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Summary 

An introduction is given of phased array beamforming techniques for locating acoustic sources. 

Starting from basic principles, the Conventional Beamforming technique is described. It is 

explained how this technique can be applied to wind tunnel measurements. Further, a number of 

advanced array processing techniques are discussed. One chapter is devoted to the array 

processing technique for the location of moving sources. This technique can be applied to 

rotating sources, for example on wind turbine blades, and to source location on aircraft flying 

over a microphone array 
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Nomenclature 

Symbols 

A  source auto-power 

1,2A  source cross-power 

maxA  peak level of hA ; or maximum array output, see Eq. (69) 

modA  modified source auto-power, see Eq. (70) 

,s hA  source auto-power estimate of simulated point source 

,maxsA  peak level of ,s hA  

hA  see Eq. (60) 

,s hA  see Eq. (61) 

a  complex pressure amplitude at source 

B  constant: ( )B f R f  , see Eq. (48) 

C  cross-spectral matrix 

maxC  cross-spectral matrix induced by source in max


 

mnC  microphone cross-power 

nnC  microphone auto-power 

c  speed of sound  

mnd  see Eq. (42) 

D  array diameter 

E  diagonal matrix with eigenvalues of C 

Erf  Error function 

xe


 unit vector in x-direction 

F  transfer function from moving source in ( )t


 to receiver in x


 

nF  transfer function from ( )t


 to n-th microphone (cf. Eqs. (95) and (96)) 

f  frequency 

maxf  maximum frequency 

samf  sample frequency 

G  Green’s function 

mnG  cross-spectral density function 

g  steering function 

g  steering vector 

lg  steering vector corresponding with source in l


 

maxg  transfer vector corresponding with peak source location max


 

H  matrix containing the diagonal elements of hh  

H  number of grid points 

h  approximation for maxg , see Eq. (75) 
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h  grid index 

i  imaginary unit 

j  frequency index 

J  cost function 

0J  zero-th order Bessel function of the first kind 

K  number of samples during one time period (block size) 

k  sample index 

L  number of eigenvalues 

M  Mach number of uniform flow 

M


 Mach number vector of uniform flow 

m  microphone index 

N  number of microphones 

n  microphone index 

P  integrated source power 

sP  source power of simulated monopole 

p  pressure vector 

( )p x


 complex acoustic pressure amplitude 

np  complex pressure amplitude at n-th microphone 

Q  matrix with eigenvectors of C 

q  see Eq. (3) 

( )R f  aperture radius 

( )mnR t  cross-correlation function 

nr  see Eq. (47) 

S  set of pairs ( , )m n  for which mnC  is not discarded 

T  time period (T K t  ) 

t  time 

1t  see Eq. (85) 

nt  reception time at n-th microphone 

U


 uniform flow speed 

ku  weight factor for FFT window 

nv  weight factor for spatial window 

W  aperture smoothing function 

w  weight vector for beamforming 

maxw  steering vector corresponding with peak source location max


 

x


 Cartesian position vector 

1x


 see Eq. (85) 

nx


 location of n-th microphone 
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nx  x-component of location of n-th microphone 

Y  distance between source and array 

ny  y-component of location of n-th microphone  

Z  dynamic range for source power integration 

nz  z-component of location of n-th microphone  

 

Greek 

  wave number vector 

min  minimum value for   

max  maximum value for   

x  x-component of   

y  y-component of   

  see Eq. (21) 

  auxiliary function in Eq. (91) 

t  sample interval ( sam1t f  ) 

et  emission time delay 

  Dirac delta function 

( )n t  noise on n-th microphone 

  loop gain used in CLEAN algorithm 

( , )x t 
 acoustic pressure field 

( )n t  fluctuating pressure measured by n-th microphone 

,n k  sampled acoustic pressure measured by n-th microphone 

n  weight factor for microphone density 

n  weight factor for effective aperture 

  averaging index 

( )t  emitted source signal 

( )t  estimated source signal 

  integration parameter (time) 

0  zero of auxiliary function , Eq. (91) 

e  emission time 




 source location 

max


 peak source location 

  z-value of source location 

  sub-area of array 

 

Operator 

  Nabla operator:  , ,x y z         
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Superscript 

( )  complex conjugate (transpose) 

 

