripting

Problem area
As the use of simulations for military training becomes more

prevalent, the need for properly behaving computer generated

forces (CGFs) increases. Previous research employed Dynamic

Scripting, a transparent machine learning method, to

automatically generate behavior for virtual agents. A team

coordination method was added on top of Dynamic Scripting, to

allow a team of learning agents to learn coordination of their

actions through the use of messages. However, designing multiple

learning agents with a range of possible interactions proved to be

difficult. Can this be improved?

Description of work
In this work, we designed a new team coordination method for

use with Dynamic Scripting. Whereas in previous work all agents

Centralized Versus Decentralized Team Coordination Using Dynamic

Scripting

UNCLASSIFIED

National Aerospace Laboratory NLR
Anthony Fokkerweg 2, 1059 CM Amsterdam,
P.O. Box 90502, 1006 BM Amsterdam, The Netherlands
Telephone +31 (0)88 511 31 13, Fax +31 (0)88 511 32 10, Website: www.nlr.nl UNCLASSIFIED

in the team were learning behavior using Dynamic Scripting, in

this work we centralized the learning in one agent. This ‘master’

agent learns both for itself, and indirectly for its teammates. By

sending messages to its teammates, the ‘master’ agent is able to

direct their actions. The results of simulated encounters are fed

back to the ‘master’ agent, which can then reevaluate what

messages it should send, and what actions it should take itself.

Results and conclusions
Because of the reduced complexity of the learning problem (one

learning agent instead of two), the centralized team coordination

method is able to reach better behavior faster than the

decentralized method. Also, because the non-learning agent is

mostly reactive, it is expected that it will be much easier to design

rule bases for the teams when developing new scenarios.

Applicability
Dynamic Scripting is applicable in any domain where behavior can

be defined in discrete if-then rules. Coupled with our team

coordination method, Dynamic Scripting should be an excellent fit

for military simulations where fine-grained control over

automatically learned behavior is needed. After the automated

learning, the selected behavior rules remain available for manual

editing.

http://www.nlr.nl/

Centralized Versus Decentralized
Team Coordination Using
Dynamic Scripting

A. Toubman, J.J.M. Roessingh, P. Spronck1, A. Plaat2 and
H.J. van den Herik2

1 T i lburg Un iversity
2 Le id en Univers ity

C u s t o m e r
National Aerospace Laboratory NLR
January 2015

Centralized Versus Decentralized Team Coordination Using Dynamic Scripting

2 | NLR-TP-2014-424

This report is based on a presentation held at the 28th European Simulation and Modelling Conference -

ESM'2014, Porto, Portugal, October 22nd – 24th, 2014.

The contents of this report may be cited on condition that full credit is given to NLR and the authors.

Customer National Aerospace Laboratory NLR
Contract number -----
Owner NLR
Division NLR Air Transport
Distribution Unlimited
Classification of title Unclassified
Date January 2015

Approved by:

Author
Armon Toubman

Reviewer
Remco Meiland

Managing department
Harrie Bohnen

Date Date Date

 NLR-TP-2014-424 | 3

Summary

Computer generated forces (CGFs) must display realistic behavior for tactical training simulations

to yield an effective training experience. Traditionally, the behavior of CGFs is scripted. However,

there are three drawbacks, viz. (1) scripting limits the adaptive behavior of CGFs, (2) creating

scripts for realistic behavior is difficult and (3) it requires scarce domain expertise. A promising

machine learning technique is the dynamic scripting of CGF behavior. In simulating air combat

scenarios, team behavior is important, both with and without communication. While dynamic

scripting has been reported to be effective in creating behavior for single fighters, it has not often

been used for team coordination. The dynamic scripting technique is sufficiently flexible to be

used for different team coordination methods. In this paper, we report the first results on

centralized coordination of dynamically scripted air combat teams, and compare these results to

a decentralized approach from earlier work. We find that using the centralized approach leads to

higher performance and more efficient learning, although the effectiveness of the tactics that are

found seems bounded by the reduced complexity.

Centralized Versus Decentralized Team Coordination Using Dynamic Scripting

4 | NLR-TP-2014-424

 NLR-TP-2014-424 | 5

Content
Abbreviations 6

1 Introduction 7

2 Related Work 8

3 Dynamic Scripting with Centralized Team Coordination 11

4 Method 13

5 Results 15

6 Discussion 17

7 Conclusion 20

Appendix A Rule bases 23

Appendix A.1 Rules used by the blues (CTCM) 23
Appendix A.2 Rules used by the blues (DS+C) 26
Appendix A.3 Rules used by red 30

Centralized Versus Decentralized Team Coordination Using Dynamic Scripting

6 | NLR-TP-2014-424

Abbreviations

Acronym Description
CAP Combat Air Patrol

CGF Computer Generated Force

CTCM Centralized Team Coordination Method

DS Dynamic Scripting

DS+C Dynamic Scripting + Coordination

TP Turning Point

 NLR-TP-2014-424 | 7

1 Introduction

Our point of departure is the problem of controlling computer generated forces (CGFs) in military

training simulations. These CGFs need to exhibit realistic behavior for simulations to have the

highest possible educational value. In the real world, military units often operate in teams, such

as infantry fireteams, carrier battle groups, or air force fighters. The coordination between team

members is of specific interest to our research. In earlier work (Toubman, Roessingh, Spronck,

Plaat, & Van den Herik, 2014), we investigated team coordination by using communication

between CGFs. The CGFs then automatically learn team behavior, including the required

elements of communication, using a machine learning technique called Dynamic Scripting (DS).

DS is a reinforcement learning technique that tries to find optimal combinations of behavior rules

in a rule base. Since DS works with predefined behavior rules, the learning process is more

transparent than with, e.g., subsymbolic methods. In (Toubman et al., 2014), we took advantage

of this transparency by implementing a communication scheme inside the behavior rules used by

DS to study the resulting communication patterns. So, the DS algorithm would automatically

discover which messages and responses led to winning behaviors.

Our previous work required utilizing two concurrently learning agents, resulting in two instances

of DS of which the learned rules were interdependent. This complicated interpreting of the

resulting rules and may have slowed down rule convergence. To reduce the complexity of the

setup, both computationally and for the human maintainer, in the current paper we investigate a

setup with a single instance of DS. By using one instance of DS to control the agents, we are

essentially transforming the agent system to a centralized system. The main research question of

this paper is therefore: “Does using this centralized system actually reduce the complexity, and

will it result in a more effective and efficient learning process?” The paper is, as far as we know,

the first to study centralized communication of dynamic scripts. We find that, in general, it

significantly outperforms previous work.

