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For fighter aircraft with delta wings
the lifting force is supplied by two
vortices which are generated at the
sharp leading edge of the wings.
At certain flow conditions one of
the vortices may feature vortex
breakdown, resulting in a sudden
decrease of lift on one side of the
aircraft. The prediction of vor-
tex breakdown through numerical
methods contributes to the under-
standing of the phenomenon and the
postponement of vortex breakdown.

Experimentally three different os-
cillations have been shown to ex-
ist in vortex breakdown situations.
Until now, no simulation has re-
produced all three motions. Vortex
breakdown is a strongly dynamic
process, where small perturbations
may have large consequences. For
instance, earlier computations have
shown that the vortex shedding at
the trailing edge of the wing deter-
mines to a large extent the position
of the vortex breakdown. In order
to represent the small perturbations,
simulations require a locally fine
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resolution in both space and time.
In the current project a new simula-
tion method is developed, with the
capability to compute on locally re-
fined meshes. As such the method
has the potential to accurately pre-
dict vortex flow.

Description of work
The functionality of the simulation
method has been established in past
research. Local grid refinement al-
lows to simulate details of the flow
in the vortex core. The method,
however, was not efficient in terms
of turnaround time. In earlier work
a so-called smoother has been de-
veloped. The smoother is based on
an explicit time integration scheme,
specifically designed for the nu-
merical method. In the current re-

search, the smoother is embedded
in a multigrid convergence accelera-
tion technique.

Results and conlusions
With respect to the existing sin-
gle grid method the new multigrid
method is five times faster in terms
of turnaround time (compare the
solid line of the new method with
the dased line of the old method:
the new method converges in 2000
work units to a level which the old
method only reaches in 10000 work
units).

Applicability
The method is now capable of sim-
ulating vortex flow in acceptable
turnaround times and hence can be
applied to the prediction of vortex
breakdown.
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1 Introduction

Discontinuous Galerkin (DG) methods have grown very popular over recent years because of

the relative ease with which the mesh and/or the polynomial order of the basis functions can

be (locally) adapted. Contrary to continuous finite element methods, DG methods do not re-

quire any inter-element continuity, making such local hp-refinement less difficult. In this arti-

cle, we consider the compressible Navier-Stokes equations discretized by a second order accu-

rate DG method both in the spatial direction and in the time direction (Ref. 15). Although orig-

inally developed for hyperbolic equations, DG methods were successfully extended to (incom-

pletely) parabolic equations, and the feasibility and benefits of DG methods for the compressible

Navier-Stokes equations have been demonstrated by various authors including Bassi and Rebay

(Ref. 2, 3), Bauman and Oden (Ref. 4), Dolejšı́ (Ref. 7), Fidkowski e.a. (Ref. 8) and Hartmann

and Houston (Ref. 10).

Recently, attention shifted to the development of efficient solvers for the system of algebraic

equations arising from DG discretizations, notably multigrid methods because of their expected

optimal efficiency (Ref. 19, 24). In the context of DG discretizations, multigrid methods with

block iterative relaxation schemes were analyzed for model problems such as the Laplace equa-

tion and the advection-diffusion equation by Gopalakrishnan and Kantschatz in (Ref. 9) and by

Hemker, Hoffmann and Van Raalte in (Ref. 11, 12, 13, 23). These multigrid methods use a se-

quence of meshes (h-multigrid) and are based on the embedding of function spaces associated

with these meshes. On non-uniform grids where the embedding of spaces does not formally

hold, an alternative is the approach followed by Fidkowski e.a. (Ref. 8), who keep the mesh fixed

and use a sequence of different order polynomials (p-multigrid).

In (Ref. 20), h- and p-multigrid were combined to solve the non-linear system of algebraic equa-

tions arising from the space-time DG discretization of the (hyperbolic) Euler equations: the dis-

cretization is second order on the fine grid and first order on the coarse grids. For the (incom-

pletely parabolic) Navier-Stokes equations, however, this approach proves inadequate. Therefore,

in this article, we consider h-multigrid with a second order DG discretization on all grid levels.

As relaxation schemes for the multigrid algorithm, we use the explicit Runge-Kutta methods pre-

sented in (Ref. 14). With explicit relaxation the iterative solution process remains local and does

not need large data storage, thus ensuring low computational costs.

In order to predict the multigrid behavior, we introduce a similar two-level local mode Fourier

analysis as described in (Ref. 11, 22) for a model problem: the scalar advection-diffusion equa-

tion. Although we limit ourselves to a second order space-time discretization, the resulting anal-
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ysis can be used for arbitrary polynomial basis and is directly extendable to higher-dimensional

problems by the tensor product principle (Ref. 13). For various Courant numbers and cell Reynolds

numbers, we compute multigrid convergence rates and we find that explicit Runge-Kutta smooth-

ing is efficient for solving time-dependent advection-diffusion equations: two-level convergence

factors between 0.5 and 0.75 are obtained. This motivates us to apply the h-multigrid method

to the space-time DG discretization of the compressible Navier-Stokes equations. The perfor-

mance of the h-multigrid method is then investigated using numerical experiments for laminar,

(un)steady flow in 2D and 3D. We find that the computational effort is significantly reduced, up

to a factor ten w.r.t. single grid iteration.

The outline of this article is as follows. In Section 2, we summarize the space-time DG discretiza-

tion (Ref. 15) and discuss the Runge-Kutta methods (Ref. 14) used for the pseudo-time integra-

tion of the non-linear system of algebraic equations. The multigrid algorithm is presented in Sec-

tion 3 and studied in Section 4 with two-level Fourier analysis for a model problem. Appendix A

contains the two-level analysis for the (deprecated) approach with constant basis functions on the

coarse grid. The results for the compressible Navier-Stokes equations in 2D and 3D simulations

are presented in Section 5. Conclusions are drawn in Section 6.

2 Summary of the space-time DG method

In this chapter, we first summarize the space-time discontinuous Galerkin method presented in

(Ref. 15). The compressible Navier-Stokes equations are considered directly in the space-time

domain; which implies that the basis-functions are discontinuous in space-time. The discretiza-

tion results in a non-linear system of algebraic equations. Second, we summarize the pseudo-

time integration with explicit Runge-Kutta methods (Ref. 14). These will serve as relaxation

schemes in our multigrid method later on.

2.1 Space-time formulation
In (Ref. 15), the compressible Navier-Stokes equations are directly considered in an open domain

E ⊂ R4. The Cartesian coordinates (x0, x1, x2, x3) of a point in this domain give the position

x̄ = (x1, x2, x3) at time t = x0. At time t, the flow domain Ω(t) is defined as Ω(t) ≡ {x̄ ∈
R3 : (t, x̄) ∈ E}. Considering the time interval t0 < t < T , the boundary ∂E of the space-time

domain is given by the hypersurfaces Ω(t0) ≡ {x ∈ ∂E : x0 = t0}, Ω(T ) ≡ {x ∈ ∂E : x0 = T},
and Q ≡ {x ∈ ∂E : t0 < x0 < T}. Using this notation, we can write the compressible

8
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Navier-Stokes equations as:
Ui,0 + F e

ik(U),k −
(
Aikrs(U)Ur,s

)
,k

= 0 on E ,
U = U0 on Ω(t0),

U = B(U,U b) on Q,

with the summation convention on repeated indices i, r = 1, . . . , 5 and k, s = 1, 2, 3. The

comma notation refers to partial differentiation to the indicated Cartesian coordinate direction.