Subscript 

( )a  induced by acoustic pressure 

( ) j  for j-th frequency 

( )h  for h-th grid point 

( )k  for k-th sample 

( )l  for l-th source 

( )m  for m-th microphone 

( )n  for n-th microphone 

( )s  corresponding to simulated point source 

( )sl  corresponding to shear layer 

( )w  induced by wind 

( )  for -th FFT block; or after  averages 

 

Abbreviations 

DNW German-Dutch Wind Tunnels 

FFT Fast Fourier Transform 

LST  Low-speed Wind Tunnel 

LLF Large Low-speed Facility 
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1 Introduction 

In the early days of jet aircraft, the emitted noise was fully dominated by the engines. However, 

through better design and the use of higher bypass ratios, aircraft turbofan engine noise has been 

substantially reduced over the last decades. As a consequence, on modern aircraft many other 

noise sources, like slats, flaps, and landing gears, have comparable strengths, especially during 

the landing phase. Nowadays, reduction of aircraft noise requires a detailed knowledge of the 

locations and strengths of the different sources. For that purpose, many experimental 

investigations are carried out, both on wind tunnel models and on actual flying aircraft. 

Furthermore, a lot of research is ongoing on the improvement of techniques for the location and 

quantification of sound sources. 

 

focal pointmicrophone

sound rays scan plane

elliptic mirror

 

Figure 1  Principle of elliptic mirror. 

 

 

Figure 2  Set-up with acoustic mirror in DNW-LLF open jet 
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A possibility to locate acoustic sources is by means of an elliptic “acoustic” mirror (Refs. 1, 2). 

The concept of an acoustic mirror is based on the fact that acoustic rays emerging from one 

focal point of the ellipse converge to the other focal point (see Figure 1). A microphone is 

placed in the focal point close to the mirror, while the other focal point scans through a surface 

of possible noise sources. This scanning can be done by traversing the mirror or by moving the 

studied object. An example of a set-up with an acoustic mirror in the Large Low-speed Facility 

(LLF) of the German-Dutch Wind Tunnel DNW is shown in Figure 2. 

 

By scanning with acoustic mirrors, source locations can by found at high accuracy. Sources 

close to each other can be separated well. The range of frequencies to which acoustic mirrors 

can be applied is large. Furthermore, background noise is filtered out effectively. The main 

drawback of acoustic mirrors is the long time that is needed for measurements. The mirror (or 

the studied object) has to be moved for each scan point. Consequently, measurements with 

acoustic mirrors are expensive, especially in large wind tunnels.  

 

Since the 1970’s (Refs. 3, 4) developments are ongoing on the alternative for the acoustic 

mirror: the “acoustic array” or “microphone array”. A microphone array is a set of microphones, 

of which the signals are combined in such a way that sound from a specified focal point is 

amplified and sound from other directions is attenuated. This signal combination is done 

through appropriately delaying and summing the individual microphone signals. In the 

frequency-domain this comes down to applying microphone-dependent phase shifts. Thus, the 

microphone array is a special type of “phased array”, also applied in seismology, astronomy and 

underwater acoustics (sonar). The advantage of microphone arrays compared to acoustic mirrors 

is that only short measurement time is needed, because the process of scanning through possible 

source locations is performed afterwards. 

 

Until the mid 1990’s, the microphone array could not outperform the acoustic mirror in spatial 

resolution, frequency range and signal/noise ratio. The main reason for this was the limited 

capacity of data-acquisition systems (data-loggers), so that the number of microphones had to 

be limited. Nowadays, however, the large capacity of computers and data acquisition systems 

enable the use of large numbers of microphones, long acquisition times and high sample 

frequencies (Ref. 5). Thus, the traditional drawbacks of microphone arrays compared to acoustic 

mirrors, namely lower resolution and lower signal/noise ratio, have vanished. What remains is 

the great advantage of arrays, that is, the short time needed for measurements. 

 

In addition, microphone arrays offer the opportunity to locate sources on moving objects. This 

application has been implemented on objects in steady, rectilinear motion, like trains passing by 
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(Refs. 6, 7) and airplanes flying over (Refs. 8-10). The technique of de-Dopplerisation (Refs. 

11, 12) was applied to recalculate, from the microphone signals, the source signals in the 

moving frame. In reference 13, it was shown that acoustic source location by a microphone 

array is, in principle, possible on objects in any given subsonic motion. Besides, it was made 

clear that the presence of a uniform flow does not form a limitation. Therefore, source location 

measurements on arbitrarily moving objects in wind tunnels are feasible too. In reference 13, 

applications were shown to rotating sources like rotating whistles and broadband noise sources 

on wind turbine and helicopter blades. 