Centralized Versus Decentralized Team Coordination Using Dynamic Scripting

8 | NLR-TP-2014-424

2 Related Work

Coordination in multi-agent systems has been a subject of active research since the rise of

interest in distributed artificial intelligence (Ossowski & Menezes, 2006). Various models,

languages and applications have been developed over the years. So far, the lesson learned is that

there is no one-size-fits-all solution.

Coordination methods can be divided into centralized and decentralized methods. Coordination

is called centralized when a single actor collects information and decides on the best action for all

agents in the system. The choice between centralized and decentralized methods is not a clear

one, as it has been shown that sometimes both methods can successfully be applied (Jennings,

Sycara, & Wooldridge, 1998; Panait & Luke, 2005).

The difficulty of designing coordination methods has called for the use of machine learning.

Through machine learning, agents can learn (1) what actions to coordinate and (2) how to

coordinate them. Various methods for learning coordination have been developed. Examples

include (Balch & Arkin, 1994; Biggers & Ioerger, 2001; Bonarini & Trianni, 2001; Kidney &

Denzinger, 2006). Ho & Kamel (1998) present a classification of coordination methods, along with

common problems: (1) determining convergence, (2) the complexity of the methods, and (3)

attaining good performance. Additional problems include (4) dealing with extra agents, and (5)

cross-domain applicability.

Most agent coordination research focuses on abstract, puzzle-like domains with a limited number

of possible actions, such as the well-known predator-prey domain (Ho & Kamel, 1998; Stone &

Veloso, 2000). Instead, we are looking to generate behavior for agents in air combat simulations,

with complex environments including hostile agents, and an array of actions with various

parameters. Recent efforts in this domain are few. Among others they include the use of neural

networks (Su, Lai, Lin, & You, 2012; Teng, Tan, Ong, & Lee, 2012) and differential evolution

Figure 1: Diagram of the Dynamic Scripting Learning Process

 NLR-TP-2014-424 | 9

(Salling, Rensfelt, Stensbäck, & Ögren, 2013). However, these methods lack transparency, which

is in our view an essential property of behavior models for training simulators, as they need to be

understood by training instructors. This is the main reason why we turned to DS for our research.

DS (Spronck, Ponsen, Sprinkhuizen-Kuyper, & Postma, 2006) is an online learning technique

based on reinforcement learning. The learning process is initiated with a rule base that contains

behavior rules for a certain agent. DS selects a certain number of rules from this rule base using

weighted random selection. The selected rules form a script that governs the behavior of an

agent during a trial. Then the weights of the rules that were activated during the trial are

adjusted based on the agent’s performance. This way, the chance to be selected again increases

for rules that lead to desired behavior, and decreases for rules that lead to unwanted behavior.

Full details on the DS algorithm can be found in (Spronck et al., 2006).

In (Toubman et al., 2014), we extended regular DS with a team coordination method which we

called “DS+C.” In DS+C, agents are allowed to communicate with each other. The communication

is done through behavior rules. In this way, the DS algorithm was able to learn which messages

and which responses lead to good behavior. With DS+C, the agents were able to win more

encounters than with regular DS, and do so earlier on in the learning process. This was especially

the case against an unpredictable opponent. Agents using DS+C were better equipped to defeat

an opponent that used different tactics throughout the learning process.

DS+C has only been tested on a small scale. The experiments in (Toubman et al., 2014) used a 2-

versus-1 scenario in which two learning ‘blue’ agents intercepted one ‘red’ agent that used a

static script. Both ‘blue’ agents had their own rule base together with their own instance of the

learning algorithm. In essence, learning took place concurrently, and in a distributed manner

(Jennings et al., 1998; Sen & Weiss, 1999). While this scheme produced good results, it is not

expected to scale easily as each learning agent needs rules that know about each other agent

with whom it communicates, and resulting traces proved difficult to interpret.

While DS is not computationally expensive per se (the actual simulations require the largest share

of the computational power), interlinking multiple instances such as in DS+C creates an

increasingly difficult optimization problem as both agents try to optimize their rule selections

simultaneously. Also, on a design level, it is easy to add a new agent with a self-contained rule

base, but it is harder to design a rule base for a learning agent that simultaneously has to learn to

coordinate with other agents. This difficulty increases with the number of agents and functional

requirements (Turner & Jennings, 2001). So, while multiagent systems are inherently scalable

Centralized Versus Decentralized Team Coordination Using Dynamic Scripting

10 | NLR-TP-2014-424

(Stone & Veloso, 2000), the issue here is that DS+C agents require knowledge in their rule bases

about the other team members. This is not only a problem when designing rules for the agents

before any learning takes place, but also during a possible review phase, when the agents have

learned and their behavior is reviewed and manually tweaked. For these reasons, we tried to

reduce the complexity of DS+C while keeping its benefits, by moving to centralized coordination.

 NLR-TP-2014-424 | 11

3 Dynamic Scripting with Centralized Team
Coordination

The overarching goal of this type of research and previous research is to generate behavior for

CGFs in training simulations in an easy way using machine learning. To increase the realism of

these CGFs, we looked at adding team coordination (Toubman et al., 2014). Therefore, we have

added coordination rules to the rule bases of the agents, allowing them to send their own actions

and to react to the others intentions.

For the approach presented in this paper, we addressed the scaling issue by reducing the number

of learning agents to one per team. The ‘master’ agent will direct one or more ‘slave’ agents

through the same communication mechanism used in DS+C. In the new case, however, only the

master agent will optimize its own rule base, which will govern both the behavior of the master

and the slave agents. In this way, we expect to obtain similar team behavior while reducing the

learning complexity.

DS generates scripts by selecting rules from a rule base. In (Toubman et al., 2014) we exploited

this mechanism by formulating rules that send out messages in addition to performing actions

like turning and firing, and thereby enabling DS to find effective exchanges of messages. In the

current paper, we use the same mechanism in the same way, only in one direction. We will refer

to this new method as the centralized team coordination method (CTCM). It consists of two

phases.

First, a rule base is designed for the master agent with behavior rules of which certain

combinations might be able to solve partly the task at hand. In the case of our air combat

simulation, such rules allow the agent to evade incoming missiles, or make heading changes to

avoid detection. Creating several variants of each of those rules enables a wider range of possible

behavior. As with DS+C, executing these rules also makes the agent broadcast a message to its

slave agents with the intention of its current action.