Here, U ∈ R5 is the vector of conservative variables and F e ∈ R5×3 the inviscid flux. The

homogeneity tensor A ∈ R5×3×5×3 is defined as the derivative of the viscous flux F v ∈ R5×3

with respect to the gradient ∇U ∈ R5×3 of the conservative variables:

Aikrs(U) ≡
∂F v

ik(U,∇U)
∂Ur,s

,

and is given in (Ref. 15). The initial flow field is U0 ∈ R5 and the boundary operator B ∈ R5

depends on the internal data U and the prescribed boundary data U b. The conservative variables,

the inviscid flux and the viscous flux are given by:

U =


ρ

ρuj

ρE

 , F e
k =


ρuk

ρujuk + pδjk

uk(ρE + p)

 , F v
k =


0

τjk

τkjuj − qk

 ,
with ρ the density, ρ~u the momentum density vector, ρE the total energy density, p the pressure,

δ the Kronecker delta function. The shear stresses τ are defined as: τjk = λui,iδjk + µ(uj,k +

uk,j) with the viscosity coefficients µ and λ related through the Stokes hypothesis 3λ + 2µ = 0.

The heat flux q is defined as: qk = −κT,k. The system is closed with the following equations of

state:

p = (γ − 1)
(
ρE − 1

2ρuiui

)
, T =

1
cv

(
E − 1

2uiui

)
,

where γ = cp/cv is the ratio of specific heats.

2.2 Discretization
The approximation Ωh(tn) of Ω(tn) is divided into Nn non-overlapping hexahedral spatial ele-

ments Kn
j = Kj(tn). Each element Kn

j is related to the master element K̂ = (−1, 1)3 through

the mapping Fn
K :

Fn
K : K̂ → Kn

j : ξ̄ 7→ x̄ =
8∑

i=1

xi(Kn
j )χi(ξ̄),

with xi the spatial coordinates of the vertices of the hexahedron Kn
j and χi the usual tri-linear

finite element shape functions for hexahedra. A similar approach is followed for Ω(tn+1). Linear

9
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interpolation in time connects Kj(tn) with Kj(tn+1), defining the space-time elements Kn
j of

En. This is expressed by the mapping GK from the master element K̂ = (−1, 1)4 to the space-

time element Kn
j :

Gn
K : K̂ → Kn

j : ξ 7→ (t, x̄) =(
1
2(tn+1 + tn) + 1

2(tn+1 − tn)ξ0, 1
2(1− ξ0)Fn

K(ξ̄) + 1
2(1 + ξ0)Fn+1

K (ξ̄)
)
. (1)

The flow domain E , limited to the time interval (tn, tn+1), defines a space-time slab which is

divided into space-time elements K according to the tessellation T n
h = {K}. We will need the

corresponding function space:

Wh ≡
{
W ∈ (L2(Eh))5 : W |K ◦GK ∈ (Pm(K̂))5, ∀K ∈ Th

}
,

where Pm(K̂) denotes the space of polynomials of degree at most m on the master element K̂ =

(−1, 1)4, mapped to element K ∈ T n
h by GK. In a space-time slab, we distinguish a set Sn

I of

internal faces and a set Sn
B of boundary faces. On an internal face S = K̄L ∩ K̄R, the traces from

the left and right element are denoted by (·)L and (·)R, respectively, and we define the average

operator as {{·}} = ((·)L + (·)R)/2 and the jump operator as [[·]]k = (·)LnL
k + (·)RnR

k , with n the

outward normal vector of the element.

Using this notation, the weak formulation of the compressible Navier-Stokes equations becomes:

find a U ∈Wh, such that for all W ∈Wh:

−
∑
K∈T n

h

∫
K
(Wi,0Ui +Wi,k(F e

ik −Aikrs(Ur,s +Rik))) dK

+
∑

K∈T n
h

( ∫
K(t−n+1)

WL
i U

L
i dK −

∫
K(t+n )

WL
i U

R
i dK

)
+

∑
S∈Sn

I

∫
S
(WL

i −WR
i )Hi dS +

∑
S∈Sn

B

∫
S
WL

i H
b
i dS

−
∑
S∈Sn

I

∫
S
[[Wi]]k{{Aikrs(Ur,s − ηSRSik)}} dS

−
∑
S∈Sn

B

∫
S
WL

i (Ab
ikrs(U

b
r,s − ηSRSik))n̄L

k dS = 0.

(2)

The inviscid numerical flux H ∈ R5 is based on the HLLC approximate Riemann solver for

moving meshes (Ref. 20). The stabilization parameter for the discretization of the viscous terms

is denoted by ηS and the superscript b indicates dependence on the prescribed boundary data

U b. The weak form (2) is slightly different from the one presented in (Ref. 15): the homogeneity

10
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tensor A is no longer included in the definition of the lifting operatorsR andRS . This makes its

computation less expensive. The current weak form can be obtained by following the derivation

in (Ref. 15) with the auxiliary variables defined as Ur,s instead of AikrsUr,s. The definition of the

local lifting operatorRS ∈ R5×3 requires the function space:

Vh ≡
{
V ∈ (L2(Eh))5×3 : V |K ◦GK ∈ (Pm(K̂))5×3, ∀K ∈ Th

}
,

such that ∇hWh ⊂ Vh with (∇hWh)|K = ∇(Wh|K) the broken derivative. Then, the local lifting

operator is defined as (Ref. 15): find anRS ∈ Vh, such that for all V ∈ Vh:

∑
K∈T n

h

∫
K
VikRSik dK =


∫
S
{{Vik}}[[Ui]]k dS for S ∈ Sn

I ,∫
S
V L

ik (UL
i − U b

i )n̄k dS for S ∈ Sn
B,

and relates to the global lifting operatorR ∈ R5×3 through: R =
∑
S∈Sn

I ∪S
n
B
RS . The stabi-

lization parameter ηS is constant and (at least) equal to the number of spatial faces of an element

(Ref. 5, 18): four in 2D and six in 3D for hexahedra. We refer to (Ref. 15) and (Ref. 20) for a

more complete description of the space-time discretization.