 

The technique of locating sources using phased arrays is called “beamforming”. Basically, it is 

an algorithm, applied to each scan point individually, which amplifies the sound from the scan 

point and attenuates the sound from other directions. The source is then identified as the scan 

point from which the beamforming algorithm yields maximum output. There are a large number 

of beamforming techniques available (Ref. 14), e.g. developed for astronomy. Many of those, 

however, are not well applicable to acoustics. Here, we limit ourselves to those techniques that 

are able to cope with the specific difficulties of aero-acoustic measurements, such as 

background noise, coherence loss, errors in the transfer model, and microphone calibration 

uncertainties. The main focus is on array measurements of aircraft and their components in wind 

tunnels, and by means of fly-over tests.  

 

It is well established that microphone array measurements are able to quantify differences in 

sound source levels, e.g., as a result of model modifications. This can be done by processing the 

measurements with the commonly used Conventional Beamforming technique (Ref. 14). 

Extraction of absolute acoustic source levels is more difficult, but not impossible. Methods for 

obtaining the absolute levels depend on the test environment. 
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Figure 3  Set-up with microphone array in DNW-LLF open jet 

 

In open jet wind tunnels, where the microphones are usually out-of-flow (see Figure 3), the 

main difficulty is the presence of the turbulent shear layer between the wind tunnel model and 

the microphone array. The shear layer causes loss of coherence between microphone signals 

(Ref. 15), and, as a result, the beamforming process underpredicts the source levels. In fact, the 

predicted source levels become dependent on array size (Ref. 16). The source power integration 

technique (Ref. 16) can be used to overcome this problem. 

 

 

Figure 4  Set-up with microphone array in DNW-LST closed test section 

 

In closed test sections (see Figure 4), where the microphones are usually mounted flush in a 

wall or on the floor, the main issue is boundary layer noise. This noise is due to turbulence in 

the boundary layer and is, therefore, of hydrodynamic nature. Boundary layer noise levels are 
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often much higher than the levels of the sound radiated from the wind tunnel model. This can 

severely affect the beamforming results. Fortunately, because boundary layer noise is incoherent 

from one microphone to the other, it will appear only in the auto-spectra, and not in the cross-

spectra. Therefore, the commonly used workaround is to discard the microphone auto-spectra, 

and to process only the cross-spectra. 

 

Another issue in closed test sections is reverberation. When an acoustic source is too close to a 

wall, the source spectrum reconstructed from array measurements tends to deviate strongly from 

the free-field source spectrum (Ref. 17). Special techniques (Refs. 18, 19) can be used to correct 

for this spectral distortion.  

 

A great advantage of closed wind tunnel test sections is that coherence is mostly preserved. As a 

result, sources can be identified at a higher spatial resolution than in open jet wind tunnels, and 

level estimates are more reliable. Moreover, the preservation of coherence makes microphone 

array measurements in closed wind tunnel test sections very suitable for so-called deconvolution 

techniques (e.g. Refs. 20-23). 

 

For fly-over tests (see Figure 5), the main issue is the motion of the acoustic sources, and, 

consequently, the limited time to perform measurements. Loss of coherence is also an issue, but 

not to the same extent as in open jet wind tunnels. Source power integration (Ref. 24) and 

deconvolution (Ref. 25) are both feasible. 

 

This paper gives an overview of microphone array beamforming techniques that can be applied 

in wind tunnels and with fly-over tests. First, some basic principles are discussed. Then, a 

number of advanced methods are treated. Finally, one chapter is devoted to processing with 

moving sources. 

Array

 

Figure 5  Fly-over microphone array measurements at Amsterdam Schiphol Airport 
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At the end of this introduction it is remarked that, besides beamforming, a completely different 

technique exists of identifying noise sources with microphone arrays: “Near-field Acoustic 

Holography”. The basis of this technique is that acoustic pressures inside a closed surface 

(which does not enclose acoustic sources) can be calculated if the pressures are given on that 

surface. In practice, Near-field Acoustic Holography needs a microphone array close to the 

expected sources, which is usually not possible when aircraft noise is measured, either in the 

wind tunnel or with fly-over tests. Therefore, this technique is not considered here, but a clear 

treatise can be found in reference 26. 

 

 

2 Basic principles 

To obtain source localisation maps or “acoustic images” from microphone array measurements, 

sampled microphone data need to be processed with some beamforming algorithm, under the 

assumption of a certain source model. This process is done usually in the frequency domain. 