Second, a separate rule base is designed for the slave agents. Apart from some default rules with

fallback behavior, the rules in the rule base are triggered only by the reception of messages from

the master agent. For the slave agents, variants of rules can be added, to define a wider range of

behavior. These variants have to be triggered by distinct messages from the master agent. The

rule base of the master agent can also contain rules that are duplicates of each other, except for

Centralized Versus Decentralized Team Coordination Using Dynamic Scripting

12 | NLR-TP-2014-424

the message that they send. This way different behavior for the slave agent can be tried while

keeping the behavior of the master agent the same. The DS rule selection process allows us to try

out automatically various combinations of behavior in the master and slave agents.

Of course, to make decisions, agents need to be able to observe their environment. The master

agent bases its decisions on its own observations for both its own behavior and for the slaves’

behavior. In our case this happens through sensors such as the radar. However, if the slave

agents are also capable of making observations, it enhances the master agents situational

awareness and therefore its ability on improved decision making. Therefore, the slave agents are

allowed to send messages back to the master agent using rules. The master agent does not

actively respond to these messages, but uses the information from the slave agents to base its

new decisions on. This gives the master agent a broader view, but not a completely global view

on the environment of its team.

The rule base of the master agent is optimized using DS, while the rule bases of the slaves are

not. Throughout the learning process, the DS algorithm selects rules from the rule base and

forms a script for the master agent. The master agent uses this script during a trial in its

environment. The selected rules also implicitly dictate the behavior of the slave agents.

Figure 2: The ‘Blues’ (left) Fly Towards
‘Red’ (right), Who Is Flying a CAP

Figure 3: Screenshot of the Simulation

 NLR-TP-2014-424 | 13

4 Method

The application of the CTCM was tested in the same custom air-to-air combat simulation used in

(Toubman et al., 2014), together with the same parameters for DS, allowing a close comparison.

The approach is summarized there as follows. In the simulation, a formation of two blue fighters

(“the blues”, i.e., a lead and a wingman) had to eliminate a single red fighter. The red fighter flew

a Combat Air Patrol (CAP) (see Figure 2) to defend an area of airspace. The mission of the blues

was considered successful if they eliminated the red fighter without any losses on their own side.

The mission of red was to eliminate all fighters it detected. Figure 3 shows a screenshot of the

simulation.

For this application, the blue lead was made the master agent, and the blue wingman was made

the slave agent. The lead used two default rules: one rule to let the lead fly to the area where red

flies its CAP, and also to send a message to the wingman to let it fly in formation, and the other

rule to set the lead’s radar to search mode1. Both rules were only used when no other rules

applied. The default rules were added to each script generated by the DS algorithm. The rule

base of the lead further contained rules for locking the radar onto red, rules for firing missiles at

red from various distances when the lead had a radar lock on red, and various rules for evading

red’s missiles and radar locks. Finally, the lead’s rule base contained several rules that reacted to

messages from the wingman containing certain observations by sending messages for an actual

action back to the wingman. All of these non-default rules also send a message to the wingman.

As the wingman did not learn in the case of CTCM, its entire rule base functioned as its script

during encounters. The rule base of the wingman mostly contained rules that were activated by

certain messages from the lead. For example, these rules included rules for different formations

and turning maneuvers. The wingman also had some default rules that did not require messages

to activate, such as the following rules (a) to let the wingman fire a missile at red whenever it had

the opportunity, or (b) to fly in a default formation with the lead if no other formation message

was received. Finally, the wingman also used some rules to communicate certain observations to

the lead.

For a fair comparison, new rules were added to the DS+C rule bases that allowed the agents to fly

in several recently added formations. Apart from these additions, the DS+C rule bases are the

1 In search mode a wide area is scanned with pulses of short radio waves.

Centralized Versus Decentralized Team Coordination Using Dynamic Scripting

14 | NLR-TP-2014-424

same as the original ones used in the previous experiments. (The complete CTCM and DS+C rule

bases are omitted here for brevity.)

Red used three basic tactics: a default tactic, in which it flies a Combat Air Patrol and engages any

intruders it detects; a short range tactic, which is the same as the default tactic but red is only

allowed to fire missiles from a close distance; and an evading tactic, which is the same as the

default tactic but red tries to evade incoming missiles. Alternative tactics were also added, which

were the same as the three basic tactics but in which red flies the CAP in the opposite direction.

Finally, red was given a mixed tactic which consisted of the three basic tactics and their

alternatives. When using the mixed tactic, red would use one of the six tactics until it lost an

encounter, at which point it would switch to a new randomly selected tactic.

Because the CTCM only employs one learning agent, instead of the two learning agents used in

DS+C, we conjecture that CTCM will be able to learn faster than DS+C. However, as DS+C has two

agents trying out different combinations of rules, it is expected that DS+C can be more creative

than CTCM and therefore come up with better solutions. In other words, we conjecture that the

CTCM will be more efficient but not more effective than DS+C.

To measure effectiveness, we can simply look at the resulting win/loss ratios. However, it is hard

to determine the efficiency of agents using DS, due to the random sampling of rules during the

learning process. Therefore, we re-use the Turning Point function (TP(X)) from (Toubman et al.,

2014). In brief, we look at the results with a moving window of 20 consecutive encounters. Once

blue reaches X% wins in this window, we say that a certain turning point has been reached in the

learning process. By varying X we can adjust the strictness of this measure.

To investigate the efficiency and effectiveness of the CTCM, and compare them to that of DS+C,

simulations were run in which the blues used either of these methods, and red used one of its

seven tactics.

 NLR-TP-2014-424 | 15

5 Results

For each of the seven tactics, results were averaged over 100 learning episodes. Each learning

episode consisted of 250 encounters.

For each tactic of red, the TP(X) was calculated for the blues, with X being 50%, 60%, 70% and

80%. These values were chosen because they represent the most interesting range; below 50%

blue is still losing, and above 80% blue will be experiencing rare winning streaks.

The mean TP(X) results, together with the standard deviations, are shown in Table 1. Two-tailed

two-sample t-tests were performed on the pairs of methods for each tactic. Table 1 shows the p-

values for pairs that differ significantly at the a = 0.05 significance level (indicated with asterisks).

In 21 out of the 28 comparisons, a significant difference is found, of which 19 are in favor of

CTCM.

Figure 4 shows the cumulative sum of blue wins using both coordination methods, measured

over all tactics. The CTCM reaches 115917 wins out of 175000 total encounters, while DS+C only

manages to win 95815.