The system of algebraic equations for the expansion coefficients of U is obtained by replacing U

and W in the weak formulation with their polynomial expansions and using the fact that the test

functions W are arbitrary. In this paper, we limit ourselves to linear polynomials to represent the

trial function U and the test function W in each element K ∈ T n
h :

U(t, x̄)|K = Ûmψm(t, x̄), (3)

W (t, x̄)|K = Ŵlψl(t, x̄), (4)

with m, l = 0, . . . , 4. The expansion coefficients are denoted by (̂·) and the basis functions ψ are

given by:

ψm =


1, for m = 0

φm(t, x̄)− 1
|Kj(t−n+1)|

∫
Kj(t

−
n+1)

φm(t, x̄) dK, for m = 1, . . . , 4

where the functions φ in an element K are related to the basis functions φ̂ on the master element

K̂ through the mapping (1) as φm = φ̂m ◦ G−1
K with φ̂m(ξ) = ξm for m = 1, . . . , 4 and ξ

the local coordinates in K̂. This polynomial basis is of interest because of two reasons: the basis

functions are chosen such that the test and trial functions can be split into an element mean Ū at

t = tn+1 and a fluctuating part Ũ (Ref. 20):

U(t, x̄) = Ū + Ũ(t, x̄), ∀(t, x̄) ∈ K

11
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with Ū = Û0 and∫
K
Ũ(t, x̄) dx = 0.

As a consequence the relation between DG and finite volume discretizations is exposed: the

equations for the element mean in the space-time DG discretization are the same as those of a

finite volume discretization. The second reason is that it suits the definition of the artificial dissi-

pation operator used in (Ref. 20) as an alternative for slope limiters to guarantee monotone solu-

tions around discontinuities and sharp gradients.

2.3 Pseudo-time integration
For each physical time step the system of algebraic equations can be written as (Ref. 15):

L(Ûn; Ûn−1) = 0.

This system is then solved using pseudo-time integration, i.e. we add a pseudo-time derivative:

|Kn|∂Û
∂τ

= − 1
∆t
L(Û ; Ûn−1), (5)

and iterate in pseudo-time τ to steady-state using explicit Runge-Kutta methods. Here, ∆t =

tn+1− tn and |Kn| is the diagonal matrix with entries |Kj(tn+1)|. At steady-state we have Ûn =

Û .

In (Ref. 14), we proposed a combination of two explicit Runge-Kutta schemes for the pseudo-

time integration, one designed for the inviscid part of the flow domain, the other for the viscous

part. Redefining L as |Kn|−1L, the scheme for the inviscid part is given by:

Algorithm 1 (EXI). Explicit Runge-Kutta method for inviscid flow with Melson correction.

1. Initialize V̂ 0 = Û .

2. For all stages s = 1 to 5 compute V̂ s as:(
I + αsλI

)
V̂ s = V̂ 0 + αsλ

(
V̂ s−1 − L(V̂ s−1; Ûn−1)

)
.

3. Return Û = V̂ 5.

The Runge-Kutta coefficients at stage s are denoted by αs and defined as: α1 = 0.0791451,

α2 = 0.163551, α3 = 0.283663, α4 = 0.5 and α5 = 1.0. The matrix I represents the identity

matrix. The factor λ is the ratio between the pseudo-time step and the physical time step: λ =

∆τ/∆t. The correction by Melson et al. (Ref. 16) enhances the stability of the scheme for values

of λ greater than one. The scheme for the viscous part is given by:

Algorithm 2 (EXV). Explicit Runge-Kutta method for viscous flows.

1. Initialize V̂ 0 = Û .

12
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2. For all stages s = 1 to 4 compute V̂ s as:

V̂ s = V̂ 0 − αsλL(V̂ s−1; Ûn−1).

3. Return Û = V̂ 4.

Here, the Runge-Kutta coefficients at stage s are defined as: α1 = 0.0178571, α2 = 0.0568106,

α3 = 0.174513 and α4 = 1.0.

Since accuracy is not important in pseudo-time, we can apply local pseudo-time stepping and

deploy whichever scheme gives the mildest stability constraint. The EXI scheme has the mildest

stability constraint for relatively high cell Reynolds numbers and the EXV scheme for relatively

low cell Reynolds numbers. For further details on the stability of both methods and the threshold

between them we refer to (Ref. 14).

Now that the discretization and the pseudo-time integration are set, we are ready to introduce the

h-multigrid method for space-time DG discretizations.

3 h-Multigrid method

In this chapter, we present the h-multigrid pseudo-time integration method for solving the non-

linear system of algebraic equations arising from the space-time discretization of the compress-

ible Navier-Stokes equations.

3.1 Two-level algorithm
At the core of any multigrid method is the two-level algorithm, which we consider first. Let the

subscripts (·)h and (·)H denote a quantity (·) on the fine and coarse grid, respectively. Let Û de-

note an approximation of the solution Ûn of (5). Let R denote the restriction operator for the

solution, R̄ the restriction operator for the residuals and P the prolongation operator, to be de-

fined later on. The two-level algorithm which iterates system (5) to steady-state in pseudo-time

can be written as:

Algorithm 3 (TLA). Two-level algorithm.

1. Take one pseudo-time step on the fine grid with the combined EXI and EXV methods, this

gives the approximation Ûh.

2. Restrict this approximation to the coarse grid: ÛH = R(Ûh).

3. Compute the forcing:

FH ≡ L(ÛH ; Ûn−1
H )− R̄

(
L(Ûh; Ûn−1

h )
)
.

13
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4. Solve the coarse grid problem for the unknown Û∗H :

L(Û∗H ; Ûn−1
H )− FH = 0,

5. Compute the coarse grid error EH = Û∗H − ÛH and correct the fine grid approximation:

Ûh ← Ûh + P (EH).

Solving the coarse grid problem at stage four of Algorithm 3 can again be done with the two-

level algorithm. This recursively defines the V-cycle multi-level algorithm in terms of the two-

level algorithm. It is common practice to take ν1 pseudo-time steps at stage one of Algorithm 3

and another ν2 pseudo-time steps after stage five. In that case, ν1 and ν2 are called the number

of pre- and post-relaxations, respectively. In practice, the exact solution of the problem on the

coarsest grid is not always feasible; instead one simply takes ν1 + ν2 relaxation steps.

Next, we define the inter-grid transfer operators R, R̄ and P .

3.2 Inter-grid transfer operators
The inter-grid transfer operators stem from the L2-projection of the coarse grid solution UH in

an element KH on the corresponding set of fine elements {Kh}. The solution Uh in element Kh

can be found by solving:∫
Kh

WiU
h
i dK =

∫
Kh

WiU
H
i dK, ∀W ∈Wh. (6)

This relation supposes the embedding of spaces, i.e. WH ⊂ Wh, to ensure that UH is defined

on Kh. As illustrated in Figure 1, the embedding of spaces does not hold for curvilinear grids

with iso-parametric mapping: the fine elements overlap only partially with the coarse element.