The basic steps are worked out hereafter.  

 

2.1 Sampled microphone data 
Consider a set of N microphones, located in ( , , )n n n nx x y z


, where n runs from 1 to N. When 

the microphone membranes are subject to pressure fluctuations ( )n t , an alternating current 

(AC) is induced, of which the potential (in Volts) is recorded by the data-acquisition system. 

Contemporary systems are equipped with an analogue/digital (A/D) converter that samples the 

alternating voltage at a given sample interval t , where each sample is stored in a given 

number of bits (typically 16 or 24). To obtain, at the microphone locations, the sampled acoustic 

pressures (in Pa),  
 , ( )n k n k t   , (1) 

the stored voltages are multiplied with microphone sensitivity factors obtained from 

calibrations. 

 

2.2 Fourier transformation of microphone data 

2.2.1 Discrete Fourier transform 
Complex pressure amplitudes ( )np f  of microphone signals can be obtained by evaluating a 

discrete Fourier transform for a block of K samples: 

 2
,

1

2
( )

K
ifk t

n n k
k

p f e
K

  



  . (2) 

If the block size K is a power of 2, i.e., if an integer number q exists for which 
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 2qK  , (3) 

then the so-called Fast Fourier Transform (FFT; Ref. 27) can be applied to evaluate (2) at once, 

for the entire relevant range of frequencies, which is (Ref. 28) 

 ,  1,..., 2 1j

j
f j K

K t
  


. (4) 

2.2.2 Aliasing 

It is noted that the frequency upper limit in (4): 2

1

2Kf t



 equals half the sample frequency:  

 sam 1f t  . (5) 

In the literature (e.g. Ref. 28), this frequency is called “Nyquist frequency” or “folding 

frequency”. Evaluation of (2) above that frequency does not add anything, because 

 sam( ) ( )n np f p f f   , (6) 

where the asterisk denotes complex conjugation. Thus, frequencies higher than the Nyquist 

frequency can not be distinguished from their low-frequency counterparts. This is an undesired 

phenomenon called “aliasing”. To avoid aliasing, the acoustic signal should pass through a “low 

pass filter” that cuts off frequencies above the Nyquist frequency, before entering the A/D 

converter. 

 

2.2.3 Cross-powers 
Auto-powers ( )nnC f and cross-powers ( )mnC f  are defined by 

 
1

( ) ( ) ( )
2mn m nC f p f p f . (7) 

The relation with the “cross-spectral density function” is explained in Appendix A. It is noted 

that the cross-powers are defined in terms of the complex conjugate of the cross-spectral density 

function. This is for convenience in the further analysis. 

 

2.2.4 Windows 
For reduction of frequency side-lobes, a “window” ,  1,..,ku k K  (Ref. 29) may be applied to 

(2): 

 2
,

1

2
( )

K
ifk t

n k n k
k

p f u e
K

  



  . (8) 

An often used window is the so-called “Hanning window”: 

  2sinku k K . (9) 

The features of this window, and many other windows, can be found in reference 29. 
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In order to obtain results comparable to a “rectangular window” ( 1ku  ), the numbers ku  have 

to be normalised somehow. Correct amplitudes (for tonal noise) are found when 

 
1

1
1

K

k
k

u
K 

 . (10) 

Correct auto- and cross-power levels (for broadband noise) are found when 

 2

1

1
1

K

k
k

u
K 

 . (11) 

2.2.5 Averaging 

As derived in section 0, definition (7) for the cross-powers assumes a periodic signal, which is 

not true for broadband noise. However, if the signal is stationary (statistically expected 

properties are independent of starting sample), we can average the cross-powers over many 

blocks of K samples. Thus, statistical variations are averaged out.  

 

To minimise numerical errors, the average values can be evaluated as a sequence: 

   ,1
1mn mn mnC C C  

 


   . (12) 

In the sequel of this paper, it will not explicitly be mentioned that cross-powers are the result of 

averaging.  