Figure 5 shows rolling averages (window size 20) of blue’s win/loss ratio against each of red’s

tactics individually. The CTCM is able to reach a higher win/loss ratio than DS+C against each

tactic, apart from the alternative default tactic. Also, CTCM seems to reach its plateau phase in

the learning curves before or at the same time DS+C does. Of special note is the graph for the

evading tactic, which does not contain a plateau phase but instead depicts a continuously

increasing win/loss ratio.

Figure 4: Cumulative Wins

0
20000
40000
60000
80000

100000
120000

0 100 200

B
lu

e
w

in
s

Encounter

CTCM

DS+C

Centralized Versus Decentralized Team Coordination Using Dynamic Scripting

16 | NLR-TP-2014-424

Ta
bl

e
1:

 T
ur

ni
ng

 P
oi

nt
s

TP
(5

0%
)

TP
(6

0%
)

TP
(7

0%
)

TP
(8

0%
)

Ta
ct

ic
s o

f r
ed

μ
σ

p
μ

σ
p

μ
σ

p
μ

σ
p

M
ix

ed

CT
CM

42

.9

32
.7

0.

21

65

.6

51
.9

0.

09

10

0.
9

74
.9

0.

01
 *

13
7.

4
82

.4

0.
00

 *

DS
+C

47

.9

22
.2

77

.1

42
.5

12

9.
3

71
.9

19

0.
6

72
.2

De
fa

ul
t

CT
CM

21

.8

4.
2

0.
00

 *

26

.6

12
.4

0.

00
 *

36
.9

33

.8

0.
00

 *

60

.2

66

0.
00

 *

DS
+C

31

.9

12
.2

43

22

.7

57
.5

34

.9

86
.4

59

.2

Ev
ad

in
g

CT
CM

75

.7

55
.8

0.

00
 *

87
.8

61

.9

0.
00

 *

99

.9

66
.1

0.

47

12

1.
1

72
.8

0.

12

DS
+C

51

28

.2

64
.9

31

.8

93
.9

50

13

7.
2

72
.7

Sh
or

t R
an

ge

CT
CM

30

.1

19

0.
00

 *

50

48

.9

0.
00

 *

95

.6

87
.9

0.

00
 *

13
0.

9
10

2.
8

0.
00

 *

DS
+C

42

.6

21
.3

69

.1

46
.4

13

1.
1

77
.4

19

5.
8

73
.9

De
fa

ul
t (

al
t.)

CT

CM

24

8.
4

0.
00

 *

35

.4

37
.2

0.

66

63

.5

73
.1

0.

11

10

1.
4

95
.1

0.

02
 *

DS

+C

30

12

37
.2

15

.9

50
.3

36

75

.7

58
.8

Ev
ad

in
g

(a
lt.

)
CT

CM

39
.6

23

.2

0.
01

 *

47

.5

26
.5

0.

00
 *

65
.5

45

.8

0.
00

 *

10

3.
1

76
.3

0.

01
 *

DS

+C

47
.2

16

.4

60
.8

23

.1

88
.2

52

.4

12
8.

8
70

.6

Sh
or

t R
an

ge
 (a

lt.
)

CT
CM

30

.5

15
.6

0.

00
 *

56
.6

50

.6

0.
02

 *

10
1.

5
88

.9

0.
00

 *

14
3.

2
10

4.
6

0.
00

 *

DS
+C

49

.1

27
.5

88

.3

55

17
0.

5
76

.3

21
8.

1
59

.8

N
ot

e.
 *

 p
 <

 0
.0

5.

 NLR-TP-2014-424 | 17

Figure 5: Learning Curves

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

M
ea

n
w

in
/lo

ss
 ra

tio

Encounter

Default

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

M
ea

n
w

in
/lo

ss
 ra

tio

Encounter

Default (alt.)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

M
ea

n
w

in
/lo

ss
 ra

tio

Encounter

Evading

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

M
ea

n
w

in
/lo

ss
 ra

tio

Encounter

Evading (alt.)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

M
ea

n
w

in
/lo

ss
 ra

tio

Encounter

Short Range

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

M
ea

n
w

in
/lo

ss
 ra

tio

Encounter

Short Range (alt.)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

M
ea

n
w

in
/lo

ss
 ra

tio

Encounter

Mixed

CTCM DS+C

Centralized Versus Decentralized Team Coordination Using Dynamic Scripting

18 | NLR-TP-2014-424

6 Discussion

The CTCM was developed as a team coordination method based on DS+C, but with a reduced

complexity of learning, which should result in faster and possibly more effective learning. Indeed,

it is clear that this is the case. The data in Table 1 shows that learning milestones, measured as

turning points, are reached significantly earlier. Figure 4 also supports this notion, showing a

steep increase in the number of wins.

Regarding the effectiveness of the coordination methods, Figure 5 shows a distinct difference in

performance for five out of seven tactics. For the default (alt.) and mixed tactics, the learning

curves end at a very similar performance level.

Before trying to explain these differences, it should be noted that in these experiments, the

performance of DS+C does not match that of the original paper (Toubman et al., 2014). After

investigation, it was found that continued improvements of the simulation environment have led

to a slight advantage for the red agent. While this change in performance is disadvantageous for

our line of reasoning, the results listed here provide a fairer view.

We conjectured that the CTCM would manage higher efficiency than DS+C. This also turned out

to be the case. Because the CTCM only employs one learning agent, the non-learning agent

becomes a predictable factor in the environment of the learning agent. In the case of DS+C, with

two learning agents, the learning agents will have to adjust their behavior to the other’s behavior

as well, increasing the complexity of the learning problem. With the CTCM, fewer combinations

of behavior rules are possible. Assuming two agents, a script size s, and a rule base containing r

rules for both agents, at the moment the DS algorithm selects rules to be used, there are �𝑟𝑠�

possible combinations of scripts for the CTCM, whereas for DS+C, this number increases to �𝑟𝑠�
2
.

Without taking into account the weight optimization performed by DS, this already indicates that

optimal scripts are likely to be found faster when using CTCM.