However, in order to construct the inter-grid transfer operators we will assume that the integral

on the r.h.s. of (6) exists and proceed as follows. Replacing the test and trial functions in (6) by

their polynomial expansions (3) gives:( ∫
Kh

ψh
l ψ

h
m dK

)
Ûh

im =
( ∫

Kh

ψh
l ψ

H
n dK

)
ÛH

in ,

with l,m, n = 0, . . . , 4. On the l.h.s., we recognize the mass matrix Mh of element Kh so the

projection of UH onto Kh can be computed in terms of the expansion coefficients as:

Ûh
im = (M−1

h )ml

( ∫
Kh

ψh
l ψ

H
n dK

)
ÛH

in . (7)

Consider the integral on the r.h.s. of (7) and transform to computational space using the mapping

GK: ∫
Kh

ψh
l ψ

H
n dK =

∫
K̂h

ψ̂h
l ψ̂

H
n |JG| dξ,

14
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Fig. 1 Relation between two grid levels in computational and physical space.

with JG the Jacobian of the transformation (1). Note that in computational space we have:

ξh
i = 1

2ξ
H
i ± 1

2 , i = 1, . . . , 4

where the sign depends on the position of the fine element within the coarse element. In Figure 1

for example, ξh
1 = 1

2ξ
H
1 − 1

2 and ξh
2 = 1

2ξ
H
2 + 1

2 . Since the basis functions ψ̂ are expressed in terms

of ξ (Section 2.2), the integral (7) can easily be computed and thereby the L2 projection of the

coarse grid solution onto the fine grid. This defines the prolongation operator P . The restriction

operator for the residuals is then defined as the transpose of the prolongation operator: R̄ = RT .

The restriction operator R for the solution is defined as R = P−1 such that the property UH =

R(P (UH)) holds, meaning that the inter-grid transfer does not modify the solution.

Remark 1. In this article, we limit ourselves to h-multigrid in a single space-time slab. The

time-step ∆t is equal on both levels; the coefficients Ûi4 which correspond to the gradient in time

are therefore identical: ÛH
i4 = Ûh

i4. Multi-time multigrid methods are also feasible, see (Ref. 21),

but not considered in this article.

Now that the h-multigrid method is well defined, we continue by analyzing its stability and per-

formance.
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4 Two-level Fourier analysis for a model problem

In this chapter, the convergence behavior of Algorithm 3 is studied with Fourier analysis for the

space-time discontinuous Galerkin discretization of the scalar advection-diffusion equation.

4.1 Discretization of the model problem
Consider the time-dependent scalar advection-diffusion equation:ut + aux − duxx = 0, x ∈ R, t ∈ R+

u(x, 0) = u0, x ∈ R,

where a, d > 0 denote the advection and diffusion constants, respectively. The flow domain

Eh = R × R+ restricted to the time interval (tn, tn+1) has tesselation T n
h consisting of uniform

elements K = (xj , xj+1)× (tn, tn+1) with j ∈ Z and n ∈ N. The corresponding functions space

is:

wh ≡
{
w ∈ L2(Eh) : w|K ◦GK ∈ Pm(K̂), ∀K ∈ T n

h

}
.

The weak form becomes the following. Find a u ∈ wh, such that for all w ∈ wh:

−
∑
K∈T n

h

∫
K

(
wtu+ wx(au− d(ux −R))

)
dK

+
∑

K∈T n
h

( ∫
K(t−n+1)

wLuL dK −
∫

K(t+n )
wLuR dK

)
+

∑
S∈Sn

I

∫
S
[[w]](aû− d{{ux − ηRS}}) dS = 0,

where standard upwinding is used for the numerical flux aû. The definition of the local lifting

operatorRS ∈ R now becomes:∑
K∈T n

h

∫
K
wRS dK =

∫
S
{{w}}[[u]] dS for S ∈ Sn

I ,

with global lifting operatorR =
∑
S∈Sn

I
RS . For stability of the discretization we take η = 2.

The mapping (1) from the master element K̂ = (−1, 1)2 to the element K reduces to:

GK : K̂ → K : (ξ1, ξ2) 7→ (x, t) =(
1
2(xj+1 + xj) + 1

2(xj+1 − xj)ξ1, 1
2(tn+1 + tn) + 1

2(tn+1 − tn)ξ2
)
,

and the linear basis functions are ψ = ψ̂ ◦ G−1
K with ψ̂0 = 1, ψ̂1 = ξ1 and ψ̂2 = ξ2 − 1. The

polynomial expansions (3) and (4) of the trial and test functions now read:

u(t, x)|K = ûmψm(t, x), w(t, x)|K = ŵlψl(t, x),
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with l,m = 0, 1, 2.

Replacing u and w in the weak form by these expansions yields a discrete system1 for the vector

of expansion coefficients û of u at time level n:

Lh(ûn; ûn−1) ≡ (La
h + Ld

h)ûn + Lt
hû

n−1 = 0,

with h = xj+1 − xj . This 3Z × 3Z system has a block Toeplitz structure with 3 × 3 blocks and

its stencil has the form:

Lh
∼=

[
Lh

∣∣ Dh

∣∣ Uh

]
, (8)

where Lh represents the left block, Dh the diagonal block and Uh the right block. The advective

part La
h of the discretization depends on the Courant number

σ =
a∆t
h
, (9)

and gives the following block tridiagonal contribution to the system:

La
h
∼=


−σ −σ σ

σ σ −σ
σ σ −4

3σ

∣∣∣∣∣∣∣∣
1 + σ σ −σ
−σ 1

3 + σ σ

−2− σ −σ 2 + 4
3σ

∣∣∣∣∣∣∣∣
0 0 0

0 0 0

0 0 0

 .
The right block is zero because the advective numerical flux is upwind (a > 0). The diffusive

part Ld
h of the discretization depends on the Courant number, the stabilization constant η and the

cell Reynolds number:

Reh =
ah

d
, (10)

and also gives a block tridiagonal contribution to the system:

Ld
h
∼=

σ

Reh


−2η 1− 2η 2η

−1 + 2η −2 + 2η 1− 2η

2η −1 + 2η −13
6 η

∣∣∣∣∣∣∣∣
4η 0 −4η

0 4η 0

−4η 0 13
3 η

∣∣∣∣∣∣∣∣
−2η −1 + 2η 2η

1− 2η −2 + 2η −1 + 2η

2η 1− 2η −13
6 η

 .
The contribution Lt

h related to the previous space-time slab is block diagonal:

Lt
h
∼=


0 0 0

0 0 0

0 0 0

∣∣∣∣∣∣∣∣
−1 0 0

0 −1
3 0

2 0 0

∣∣∣∣∣∣∣∣
0 0 0

0 0 0

0 0 0

 .
The linear system associated with the space-time DG discretization of the scalar advection-diffusion

equation must be solved for each time slab. We do so with the multigrid method presented in

Section 3.
1The scaling with |Kn|−1 from Section 2.3 amounts to a division by h which yields the expression for Lh pre-

sented here.
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4.2 The two-level algorithm
At the core of any multigrid method is the two-level algorithm. Multilevel methods are obtained

by recursively applying the two-level algorithm in, for example, a V-cycle. Therefore, we study

the error amplification operator of the two-level algorithm MTLA
h , which is given by (Ref. 11,

22):

MTLA
h = MCGC

h MREL
h ,

with MREL
h the error amplification operator associated with either the EXI or the EXV scheme

presented in Section 2. The explicit form of these operators is obtained from their recursive defi-

nitions (Algorithm 1 and 2) and reads:

MEXI
h =

I

1 + α5λ
+

α5λ(I − Lh)
(1 + α4λ)(1 + α5λ)

+ · · ·

+
α2α3 · · ·α5(λ(I − Lh))4

(1 + α1λ)(· · · )(1 + α5λ)
+
α1α2 · · ·α5(λ(I − Lh))5

(1 + α1λ)(· · · )(1 + α5λ)
. (11)

and

MEXV
h = I − α4λLh + α3α4(λLh)2 − · · ·+ α1α2α3α4(λLh)4, (12)

with I the identity matrix. The coarse grid correction (CGC) of Algorithm 3 is given by:

MCGC = I − PL−1
H R̄Lh.