 

2.3 Source description 

Phased array beamforming is always done using a model that describes the source 

characteristics and the propagation from source to receiver. Usually it is assumed that the sound 

propagates through a medium with uniform flow U


. Herein, the acoustic pressure ( , )x t 
 

satisfies the convective wave equation: 

 
2

2
2

1
0U

c t
        


, (13) 

where c is the speed of sound and   the “Nabla operator”  , ,x y z      . In the 

frequency-domain Eq. (13) transforms into the convective Helmholtz equation: 

  2
2

2

1
2 0p if U p

c
    


. (14) 

2.3.1 Plane waves 

If only the direction of the sound is of interest, e.g., if the sound is coming from the far field, 

then the propagation can be described by plane waves: 

  ( ) expp f i x 
 

. (15) 

Herein, the wave number vector   must satisfy the dispersion relation: 
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  2 2
2 0f c M     

  
 (16) 

where M


 is a vector of Mach numbers: 

 M U c
 

. (17) 

2.3.2 Point sources 

For wind tunnel and fly-over applications, the plane wave model is usually not valid. Instead, a 

monopole point source description is often used. This is an ideal point source with uniform 

directivity. In a medium with a uniform flow, its sound pressure field has to satisfy the 

following partial differential equation: 

 
2

2
2

1
( ) ( )U t x

c t
            

 
, (18) 

where 


 is the monopole location and ( )t  the emitted signal. The solution of (18) is 

 
 

 2 2
24 ( )

et t

M x x




   

 


   
   

, (19) 

where et  is the emission time delay: 

  2 2
2

2

1
( ) ( )et M x M x x

c
   


           
 

     
 (20) 

and 

 
22 1 M  


. (21) 

The frequency-domain version of (19) reads 

 

 
2

2 2
24 ( )

eif tae
p

M x x



   

 


   
   

, (22) 

where a is the Fourier transform of . 

 

Dipoles, quadrupoles, and all sorts of combinations (multipoles) are possible too, simply by 

considering partial derivatives of (22). In some cases “dipole beamforming” gives additional 

information (Ref. 30), but usually the monopole description is sufficient, because the array 

covers only a small portion of the solid angle of the directivity pattern of a source. Then, the 

source will be detected as if it were a monopole. 
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2.3.3 Corrections for wind tunnel shear layer 

Obviously, the assumption of uniform flow is not valid in the case of out-of-flow measurements 

in an open jet wind tunnel. In that case, the effect of transmission through the shear layer has to 

be incorporated in the source description.  

 

A simple, but effective way of incorporating this in the source description (22) is to replace the 

uniform flow Mach number by the average Mach number between source and microphone. For 

instance, if the wind tunnel shear layer is defined by slz z  and xM Me
 

, then the corrected 

Mach number is given by 

 cor
slz

M M
z








, (23) 

where z  and   are the z-co-ordinates of x


 and 


, respectively. 

This shear layer correction, which may seem a little crude, has been extensively compared with 

two more sophisticated methods: the Amiet correction (Ref. 31) for an infinitely thin shear layer 

and ray acoustics (Ref. 32) incorporating the finite thickness of the shear layer. This comparison 

was done through microphone array simulations with a point source. It revealed that the 

differences in array output between the three methods were negligible, as long as the Mach 

number is moderate (say 0.25M  ) and the angles between the shear layer and the acoustic 

rays are not too small (say 45  ). 

 

2.4 Conventional Beamforming 

For convenience, we will write the array-related quantities as N-dimensional vectors and 
matrices. Furthermore, for brevity, we will omit the frequency dependence "( )"f . This means 

that the “pressure amplitudes”, (2) are put in an N-dimensional vector p : 

 
1( )

( )N

p f

p f

 
   
 
 

p  . (24) 

Furthermore, the cross-spectral matrix C  is introduced by 

 *1

2
C pp , (25) 

where the asterisk means “complex conjugate transpose”. The source description is put in the 
“steering vector” g, i.e., its components ng are the pressure amplitudes at the microphone 

locations of an ideal source with unit strength. For instance, in the case of a monopole in a 

medium with uniform flow, we have (Eq. (22)) 
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 
2 ( , )

2 2
24 ( )

e nif t x

n

n n

e
g

M x x

 

   

 


   



   
. (26) 

The aim of beamforming is to determine complex amplitudes a of sources in 


. This is done by 

comparing the measured pressure vector p with the steering vector g, for instance through 

minimisation of 

 
2

J a p g . (27) 

The solution of this minimisation problem is 

 2a



g p

g
. (28) 

In the case of broadband noise, it does not make sense to apply averaging (Section 2.2.5) to 

expression (28), because its phase will be different for each FFT block. Then, it is more 

convenient to consider source auto-powers: 

 
2

2 2 4 4

1 1 1 1

2 2 2 2
A a aa


    


 

      
 
 

g p g p g pp g g Cg

g g g g
. (29) 

Expression (29) is known as “Conventional Beamforming”. 