The smaller amount of possible scripts should also result in less creativity in the development of

solutions against the enemy’s tactic. Therefore, we conjectured that CTCM would not be more

effective than DS+C. However, the opposite is the case, as CTCM showed higher win/loss ratios,

and a higher total amount of wins. A possible explanation is again the lower number of

combinations of scripts. As CTCM rapidly proceeds to find an optimal solution, DS+C struggles to

do the same. However, it is interesting to see that against each tactic, CTCM hits a specific cap on

performance (0.7 for five different tactics, see Figure 5). This means that even though the

 NLR-TP-2014-424 | 19

performance of CTCM rises rapidly, it is unable to find a perfect solution in each simulation. This

again might be a result of the lower possible creativity. Using the same line of reasoning, it can be

argued that the relatively poor performance of DS+C is caused by a too large amount of possible

script combinations for the particular problems we are trying to solve (i.e., the seven tactics). If

this is the case, there might also be a sweet spot between the rules used with CTCM and DS+C,

with a more diverse rule base for more creative solutions, possibly together with a learning

method for the second agent as a middle ground between no learning and full DS that does not

cause the team behavior search space to explode.

Preliminary results from extra trials with a new fitness function show that the fitness function

plays a large role in the difference in performance of the CTCM and DS+C. By giving larger

rewards and punishments, the CTCM is able to climb to even higher performance levels, as it

benefits greatly from the ability to quickly move in and out of local optima. At the same time, the

DS+C agents have a hard time optimizing their scripts, as both agents are trying to optimize their

scripts at the same time.

Centralized Versus Decentralized Team Coordination Using Dynamic Scripting

20 | NLR-TP-2014-424

7 Conclusion

In this paper, we presented a centralized team coordination method (CTCM), which is based on

an exchange of messages within a rule-based system such as used in earlier work, but with only

one learning agent. The main research question of this paper was: “Does using this centralized

system actually reduce the complexity, and will it result in a more effective and efficient learning

process?” Based on the results from our experiments, we may conclude that the CTCM is a good

alternative to more complex solutions with more learning agents, to let a team of virtual fighter

pilots learn effective behavior. The CTCM was able to reach milestones significantly faster, while

maintaining a better performance during the learning process. Some of the tactics used by the

enemy fighter pilot still present a problem to our learning agents, leaving space for further

research. Future research should especially look into a better fitness function for air combat

simulations as the key element to further performance increases.

 NLR-TP-2014-424 | 21

References
Balch, T., & Arkin, R. C. (1994). Communication in reactive multiagent robotic systems.

Autonomous Robots, 1(1), 27–52. doi:10.1007/BF00735341

Biggers, K. E., & Ioerger, T. R. (2001). Automatic generation of communication and teamwork
within multi-agent teams. Applied Artificial Intelligence, 15(10), 875–916.
doi:10.1080/088395101753242679

Bonarini, A., & Trianni, V. (2001). Learning fuzzy classifier systems for multi-agent coordination.
Information Sciences, 136(1-4), 215–239. doi:10.1016/S0020-0255(01)00149-9

Ho, F., & Kamel, M. (1998). Learning Coordination Strategies for Cooperative Multiagent Systems.
Machine Learning, 33(2-3), 155–177. doi:10.1023/A:1007562506751

Jennings, N. R., Sycara, K., & Wooldridge, M. (1998). A Roadmap of Agent Research and
Development. Autonomous Agents and Multi-Agent Systems, 1(1), 7–38.
doi:10.1023/A:1010090405266

Kidney, J., & Denzinger, J. (2006). Testing the limits of emergent behavior in MAS using learning
of cooperative behavior. In Proceedings of the 2006 conference on ECAI 2006: 17th
European Conference on Artificial Intelligence (Vol. 141, pp. 260–264). Riva del Garda, Italy:
IOS Press

Ossowski, S., & Menezes, R. (2006). On coordination and its significance to distributed and multi-
agent systems. Concurrency and Computation: Practice and Experience, 18(4), 359–370.
doi:10.1002/cpe.943

Panait, L., & Luke, S. (2005). Cooperative Multi-Agent Learning: The State of the Art. Autonomous
Agents and Multi-Agent Systems, 11(3), 387–434. doi:10.1007/s10458-005-2631-2

Salling, E., Rensfelt, A., Stensbäck, N., & Ögren, P. (2013). Learning Air Combat Parameters using
Differential Evolution. In Twelfth Scandinavian Conference on Artificial Intelligence (pp.
225–234). doi:10.3233/978-1-61499-330-8-225

Sen, S., & Weiss, G. (1999). Learning in Multiagent Systems. In G. Weiss (Ed.), Multiagent Systems
(pp. 259–298). MIT Press

Spronck, P., Ponsen, M., Sprinkhuizen-Kuyper, I., & Postma, E. (2006). Adaptive game AI with
dynamic scripting. Machine Learning, 63(3), 217–248. doi:10.1007/s10994-006-6205-6

Stone, P., & Veloso, M. (2000). Multiagent systems: A survey from a machine learning
perspective. Autonomous Robots, 8(3), 345–383

Su, M.-C., Lai, S.-C., Lin, S.-C., & You, L.-F. (2012). A new approach to multi-aircraft air combat
assignments. Swarm and Evolutionary Computation, 6, 39–46. Retrieved from
http://www.sciencedirect.com/science/article/pii/S2210650212000260

Centralized Versus Decentralized Team Coordination Using Dynamic Scripting

22 | NLR-TP-2014-424

Teng, T.-H., Tan, A.-H., Ong, W.-S., & Lee, K.-L. (2012). Adaptive CGF for pilots training in air
combat simulation. In 15th International Conference on Information Fusion (FUSION) (pp.
2263–2270). Singapore

Toubman, A., Roessingh, J. J., Spronck, P., Plaat, A., & Van den Herik, J. (2014). Dynamic Scripting
with Team Coordination in Air Combat Simulation. In Proceedings of the 27th International
Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems
(pp. 440–449). Kaohsiung, Taiwan: Springer-Verlag. doi:10.1007/978-3-319-07455-9_46

Turner, P. J., & Jennings, N. R. (2001). Improving the scalability of multi-agent systems. In T.
Wagner & O. F. Rana (Eds.), Infrastructure for Agents, Multi-Agent Systems, and Scalable
Multi-Agent Systems (pp. 246–262). Springer Berlin Heidelberg. doi:10.1007/3-540-47772-
1_25

 NLR-TP-2014-424 | 23

Appendix A Rule bases

The tables in this appendix give the priorities and textual descriptions of the rules used in the

experiments.