On the uniform grid, the prolongation operator defined in Section 3.2 becomes:

P ∼=


1 1

2 0

0 1
2 0

0 0 1

∣∣∣∣∣∣∣∣
1 −1

2 0

0 1
2 0

0 0 1

∣∣∣∣∣∣∣∣
0 0 0

0 0 0

0 0 0

 .
The right block is zero because the coarse grid element Kn

H = (xj−1, xj+1) × (tn, tn+1) cor-

responds to the fine elements (Kn
h)L = (xj−1, xj) × (tn, tn+1) and (Kn

h)D = (xj , xj+1) ×
(tn, tn+1). This choice is arbitrary considering the infinite domain. Note the block Toeplitz struc-

ture with 3 × 3 blocks; since R̄ = P T the restriction operator for the residuals is also block

Toeplitz.

Remark 2. Contrary to the internal penalty method, the discretization of the second order term

in the model equation (based on the method by Brezzi e.a. (Ref. 1, 5)) only satisfies the Galerkin

property (LH = R̄LhP ) if the stabilization parameter η on the coarse mesh is a factor H/h

larger than on the fine mesh. In general this property does not hold, e.g., on non-uniform meshes.

Therefore we take the same stabilization parameter η = 2 on the fine and coarse mesh.
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Remark 3. The parameter η has a significant effect on the stability of the Runge-Kutta methods:

as η increases, the permissible pseudo-timestep decreases proportionally. Therefore η should be

taken as small as allowed in the discontinuous Galerkin discretization, in general equal to the

number of faces of an element (Ref. 5, 18).

The convergence behaviour of the two-level algorithm for the space-time DG discretization is

given by the spectral radius of the error amplification operator, i.e. ρ(MTLA
h ), which represents

the expected convergence factor per iteration. In the next section, we will apply Fourier analysis

to compute the eigenvalue spectra of the two-level algorithm.

4.3 Fourier analysis of the two-level algorithm
As shown in (Ref. 22, 23), the eigenvalue spectra of the two-level algorithm is {λi(ω)} with i =

1, . . . , 6 and λi(ω) the eigenvalues of the Fourier transform M̂TLA
h for ω ∈ [−π/H, π/H), . The

Fourier2 transform L̂h of the block Toeplitz operator Lh with stencil (8) for a frequency ω is:

L̂h(ω) = Lhe
−ıωh +Dh + Uhe

+ıωh,

with ı =
√
−1. Since the operators MREL

h , P and R̄ are also block Toeplitz, their Fourier trans-

forms P̂ and ̂̄R are computed similarly. The Fourier transform of the two-level error amplifica-

tion operator is then given by (Ref. 22, 23):

M̂TLA
h (ω) =

[
Ih 0

0 Ih

]
−

[
P̂ (ω)

P̂ (ω + π/h)

] [
L̂H(ω)−1

]
×

[̂̄R(ω) ̂̄R(ω + π/h)
] [
L̂h(ω) 0

0 L̂h(ω + π/h)

] M̂REL
h (ω) 0

0 M̂REL
h (ω + π/h)

 ,
with Ih the 3 × 3 identity matrix. Here, ω ∈ [−π/H, π/H) corresponds to the low frequencies

and ω+π/h to the associated high frequencies. The Fourier transforms of the error amplification

operators (11) and (12) are:

M̂EXI
h (ω) =

Ih
1 + α5λ

+
α5λ(Ih − L̂h(ω))

(1 + α4λ)(1 + α5λ)
+ · · ·

+
α2α3 · · ·α5(λ(Ih − L̂h(ω)))4

(1 + α1λ)(· · · )(1 + α5λ)
+
α1α2 · · ·α5(λ(Ih − L̂h(ω)))5

(1 + α1λ)(· · · )(1 + α5λ)
,

and

M̂EXV
h (ω) = Ih − α4λL̂h(ω) + α3α4(λL̂h(ω))2 − · · ·+ α1α2α3α4(λL̂h(ω))4.

2In this section, the c(·) notation indicates Fourier transform of a block Toeplitz operator, not to be confused with

the expansion coefficients û or the basis functions ψ̂ on the master element K̂.

19



NLR-TP-2007-297

Table 1 Spectral radii of the two-level algorithm with the EXI smoother for steady cases (σ =

100). The TLA convergence with EXI smoothing is better than with EXV smoothing

(Table 2) for Reh = 100 and 10.

Reh ∆τ/∆t ρ
(
MEXI

h

)
ρ

(
MTLA

h

)
100 1.8e-02 0.991 0.622

10 8.0e-03 0.996 0.716

1 1.4e-03 0.999 0.906

0.1 1.6e-04 0.999 0.932

0.01 1.6e-05 0.999 0.935

Now, the eigenvalue spectra and radii of the two-level algorithm can be computed, depending

on the Courant number (9) and cell Reynolds number (10) occuring in Lh. The Courant number

expresses the time-accuracy of the discretization and the cell Reynolds number the importance

of diffusion relative to advection. Since the space-time DG discretization is implicit in physical

time, the method is unconditionally stable (Ref. 18) for any physical time step. This allows us to

take the Courant number σ = 100 for steady-state cases and σ = 1 for time-dependent cases.

We will further consider cell Reynolds numbers between Reh = 0.01 and Reh = 100, which

represent the diffusion and advection dominated cases, respectively. The Runge-Kutta methods

are explicit in pseudo time and their stability depends on the ratio λ between the pseudo timestep

and the physical timestep λ = ∆τ/∆t. It is often convenient to express the stability condition in

terms of the pseudo-time CFL number σ∆τ and the pseudo-time diffusive Von Neumann condi-

tion δ∆τ :

∆τ ≤ ∆τa ≡ σ∆τh

a
and ∆τ ≤ ∆τd ≡ δ∆τh

2

d
.