Source cross-powers 1,2A  of two different source locations 1


 and 2


 (described by steering 

vectors 1g  and 2g ) can be considered also: 

 1 2 1 2
1,2 1 2 2 2 2 2

1 2 1 2

1 1

2 2
A a a

  
  

g p p g g Cg

g g g g
. (30) 

 

3 Array performance 

3.1 Example with random array 

3.1.1 Beam pattern 

In this section, simulations are carried out with a planar array of 50 microphones positioned 

randomly on a disk of 2 m radius, in the plane 0z  . The microphone locations are shown in 
Figure 6. A monopole source is simulated 6 m above the array, in (0,0,6) . The frequency of 

the emitted sound is 2000 Hz. Using the Conventional Beamforming technique, an acoustic scan 

was made on a surface of 44 m2, 6 m above the array. The result of this scan, i.e., the “source 

plot” or the “acoustic image” is shown in Figure 7. Such a source plot of a single source is 

called “beam pattern” or “point spread function”. The results are presented in dB; the dynamic 

range of the plot (i.e., the range of the colour bar) is 16 dB. 
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Figure 6  Random array of 50 microphones  

 

3.1.2 Main lobe 

In the centre of Figure 7, the source location can be recognised as the peak location. In the 

neighbourhood of the peak location, the estimated levels decrease with increasing distance from 

the source. Thus, a lobe appears: the so-called “main lobe” of the beam pattern. The width of the 

main lobe is a measure of the resolution of the array. Usually (Ref. 33), the resolution is defined 

as the width of the main lobe, 3 dB below its peak (see Figure 8).  

 

The resolution of an array depends on its size, on frequency, on distance to the source, on the 

individual microphone locations, and on the used beamforming algorithm. With Conventional 

Beamforming, a rule of thumb for the resolution of an array is 

 
425

Resolution
Y

Df
 , (31) 

where Y is the distance between source and array, and D is the diameter of the array. In the 

example of Figure 7, the actual resolution is 38 cm, whereas the rule of thumb (31) yields  

32 cm.  
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Figure 7  Source plot (at z = 6) with random array (at z = 0), f = 2000 Hz 

 

resolution

3 dB

 

Figure 8  Definition of array resolution 

 

3.1.3 Side lobes 

Apart from the main lobe, the beam pattern (Figure 7) also consists of “side lobes”, i.e., local 

peaks. These side lobes are inevitable, due to the finite number of microphones. Since it is 

difficult to distinguish between the side lobes of a main source and the main lobe of a secondary 

source, it is desirable to keep the side lobe levels as low as possible. This is one of the main 

concerns in the design of a microphone layout (Refs. 34, 35).  

 

A measure for the array performance is its “dynamic range”, which is defined as the difference 

between the peak level and the highest side lobe level of a beam pattern. This dynamic range 

depends on the number of microphones, microphone layout, source location, scan grid, 

frequency and beamforming algorithm. The dynamic range of the example shown in Figure 7 is 

8.5 dB. 
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3.2 Improvement of microphone layout 

3.2.1 Aperture smoothing function 

The issue of side lobes can be understood by considering far-field beamforming, i.e., by using 

the source model (15). Suppose that the incoming plane wave is described by 

  0( ) expp x i x 
 

. (32) 

Then, the Conventional Beamforming algorithm (28) yields 

  0
1

1
exp

N

n
n

a i x
N

 


       
. (33) 

Expression (33) can be written as  

  0a W   
 

, (34) 

where W is the “aperture smoothing function” (see also Ref. 14): 

  
1

1
( ) exp

N

n
n

W i x
N

 


   
. (35) 

The ideal array should have an aperture smoothing function satisfying 

 
(0) 1 

( ) 0, for 0

W

W  

 


 


   (36) 

However, with a finite number of microphones this is impossible. The local peak values of W 

for 0 


 represent side lobes. 

  

3.2.2 Reduction of side lobes by array design 

A possibility to reduce side lobe levels is to minimise, as a function of microphone locations, 

the following expression: 

    
min max min max

2
2

1 2
1

1
,..., ( ) d exp d

N

N n
n

J x x W i x
N     

   
   

    

     
. (37) 

The bounds min  and max  depend on the array requirements. In practice, min  depends on the 

array diameter, and max  on the maximum frequency.  