Appendix A.1 Rules used by the blues (CTCM)

Table 2: Rules in the rule base of the blue lead when using the CTCM

Priority Rule
1 If no other rule applies, put my radar in ‘search’ mode. (default rule)

1 If I am 20 km or more away from the target area, then turn towards the target area, put my

radar in ‘search’ mode, and send message ‘default-formation' to wingman. (default rule)

2 If my radar is not in ‘search’ mode and I see no enemies on my radar, put my radar in ‘search’

mode, and send message ‘searching’ to wingman. (default rule)

2 If I see an enemy on my radar, lock my radar onto this enemy, and send message ‘engaging’ to

wingman. (default rule)

2 If my radar is in ‘lock’ mode, and I see an enemy on my radar, and there is no missile flying at

this enemy, and I have missiles left, and this enemy is alive, and I am 50 km or less away from

this enemy, fire a missile at this enemy, and send message ‘firing’ to wingman. (default rule)

3 If I am 20 km or more away from the target area, then turn towards the target area, put my

radar in ‘search’ mode, and send message ‘twoship-formation-left’ to wingman.

3 If I am 20 km or more away from the target area, then turn towards the target area, put my

radar in ‘search’ mode, and send message ‘twoship-formation-right’ to wingman.

3 If I am 20 km or more away from the target area, then turn towards the target area, put my

radar in ‘search’ mode, and send message ‘trail-formation’ to wingman.

3 If I am 20 km or more away from the target area, then turn towards the target area, put my

radar in ‘search’ mode, and send message ‘wall-formation-left’ to wingman.

3 If I am 20 km or more away from the target area, then turn towards the target area, put my

radar in ‘search’ mode, and send message ‘wall-formation-right’ to wingman.

6 If I detect an enemy on my radar warning receiver, and I do not detect an enemy on my radar,

and my radar is in ‘search’ mode, turn approximately towards the enemy on my radar warning

receiver.

6 If I detect an enemy on my radar warning receiver, change my heading to my current heading +

90 + my approximate bearing to the enemy on my radar warning receiver, and send message

‘evadingRWR’ to wingman.

Centralized Versus Decentralized Team Coordination Using Dynamic Scripting

24 | NLR-TP-2014-424

6 If I detect an enemy on my radar warning receiver, change my heading to my current heading +

90 + my approximate bearing to the enemy on my radar warning receiver, and send message

‘evadingRWR’ to wingman.

6 If there is a missile flying at me, and there is an enemy on my radar warning receiver, change

my heading to my current heading + 180 + my approximate bearing to the enemy on the radar

warning receiver + a random factor in the range [-22.5,22.5], and send message ‘break180’ to

wingman.

6 If there is a missile flying at me, and there is an enemy on my radar warning receiver, change

my heading to my current heading + 90 + my approximate bearing to the enemy on the radar

warning receiver + a random factor in the range [-22.5,22.5], and send message ‘breakp90’ to

wingman.

6 If there is a missile flying at me, and there is an enemy on my radar warning receiver, change

my heading to my current heading - 90 + my approximate bearing to the enemy on the radar

warning receiver + a random factor in the range [-22.5,22.5], and send message ‘breakm90’ to

wingman.

9 If my radar is locked onto an enemy, and I have missiles left, and the enemy on my radar is

alive, and I am no more than 50 km away from the enemy, and there is no missile flying at the

enemy, fire a missile at the enemy, and send message ‘firing’ to wingman.

9 If my radar is locked onto an enemy, and I have missiles left, and the enemy on my radar is

alive, and I am no more than 60 km away from the enemy, and there is no missile flying at the

enemy, fire a missile at the enemy, and send message ‘firing’ to wingman.

9 If my radar is locked onto an enemy, and I have missiles left, and the enemy on my radar is

alive, and I am no more than 70 km away from the enemy, and there is no missile flying at the

enemy, fire a missile at the enemy, and send message ‘firing’ to wingman.

9 If my radar is locked onto an enemy, and I have missiles left, and the enemy on my radar is

alive, and I am no more than 80 km away from the enemy, and there is no missile flying at the

enemy, fire a missile at the enemy, and send message ‘firing’ to wingman.

9 If my radar is locked onto an enemy, and I have missiles left, and the enemy on my radar is

alive, and I am no more than 90 km away from the enemy, and there is no missile flying at the

enemy, fire a missile at the enemy, and send message ‘firing’ to wingman.

1 Do nothing.

1 Do nothing.

1 Do nothing.

1 Do nothing.

1 Do nothing.

1 Do nothing.

 NLR-TP-2014-424 | 25

7 If I received message ‘newRadarObservation’, send message ‘breakp90’ to wingman.

7 If I received message ‘newRadarObservation’, send message ‘breakm90’ to wingman.

7 If I received message ‘newRadarObservation’, send message ‘engageInformed’ to wingman.

7 If I received message ‘newRadarWarningReceiverObservation’, send message ‘breakp90’ to

wingman.

7 If I received message ‘newRadarWarningReceiverObservation’, send message ‘breakm90’ to

wingman.

7 If I received message ‘newRadarWarningReceiverObservation’, send message

‘engageUninformed’ to wingman.

7 If I received message ‘newMissileFlyingAtMe’, send message ‘breakp90’ to wingman.

7 If I received message ‘newMissileFlyingAtMe’, send message ‘breakm90’ to wingman.

Table 3: Rules in the rule base of the blue wingman when using the CTCM

Priority Rule
1 If no other rule applies, put my radar in ‘search’ mode. (default rule)

1 If lead is not alive, turn towards the target area, and put my radar in ‘search’ mode.

3 If I received message ‘default-formation’, put my radar in ‘search’ mode, and fly 10 km to the

right of and 10 km behind lead.

8 If I see an enemy on my radar, lock my radar onto that enemy, and turn towards that enemy.

9 If my radar is locked onto an enemy, and there is no missile flying at that enemy, and I have

missiles left, and I am no more than 80 km away from the enemy, fire a missile at the enemy.

3 If I received message ‘twoship-formation-left’, and I am not flying in formation, put my radar in

‘search’ mode, and fly 20 km to the left of and 20 km behind lead.

3 If I received message ‘twoship-formation-right’, and I am not flying in formation, put my radar

in ‘search’ mode, and fly 20 km to the right of and 20 km behind lead.

3 If I received message ‘trail-formation’, and I am not flying in formation, put my radar in ‘search’

mode, fly 20 km behind lead.

3 If I received message ‘wall-formation-left’, and I am not flying in formation, put my radar in

‘search’ mode, and fly 20 km to the left of lead.

3 If I received message ‘wall-formation-right’, and I am not flying in formation, put my radar in

‘search’ mode, and fly 20 km to the right of lead.