The pseudo-time CFL number is given by σ∆τ = λσ and the pseudo-time diffusive Von Neu-

mann number by δ∆τ = λσ/Reh

In Table 1, the spectral radii of the two-level algorithm with EXI smoother for steady cases (σ =

100) are given for various values of Reh. We see that as Reh decreases, the spectral radius of the

two-level algorithm increases; in other words as diffusion becomes more important, the rate of

convergence deteriorates. This is to be expected as the EXI method was optimized for inviscid

cases. The EXV method, on the other hand, was optimized for diffusion dominated cases and in

Table 2, we see that the two-level algorithm with EXV smoother maintains good convergence

factors in the diffusion dominated cases. For unsteady cases (σ = 1), the values are different but

the trend is similar: EXI smoothing is preferable for advection dominated cases (Reh > 1) and
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Table 2 Spectral radii of the two-level algorithm with the EXV smoother for steady cases (σ =

100). The TLA convergence with EXV smoothing is better than with EXI smoothing

(Table 1) for Reh = 1, 0.1 and 0.01.

Reh ∆τ/∆t ρ
(
MEXV

h

)
ρ

(
MTLA

h

)
100 2.0e-03 0.999 0.914

10 3.0e-03 0.998 0.871

1 7.0e-03 0.996 0.697

0.1 8.0e-04 0.999 0.753

0.01 8.0e-05 0.999 0.744

Table 3 Spectral radii of the two-level algorithm with the EXI smoother for unsteady cases

(σ = 1). The TLA convergence with EXI smoothing is better than with EXV smooth-

ing (Table 4) for Reh = 100 and 10.

Reh ∆τ/∆t ρ
(
MEXI

h

)
ρ

(
MTLA

h

)
100 1.6e-00 0.796 0.479

10 8.0e-01 0.918 0.599

1 1.4e-01 0.904 0.837

0.1 1.6e-02 0.987 0.923

0.01 1.6e-03 0.998 0.934

EXV smoothing for diffusion dominated cases (Reh ≤ 1). This allows us to choose the optimal

scheme depending on the cell Reynolds number.

In Figures 2, 3, 4 and 5, we show the eigenvalue spectra of the preferable smoother and of the

two-level algorithm for steady and unsteady, advection and diffusion dominated cases. We have

plotted the eigenvalues corresponding to a discrete series of low frequencies ωi = −π/H,−0.96π/H, . . . , π/H

and associated high frequencies ωi + π/h. For the smoothers, the eigenvalues corresponding to

low frequencies are denoted by ◦; those corresponding to high frequencies by +. In the eigen-

value spectra of two-level algorithms we do not distinguish between low and high frequencies:

the two-level algorithm must damp all frequencies. From these figures we see that the Runge-

Kutta methods have the smoothing property, i.e. the high frequencies are damped. The observed

smoothing factor of approximately 0.8 (which is often used as an estimate for multigrid con-

vergence (Ref. 6)) is rather inaccurate in comparison to the true smoothing factor obtained with

two-level analysis.
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Table 4 Spectral radii of the two-level algorithm with the EXV smoother for unsteady cases

(σ = 1). The TLA convergence with EXV smoothing is better than with EXI smoothing

(Table 3) for Reh = 1, 0.1 and 0.01.

Reh ∆τ/∆t ρ
(
MEXV

h

)
ρ

(
MTLA

h

)
100 1.0e-00 0.924 0.660

10 7.0e-01 0.812 0.704

1 7.0e-01 0.805 0.719

0.1 8.0e-02 0.936 0.755

0.01 8.0e-03 0.993 0.744
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(b) TLA with EXI

Fig. 2 Eigenvalue spectra of the EXI smoother and two-level algorithm in the steady advection

dominated case (σ = 100 and Reh = 100, first row of Table 1).

The two-level analysis of h-multigrid iteration for the space-time DG discretization of the advection-

diffusion equation shows significantly improved convergence factors w.r.t. single-grid iteration.

Multigrid convergence factors range between 0.5 and 0.75, whereas single-grid convergence fac-

tors range between 0.8 and 0.99, depending on the case3. This motivates the application of multi-

grid to the compressible Navier-Stokes equations in the next section.

5 Numerical simulations

In this chapter, we verify through numerical experiments whether the improved convergence pre-

dicted by the two-level analysis of the advection-diffusion equation also holds for the compress-
3Note that the single-grid convergence factors for time-dependent, advection dominated cases, being around 0.8,

are already quite good.
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Fig. 3 Eigenvalue spectra of the EXV smoother and two-level algorithm in the steady diffusion

dominated case (σ = 100 and Reh = 0.01, last row of Table 2).
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Fig. 4 Eigenvalue spectra of the EXI smoother and two-level algorithm in the unsteady advec-

tion dominated case (σ = 1 and Reh = 100, first row of Table 3).
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Fig. 5 Eigenvalue spectra of the EXV smoother and two-level algorithm in the unsteady diffu-

sion dominated case (σ = 1 and Reh = 0.01, last row of Table 4).

ible Navier-Stokes equations.

5.1 Definition of work units
To measure the efficiency of the multigrid algorithm, we have to define a basic work unit. The

CPU time does not reflect the true work load as it is greatly affected by the implementation, opti-

mization and the machine the code runs on. Therefore, we employ a more transparent definition:

one work unit corresponds to one Runge-Kutta step on the fine grid. To account for the work

done on the coarse grids in terms of this work unit, we make use of the following observation.

In a well written code, the computational effort of an explicit Runge-Kutta step is proportional

to the number of degrees of freedom (DoF). The number of DoF on the fine mesh is NeNqNc

with Ne the number of elements, Nq the number of equations and Nc the number of expansion

coefficients. On the coarse mesh, the number of elements is Ne/fe with fe the mesh coarsening

factor. Therefore, the number of DoF on the coarse mesh is 1/fe with respect to fine mesh. For

example, fe = 8 in 3D, hence eight coarse grid Runge-Kutta steps are counted as one work unit.

A similar counting is done for multiple levels. The prolongation and restriction are trivial and

this effort is neglected.

5.2 Flow around a circular cylinder
First, we consider the flow around a circular cylinder with Reynolds number Re∞ = 40 based on

the diameter of the cylinder. We solve the compressible Navier-Stokes equations with the space-

time discontinuous Galerkin method summarized in Section 2, taking the Mach number M∞ =

0.3. The flow is laminar, steady and characterized by a closed near-wake region with separation
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(a) grid

(b) streamlines

Fig. 6 Slice through the 3D grid with 64 × 64 × 4 elements around the circular cylinder and

steady-state streamlines at M∞ = 0.3 and Re∞ = 40.
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Fig. 7 Convergence to steady-state for the cylinder at M∞ = 0.3 and Re∞ = 40 on the 64×64×
4 grid.

and recirculation forming twin eddies, see for example (Ref. 25). In Figure 6, we show a slice

through the computational grid with 64× 64× 4 elements and the streamlines at steady-state.

To evaluate the performance of the h-multigrid iteration (Algorithm 3) for solving the system of

algebraic equations, we express the convergence in terms of the previously defined work units

and compare with single-grid iteration in Figure 7. With 2 pre- and post-relaxations on each

level1, we find that multigrid attains 3 orders of convergence in 2000 WU whereas single-grid

only attains 2 orders of convergence in 12 500 WU. In this case, multigrid iteration is approxi-

mately ten times cheaper than singe-grid iteration.