 

For a two-dimensional (planar) array, we can analogously minimise 

    
2 2 2 2
min max

2

1 1 2
1

1
,..., , ,..., exp d d

x y

N

N N x n y n x y
n

J x x y y i x y
N    

   
  

    . (38) 

Practical choices for min  and max  are 

 min

3.83

D
  , (39) 
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 max
max

f

c
  , (40) 

where maxf  is the maximum frequency to be analysed. 

Expression (38) can be evaluated as 

 

 

 

 

2 2 2 2
min max

max

min

1 1

2
1 1

2

2
1 1 0

,..., , ,...,

1
exp ( ) ( ) d d

1
exp cos( ) d d ,

x y

N N

N N

x m n y m n x y
m n

N N

mn
m n

J x x y y

i x x y y
N

r ird r
N

   

 



   

 

    

 

     



 

  

 (41) 

in which 

 2 2 2( ) ( )mn m n m nd x x y y    . (42) 

Using some properties of Bessel functions (Ref. 36), we can evaluate (41) further as 

 

 

 

 

max

min

max max

min min

1 1 02
1 1

02
1 1 1

2 2 max 0 max min 0 min
max min2

1 1

1
,..., , ,..., 2 ( )d

1 d
2 d 2 ( ) d

d

( ) ( )
2

N N

N N mn
m n

N N N

mn
n m n mn

m n

N N
mn mn

m n mn
m n

J x x y y rJ rd r
N

r r rJ rd r
N R r

J d J d
N

N d





 

 





     

 

  


 




 
   
  


 
  

 

  

 ,


 


  

 (43) 

in which 0J  is the zero-th order Bessel function of the first kind. Expression (43) can be 

minimised as a function of the parameters nx  and ny . Since the derivatives of J can be 

evaluated analytically, this minimisation can be done relatively quickly by using, for example, 

the Conjugate Gradient Method (Ref. 27).  

 

3.2.3 Example with optimised array 

Using the optimisation procedure described in Section 3.2.2 and the random array of Figure 6 as 

starting position, an optimised array was calculated. The result is shown in Figure 9. With this 

optimised array, the same simulation was carried out as in Section 3.1.1. The beam pattern of 

the simulated source is shown in Figure 10. Compared to the result with the random array 

(Figure 7), the resolution (width of main lobe) is virtually the same. However the side lobe 

levels are clearly lower. Instead of 8.5 dB in Figure 7, the dynamic range is now 12.5 dB. 
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Figure 9  Optimised array 

 

 

Figure 10  Source plot with optimised array, f = 2000 Hz
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4 Advanced methods 

4.1 Microphone weights 
It is possible to apply weight factors nv , i.e. a spatial window, to the microphones. These 

weights may be frequency-dependent. Each of the beamforming methods described in this 
report can be applied using microphone weight factors, when the cross-powers mnC  are replaced 

by m n mnv v C  and the steering vector components ng  by n nv g . 

The weight factors nv  may be the product of two separate weights: 

 n n nv   , (44) 

where n  is a weight to correct for the microphone density and n  is a frequency-dependent 

weight to correct for the effective aperture of the array. This is worked out in the following. 



 

Figure 11  Illustration of equation (45) 

 

4.1.1 Corrections for microphone density 
The weights n  are chosen such that the acoustic power per unit area is approximately constant. 

This means that n  is large for sparsely spaced microphones, typically at the periphery of the 

array, and that n  is small at the centre of the array, where the microphones are densely spaced. 

In mathematics (see also Figure 11): 

  2;  area( ) Constant  (independent of )n nx     
. (45) 
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The effect of the application of such weight factors is that less emphasis is put on the central 

part of the array, and hence that the spatial resolution is enlarged. The resolution is then 

comparable to the resolution of a continuous disk (or elliptic mirror) of the same aperture. 

 

4.1.2 Corrections for effective aperture 

If the incoming sound is affected by coherence loss, then the signals of the outer, sparsely 

spaced microphones are incoherent with signals of other microphones. Hence, these outer 

microphones do not contribute effectively to the beamforming process. As a result, the effective 

array size may be much smaller than the physical size and the peak values in the source 

localisation maps may be much too low.  

 
The weights n  are used to correct for the effective aperture of the array. Inner microphones 

will get high values of n  and outer microphones low values. The effect is that less noise is 

visible in the source maps and that the peak values are more realistic. Moreover, these weights 

can be used to control the lobe width.  