9 When I see a new enemy on my radar, send message ‘newRadarObservation’ to lead.

9 When I detect a new enemy on my radar warning receiver, send message

‘newRadarWarningReceiverObservation’ to lead.

9 When there is a new missile flying at me, send message ‘newMissileFlyingAtMe’ to lead.

6 If I received message ‘breakp90’, turn 90 degrees to the right.

Centralized Versus Decentralized Team Coordination Using Dynamic Scripting

26 | NLR-TP-2014-424

6 If I received message ‘breakm90’, turn 90 degrees to the left.

6 If I received message ‘engageInformed’, turn towards the enemy.

6 If I received message ‘engageUninformed’, turn approximately towards the enemy.

Appendix A.2 Rules used by the blues (DS+C)

Table 4: Rules in the rule base of the blue lead when using DS+C

Priority Rule
1 If I am 20 km or more away from the target area, turn towards the target area, put my radar in

‘search’ mode, and send message ‘default-target’ to wingman. (default rule)

2 If my radar is not in ‘search’ mode and there is no enemy on my radar, put my radar in ‘search’

mode, and send message ‘searching’ to wingman. (default rule)

2 If I see an enemy on my radar, lock my radar onto that enemy, and send message ‘engaging’ to

wingman. (default rule)

2 If my radar is locked onto an enemy, and there is no missile flying at this enemy, and I have

missiles left, and I am no more than 50 km away from this enemy, fire a missile at the enemy,

and send message ‘firing’ to wingman. (default rule)

2 If I see an enemy on my radar, and there is a missile flying at this enemy, lock my radar onto

this enemy, turn towards this enemy, and send message ‘supporting’ to wingman. (default

rule)

6 If I detect an enemy with my radar warning receiver, and I do not see an enemy on my radar,

and my radar is in ‘search’ mode, turn approximately towards the enemy on my radar warning

receiver, and send message ‘engagingRWR’ to wingman.

6 If I detect an enemy with my radar warning receiver, change my heading to my current heading

+ 180 + my approximate bearing to the enemy on the radar warning receiver + a random factor

in the range [-22.5,22.5], and send message ‘evadingRWR’ to wingman.

6 If I detect an enemy with my radar warning receiver, change my heading to my current heading

+ 90 + my approximate bearing to the enemy on the radar warning receiver + a random factor

in the range [-22.5,22.5], and send message ‘evadingRWR’ to wingman.

6 If I detect an enemy with my radar warning receiver, change my heading to my current heading

- 90 + my approximate bearing to the enemy on the radar warning receiver + a random factor

in the range [-22.5,22.5], and send message ‘evadingRWR’ to wingman.

6 If there is a missile flying at me, and I detect an enemy on my radar warning receiver, change

my heading to my current heading + 180 + my approximate bearing to the enemy on the radar

warning receiver + a random factor in the range [-22.5,22.5], and send message

‘evadingMissile’ to wingman.

 NLR-TP-2014-424 | 27

6 If there is a missile flying at me, and I detect an enemy on my radar warning receiver, change

my heading to my current heading + 90 + my approximate bearing to the enemy on the radar

warning receiver + a random factor in the range [-22.5,22.5], and send message

‘evadingMissile’ to wingman.

6 If there is a missile flying at me, and I detect an enemy on my radar warning receiver, change

my heading to my current heading - 90 + my approximate bearing to the enemy on the radar

warning receiver + a random factor in the range [-22.5,22.5], and send message

‘evadingMissile’ to wingman.

9 If my radar is locked onto an enemy and I have missiles left and I am no more than 50 km away

from the enemy, fire a missile at the enemy, and send message ‘firing’ to wingman.

9 If my radar is locked onto an enemy and I have missiles left and I am no more than 60 km away

from the enemy, fire a missile at the enemy, and send message ‘firing’ to wingman.

9 If my radar is locked onto an enemy and I have missiles left and I am no more than 70 km away

from the enemy, fire a missile at the enemy, and send message ‘firing’ to wingman.

9 If my radar is locked onto an enemy and I have missiles left and I am no more than 80 km away

from the enemy, fire a missile at the enemy, and send message ‘firing’ to wingman.

9 If my radar is locked onto an enemy and I have missiles left and I am no more than 90 km away

from the enemy, fire a missile at the enemy, and send message ‘firing’ to wingman.

1 Do nothing.

1 Do nothing.

1 Do nothing.

1 Do nothing.

1 Do nothing

1 Do nothing.

6 If I received message ‘evadingRWR’ or ’evadingMissile’ and I see no enemies on my radar and I

detect no enemies on my radar warning receiver, turn approximately towards the enemy

detected by wingman.

6 If I received message ‘locking’ or ‘firing’ or ‘supporting’ and I see no enemies on my radar and I

detect no enemies on my radar warning receiver, turn towards the enemy detected by

wingman.

6 If I received message ‘evadingRWR’, change my heading to my current heading + 180 + my

approximate bearing to the enemy on the radar warning receiver + a random factor in the

range [-22.5,22.5], and send message ‘evadingRWR’ to wingman.

6 If I received message ‘evadingRWR’, change my heading to my current heading + 90 + my

approximate bearing to the enemy on the radar warning receiver + a random factor in the

range [-22.5,22.5], and send message ‘evadingRWR’ to wingman.

Centralized Versus Decentralized Team Coordination Using Dynamic Scripting

28 | NLR-TP-2014-424

6 If I received message ‘evadingRWR’, change my heading to my current heading - 90 + my

approximate bearing to the enemy on the radar warning receiver + a random factor in the

range [-22.5,22.5], and send message ‘evadingRWR’ to wingman.

 Table 5: Rules in the rule base of the blue wingman when using DS+C

Priority Rule
1 If lea d is alive, put my radar in ‘search’ mode, and fly 40 km to the right of and 40 km behind

lead. (default rule)

1 If lead is not alive, and I am 20 km or more away from the target area, turn towards the target

area. (default rule)

2 If my radar is not in search mode and I see no enemies on my radar, put my radar in ‘search’

mode, and send message ‘searching’ to lead. (default rule)

2 If I see an enemy on my radar, lock my radar onto that enemy, and send message ‘engaging’ to

lead. (default rule)

2 If my radar is locked onto an enemy, and there is no missile flying at that enemy, and I have

missiles left, and I am no more than 50 km away from that enemy, fire a missile at that enemy,

and send message ‘firing’ to lead. (default rule)

2 If there is an enemy on my radar, and there is a missile flying at that enemy, lock my radar onto

that enemy, turn towards that enemy, and send message ‘supporting’ to lead.