Second, we increase the Reynolds number to Re∞ = 200 and refine the grid to 80 × 84 × 4

elements. The flow now becomes unsteady and is characterized by periodic vortex shedding. The

Strouhal number is St ≡ fd/u∞ = 0.2 with f the frequency of the vortex shedding, d the diam-

eter of the cylinder and u∞ the far-field velocity (Ref. 17, 25). This gives us the corresponding

period T = 1/f and we choose our time-step ∆t such that we have 32 time-steps per period.

In Figure 8 we show a snapshot of the vorticity and the streamlines and in Figure 9 the periodic
1Increasing the number of relaxations and/or changing from V-cycle to W-cycle did not significantly improve the

performance in terms of work units.
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Table 5 Summary of the computational effort for the numerical experiments. Multigrid itera-

tion reduces the costs by a factor four to ten w.r.t. single-grid iteration.

Case
Single-grid Multigrid Cost

performance performance reduction

cylinder (steady)
2 orders 3 orders

9.4
in 12 500 WU in 2000 WU

cylinder (unsteady)
3 orders 3 orders

5.0
in 150 WU in 30 WU

ONERA M6
2 orders 3 orders

3.7
in 5000 WU in 2000 WU

evolution of the lift and drag coefficients CL and CD. In this time-dependent case, we solve the

algebraic system for every physical time-step using Algorithm 3 with 2 pre- and post-relaxations

on each of the three levels of the 80× 84× 4 grid. In Figure 10, we show the typical convergence

in pseudo-time. Single-grid iteration stagnates after 30 work units while multigrid iteration has

already met our convergence criterion of order 10−6 residuals.

5.3 Flow around an ONERA M6 wing
Finally, we consider the steady laminar flow around an ONERA M6 wing at M∞ = 0.4, Re∞ =

104 and angle of attack α = 1◦. The fine grid consists of 125 000 hexahedral elements. An im-

pression of the grid is given in Figure 11 where we also show the Mach number isolines in the

plane perpendicular to the wing and the pressure coefficient Cp on the wing. This simulation was

done with the NLR DG algorithm HEXDAP, in which the algorithms discussed in this article have

been implemented.

In Figure 12, we compare a multigrid iteration consisting of 3 level V- and W-cycles with single-

grid iteration. The V-cycle has a total of 4 relaxations on each grid level, while the W-cycle has

4 relaxations on the fine grid and 8 on the medium and coarse grid. In terms of work units both

attain residuals of order 10−6 in 2000 work units, while the residuals with single grid iteration

are still of order 10−4 after 5000 work units. With the h-multigrid algorithm, this simulation can

be run with HEXADAP in six hours on a single CPU of NEC SX-8R at 5.3 Gflop/s.

The performance of the single- and multigrid iteration for the numerical experiments presented

in this chapter is summarized in Table 5. For these cases, multigrid iteration significantly reduces

the computational effort, up to a factor of ten w.r.t. the single-grid iteration.
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Fig. 8 Snapshot of the vorticity and streamlines around the circular cylinder and streamlines at

M∞ = 0.3 and Re∞ = 200. 28
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Fig. 9 Periodic evolution of the lift and drag coefficients CL and CD for the cylinder at M∞ =

0.3 and Re∞ = 200.
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Fig. 10 Typical convergence in pseudo-time for a physical time-step a∞∆t/d = 0.5 for the

cylinder at M∞ = 0.3 and Re∞ = 200 on the 80× 84× 4 grid.
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Fig. 11 Impression of the grid, the Mach number isolines and the pressure coefficient Cp on

the ONERA M6 wing at M∞ = 0.4, Re∞ = 104 and α = 1◦.
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Fig. 12 Convergence in pseudo-time for the ONERA M6 wing at M∞ = 0.4, Re∞ = 104 and

α = 1◦.
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6 Discussion and conclusions

In this article, we investigated a h-multigrid algorithm for the pseudo-time integration of the sys-

tem of non-linear equations arising from the space-time DG discretization of the compressible

Navier-Stokes equations. The discretization is second order accurate on all grid levels and the

relaxation is done with explicit Runge-Kutta methods in order to keep the multigrid algorithm

local. The locality of the solver thereby matches the locality of the discretization, which may be

important in view of real-life applications where the assembly and storage of global systems may

not be feasible.

We applied two-level Fourier analysis to the space-time DG discretization of the scalar advection-

diffusion equation to get an impression of the stability and convergence of the algorithm. This

analysis shows that convergence factors between 0.5 and 0.75 can be obtained, depending on the

case under consideration, which is quite good for a fully explicit multigrid algorithm.

The construction of intergrid transfer operators is based on the L2 projection of the coarse grid

solution on the fine grid and assumes the embedding of spaces. Although the embedding of

spaces does not formally hold on curvilinear grids, we found that the multigrid algorithm still

performs well: three level multigrid iteration with two pre- and post-relaxations is approximately

ten times less expensive than single-grid iteration for our 2D and 3D test cases. These include

steady and unsteady laminar flow around a circular cylinder and steady laminar flow around an

ONERA M6 wing.

Although we applied the h-multigrid pseudo-time integration method in the space-time DG con-

text, we would like to point out that it is equally suitable for solving the system of non-linear

algebraic equations arising from spatial DG discretizations of the steady compressible Navier-

Stokes equations.
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Appendix A First order discretization on the coarse grids

For the space-time discontinuous Galerkin discretization of the Euler equations, constant basis

functions were used on the coarse grids in the multigrid algorithm presented in (Ref. 20). This

approach, however, is inadequate for the Navier-Stokes equations, as we show in this chapter.

The basis functions in Section 2.2 are such that the test and trial functions are split into an ele-

ment mean at time tn+1 and a fluctuating part. In (Ref. 20), only the element means are used on

the coarse grids, which proved effective for the discretization of the Euler equations. An addi-

tional benefit is the simplicity of the associated inter-grid transfer operators, which facilitates the

implementation for non-uniform, locally refined grids. The restriction and prolongation operators

for the solution are defined as (Ref. 20):

R(Û)|KH
=

∑
Û0(Kh)|Kh|∑
|Kh|

, P (Û)|Kh
= Û0(KH), (13)

where the coarse grid element KH corresponds to a set {Kh} of fine grid elements. The restric-

tion operator R̄ for the residual is the same as for the solution (R̄ = R).

We can analyze this approach for the scalar advection-diffusion equation with the method pre-

sented in Section 4. The discretization on the coarse grid with H = 2h now only involves the

element means ū = û0 and reduces to:

LH(ūn; ūn−1) ≡ (La
H + Ld

H)ūn + Lt
H ū

n−1 = 0,

with

La
H
∼=

[
−a∆t

∣∣ a∆t+H
∣∣ 0

]
, Ld

H
∼=
d∆t
H

[
−2ηS

∣∣ 4ηS
∣∣ −2ηS

]
,

and

Lt
H
∼=

[
0

∣∣ −H ∣∣ 0
]
.

This Z× Z system has a block Toeplitz structure with 1× 1 blocks, with associated stencil:

LH
∼=

[
LH

∣∣ DH

∣∣ UH

]
.

On this uniform grid, the 3Z× Z system associated with the prolongation P defined in (13) has a

block Toeplitz structure with 3× 1 blocks:

P =


1

0

0

∣∣∣∣∣∣∣∣
1

0

0

∣∣∣∣∣∣∣∣
0

0

0

 ,
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Table 6 Spectral radii in the advection dominated cases.

physics stability convergence

σ Reh ∆τ/∆t ρ
(
MEXI

h

)
ρ

(
MTLA

h

)
100 100 1.8e-02 0.991 0.979

1 100 1.6e-00 0.796 0.794

Table 7 Spectral radii in the diffusion dominated cases.

physics stability convergence

σ Reh ∆τ/∆t ρ
(
MEXV

h

)
ρ

(
MTLA

h

)
100 0.01 8.0e-05 0.999 0.998

1 0.01 8.0e-03 0.993 0.985

and the restriction operator for the residual is R̄ = P T . The spectral radius of the two-level

operator can now be computed in the same manner as described in Section 4.

The spectral radii of the relaxation schemes and the two-level algorithm with constant basis func-

tions on the coarse grid are given in Tables 6 and 7. For steady-state cases, the spectral radius of

the relaxation scheme is typically 0.99 and the TLA hardly improves the situation: only in the

advection dominated case the spectral radius of the TLA is 0.98. For the other cases, the TLA

does not improve the convergence factor, but note that the EXI method is already very efficient

for the unsteady advection dominated cases: its spectral radius is 0.79.

Based on this analysis, we do not expect the multigrid algorithm with constant basis functions

on the coarse grids to significantly improve the convergence. This was confirmed by numerical

experiments, both for the advection-diffusion equation and the compressible Navier-Stokes equa-

tions.
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7. V. Dolejšı́. On the discontinuous Galerkin method for the numerical solution of the Navier-

Stokes equations. Int. J. Numer. Meth. Fluids, 45:1083–1106, 2004.

8. K.J. Fidkowski, T.A. Oliver, J. Lu, and D.L. Darmofal. p-Multigrid solution of high-order

discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. J. Com-

put. Phys., 207(1):92–113, 2005.

9. J. Gopalakrishnan and G. Kanschat. A multilevel discontinuous Galerkin method. Numer.

Math., 95:527–550, 2003.

10. R. Hartmann and P. Houston. Symmetric interior penalty DG methods for the compressible

Navier-Stokes equations I: Method formulation. Int. J. Num. Anal. Model., 3(1):1–20, 2006.

11. P.W. Hemker, W. Hoffmann, and M.H. van Raalte. Two-level Fourier analysis of a multigrid

approach for discontinuous Galerkin discretization. SIAM J. Sci. Comput., 25(3):1018–1041,

2003.

12. P.W. Hemker, W. Hoffmann, and M.H. van Raalte and. Fourier two-level analysis for dis-

continuous Galerkin discretization with linear elements. Numer. Linear Algebra with Appl.,

11:473–491, 2004.

13. P.W. Hemker and M.H. van Raalte and. Fourier two-level analysis for higher dimensional

discontinuous Galerkin discretization. Comput. and Vis. in Sci., 7:159–172, 2004.

14. C.M. Klaij, J.J.W. van der Vegt, and H. van der Ven. Pseudo-time stepping methods for

space-time discontinuous Galerkin discretizations of the compressible Navier-Stokes equa-

tions. J. Comput. Phys., 219(2):622–643, 2006.

15. C.M. Klaij, J.J.W. van der Vegt, and H. van der Ven. Space-time discontinuous Galerkin

method for the compressible Navier-Stokes equations. J. Comput. Phys., 217(2):589–611,

2006.

16. N.D. Melson, M.D. Sanetrik, and H.L. Atkins. Time-accurate Navier-Stokes calculations

with multigrid acceleration. In Proc. 6th Copper Mountain Confer. on Multigrid Methods,

1993.

35



NLR-TP-2007-297

17. M. Rosenfeld, D. Kwak, and M. Vinokur. A fractional step solution method for the unsteady

incompressible Navier-Stokes equations in generalized coordinate systems. J. Comput.

Phys., 94:102–137, 1991.

18. J.J. Sudirham, J.J.W. van der Vegt, and R.M.J. van Damme. Space-time discontinuous

Galerkin method for advection-diffusion problems on time-dependent domains. Appl. Nu-

mer. Math., 56(12):1491–1518, 2006.

19. U. Trottenberg, C.W. Oosterlee, and A. Schüller. Multigrid. Academic Press, London, 2001.

20. J.J.W. van der Vegt and H. van der Ven. Space-time discontinuous Galerkin finite element

method with dynamic grid motion for inviscid compressible flows. I. General formulation. J.

Comput. Phys, 182:546–585, 2002.

21. H. van der Ven, O.J. Boelens, and B. Oskam. Multitime multigrid convergence acceleration

for periodic problems with future applications to rotor simulations. In Parallel Computa-

tional Fluid Dynamics Conference, Egmond aan Zee, Netherlands, May 21-23, 2001.

22. M. H. van Raalte. Multigrid analysis and embedded boundary conditions for discontinuous

Galerkin discretization. PhD thesis, Korteweg-de Vries institute, University of Amsterdam,

2004.

23. M.H. van Raalte and P.W. Hemker. Two-level multigrid analysis for the convection-diffusion

equation discretized by a discontinuous Galerkin method. Numer. Linear Algebra Appl.,

12:563–584, 2005.

24. P. Wesseling. A robust and efficient multigrid method. In W. Hackbush and U. Trottenberg,

editors, Multigrid Methods, pages 614–630. Springer-Verlag, New York, 1982.

25. M.M. Zdravkovich. Flow around circular cylinder. Vol 1: fundamentals. Oxford Science

Publications, 1997.

36


	Introduction
	Summary of the space-time DG method
	Space-time formulation
	Discretization
	Pseudo-time integration

	h-Multigrid method
	Two-level algorithm
	Inter-grid transfer operators

	Two-level Fourier analysis for a model problem
	Discretization of the model problem
	The two-level algorithm
	Fourier analysis of the two-level algorithm

	Numerical simulations
	Definition of work units
	Flow around a circular cylinder
	Flow around an ONERA M6 wing

	Discussion and conclusions
	First order discretization on the coarse grids
	References


 
 
    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 391.67, 11.89 Width 143.33 Height 296.67 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         1
         CurrentPage
         1
              

       CurrentAVDoc
          

     391.6677 11.8879 143.3337 296.6674 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     36
     0
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 395.00, 14.39 Width 140.83 Height 295.83 points
     Origin: bottom left
      

        
     1
     0
     BL
    
            
                
         Both
         1
         CurrentPage
         1
              

       CurrentAVDoc
          

     395.001 14.3879 140.8337 295.8341 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     36
     0
     1
      

   1
  

 HistoryList_V1
 qi2base