2 If lead is alive, put my radar in ‘search’ mode, and fly 20 km to the left of and 20 km behind

lead.

2 If lead is alive, put my radar in ‘search’ mode, and fly 20 km to the right of and 20 km behind

lead.

2 If lead is alive, put my radar in ‘search’ mode, and fly 20 km behind lead.

2 If lead is alive, put my radar in ‘search’ mode, and fly 20 km to the left of lead.

2 If lead is alive, put my radar in ‘search’ mode, and fly 20 km to the right of lead.

6 If I detect an enemy on my radar warning receiver, and I see no enemies on my radar, and my

radar is in ‘search’ mode, turn approximately towards the enemy, and send message

‘engagingRWR’ to lead.

6 If I detect an enemy with my radar warning receiver, change my heading to my current heading

+ 180 + my approximate bearing to the enemy on the radar warning receiver + a random factor

in the range [-22.5,22.5], and send message ‘evadingRWR’ to lead.

6 If I detect an enemy with my radar warning receiver, change my heading to my current heading

+ 90 + my approximate bearing to the enemy on the radar warning receiver + a random factor

in the range [-22.5,22.5], and send message ‘evadingRWR’ to lead.

6 If I detect an enemy with my radar warning receiver, change my heading to my current heading

 NLR-TP-2014-424 | 29

- 90 + my approximate bearing to the enemy on the radar warning receiver + a random factor

in the range [-22.5,22.5], and send message ‘evadingRWR’ to lead.

9 If my radar is locked onto an enemy, and I have missiles left, and I am no more than 50 km

away from the enemy, fire a missile at that enemy, and send message ‘firing’ to lead.

9 If my radar is locked onto an enemy, and I have missiles left, and I am no more than 60 km

away from the enemy, fire a missile at that enemy, and send message ‘firing’ to lead.

9 If my radar is locked onto an enemy, and I have missiles left, and I am no more than 70 km

away from the enemy, fire a missile at that enemy, and send message ‘firing’ to lead.

9 If my radar is locked onto an enemy, and I have missiles left, and I am no more than 80 km

away from the enemy, fire a missile at that enemy, and send message ‘firing’ to lead.

9 If my radar is locked onto an enemy, and I have missiles left, and I am no more than 90 km

away from the enemy, fire a missile at that enemy, and send message ‘firing’ to lead.

1 Do nothing.

1 Do nothing.

1 Do nothing.

1 Do nothing.

1 Do nothing.

1 Do nothing.

6 If I received message ‘evadingRWR’ or ‘evadingMissile’ and I see no enemy on my radar and I

detect no enemies with my radar warning receiver, turn approximately towards the enemy

that the sender is evading.

6 If I received message ‘locking’ or ‘firing’ or ‘supporting’ and I see no enemy on my radar and I

detect no enemies with my radar warning receiver, turn towards the enemy that the sender

sees.

6 If I received message ‘evadingRWR’, change my heading to my current heading + 180 + my

approximate bearing to the enemy on the radar warning receiver + a random factor in the

range [-22.5,22.5].

6 If I received message ‘evadingRWR’, change my heading to my current heading + 90 + my

approximate bearing to the enemy on the radar warning receiver + a random factor in the

range [-22.5,22.5].

6 If I received message ‘evadingRWR’, change my heading to my current heading - 90 + my

approximate bearing to the enemy on the radar warning receiver + a random factor in the

range [-22.5,22.5].

Centralized Versus Decentralized Team Coordination Using Dynamic Scripting

30 | NLR-TP-2014-424

Appendix A.3 Rules used by red

Table 6:. Rules in the rule base of red for the default tactic

Priority Rule
1 In any case, change my state to ‘cap1’, and put my radar in ‘search’ mode.

1 If I am more than 5 km away from the first waypoint, and my state is ‘cap1’, fly towards the

first waypoint.

1 If I am no more than 5 km away from the first waypoint and my state is ‘cap1’, change my state

to ‘cap2’.

1 If I am more than 5 km away from the second waypoint, and my state is ‘cap2’, fly towards the

second waypoint.

1 If I am no more than 5 km away from the second waypoint, and my state is ‘cap2’, change my

state to ‘cap1’.

2 If I detect an enemy on my radar warning receiver, and I see no enemies on my radar, and my

radar is in ‘search’ mode, turn towards the detected enemy.

2 If I see an enemy on my radar, turn towards that enemy.

5 If I see an enemy on my radar, and I am no more than 90 km away from that enemy, lock my

radar onto that enemy, and turn towards that enemy.

6 If my radar is locked onto an enemy, and I am no more than 100 km away from that enemy,

and there is no missile flying at that enemy, and I have missiles left, fire a missile that that

enemy.

For the short range tactic, red used the rule base for the default tactic, but would fire a missile

from no more than 50 km away (instead of 100 km).

For the evading tactic, red used the rule base for the default tactic, with the following rule added:

Priority Rule
9 If there is a missile flying at me, and I detect an enemy on my radar warning receiver, change

my heading to my current heading + 180 + my approximate bearing to the enemy on the radar

warning receiver + a random factor in the range [-22.5,22.5].

W H A T I S N L R ?

The NL R i s a D utc h o rg an i s at io n th at i de n t i f i es , d ev e lop s a n d a p pl i es h i gh -t ech know l ed g e i n t he

aero s pac e sec tor . Th e NLR ’s ac t i v i t i es ar e soc ia l ly r e lev an t , m ar ke t-or i en ta te d , an d co n d uct ed

no t- for - p ro f i t . I n t h i s , th e NL R s erv e s to bo ls te r th e gove r nm en t ’s i n nova t iv e c apa b i l i t ie s , w h i l e

a lso p romot i ng t he i n nova t iv e a n d com p et i t iv e ca pa c i t ie s o f i t s p ar tn er com pa ni e s .

The NLR, renowned for i ts leading expert ise, professional approach and independent consultancy, is

staffed by c l ient-orientated personnel who are not only highly ski l led and educated, but a lso

continuously strive to develop and improve their competencies. The NLR moreover possesses an

impressive array of high qual ity research fac i l i t ies.

NLR – Dedicated to innovation in aerospace

w w w . n l r . n l

	Cover
	EXECUTIVE SUMMARY
	Title page
	Summary
	Content
	Abbreviations
	1 Introduction
	2 Related Work
	3 Dynamic Scripting with Centralized Team Coordination
	4 Method
	5 Results
	6 Discussion
	7 Conclusion
	Appendix A Rule bases