 

The following expression is used (see also Figure 12): 

 
1

( ) 1 Erf 8 1
2 ( )

n
n

r
f

R f


         
    

, (46) 

where ‘Erf” is the Error function, nr  the distance to the midpoint of the array: 

 
1

1 N

n n m
m

r x x
N 

   
, (47) 

and ( )R f  the frequency-dependent ‘aperture radius’. We assume that ( )R f  is proportional to 

the wave length, hence inverse proportional to the frequency: 
 ( )R f B f . (48) 



  
NLR-TP-2012-137 

  
 29 

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

( )nr R f 

( )n f


 

Figure 12  Illustration of equation (46) 

 

4.2 Beamforming without auto-spectra 

In wind tunnel measurements, microphone auto-power levels are often much higher than the 

corresponding cross-power levels. In other words, the main diagonal components of the cross-

spectral matrix C have much higher levels than the off-diagonal components. There can be two 

reasons for this phenomenon, both of which are discussed below. 

 

4.2.1 Boundary layer noise 

When a microphone is placed in the wind, it will detect not only acoustic pressures, but also 

pressure disturbances of hydrodynamic nature due to the turbulent boundary layer around the 

microphone. This typically occurs in closed wind tunnel test sections, where the microphones 

are mounted flush in a wall. Because wind noise is incoherent from one microphone to the other 

(except when microphones are placed very close to each other in the wind direction, and then 

only for very low wave numbers, see Ref. 37, p. 546), it will appear only in the auto-spectra, 

and not in the cross-spectra.  

 
In mathematics: suppose that the pressure vector p is composed of an acoustic component ap  

and a wind noise component wp . Then for the cross-spectral matrix we have 

   1 1 1 1 1

2 2 2 2 2a w a w a a a w w a w w
           C p p p p p p p p p p p p . (49) 

The second and the third term in the right hand side disappear through averaging, and what 

remains is 

 
1 1

2 2a a w w a w
    C p p p p C C  (50) 
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The wind noise induced matrix wC  has, in the limit, only non-zero components on the main 

diagonal. 

 

4.2.2 Loss of coherence 

When sound travels through a turbulent medium, it deforms. When sound from a noise source 

travels along different paths through a turbulent medium, it will deform differently. As a result, 

the phase of the cross-power between two microphones will be distorted. Therefore, after 

averaging, the cross-power levels are lower than in the non-deformed case. This reduction of 

cross-power level is dependent on the level of the turbulence, the distance between the 

microphones, the distance between source and microphone and on frequency. Since auto-

powers do not contain phase information, their levels are not affected by coherence loss. Hence, 

auto-powers tend to dominate the cross-spectral matrix when coherence loss becomes 

significant.  

 

Loss of coherence is in particular an important issue for measurements in an open jet wind 

tunnel (Ref. 15), when the array is placed out of the flow and the sound has to travel through the 

turbulent shear layer. Typically, it makes source location impossible for frequencies higher than 

20 kHz. Loss of coherence is also an issue for outdoor measurements (Refs. 38-40), for instance 

the fly-over measurements at Schiphol Airport (Refs. 10, 24). For those measurements, 

coherence loss is caused by turbulence in the atmospheric boundary layer. 

 

4.2.3 Elimination of auto-powers 

In the cases where the auto-powers prevail against the cross-powers, much “cleaner” noise maps 

are obtained when the auto-powers are not used in the beamforming process. For that purpose, 

we can generalise the Conventional Beamforming method of Section 2.4 as follows. 

 

Instead of (27), we can equivalently minimise 

 
2 2

1 1

N N

mn m n
m n

J A C Ag g 

 

   C gg . (51) 

This can be generalised into 

 
2

( , )

N

mn m n
m n S

J C Ag g



  , (52) 

where S is a sub-set of all possible (m,n)-combinations. For instance in case of auto-power 

elimination, we have 

     ( , ) 1... 1... ;S m n N N m n    . (53) 
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The solution of minimising (52) is 

 ( , )

2 2

( , )

N

m mn n
m n S

N

m n
m n S

g C g

A
g g











. (54) 

A caution to this method is that the source auto-power A, as calculated by (54) may obtain 

negative values, because the governing matrix is not positive-definite anymore. Since negative 

auto-powers are not physical, those results should be rejected. 

 
Source cross-powers 1,2A  (see section 2.4) can be found likewise, through minimising 

 
2

1,2 1, 2,
( , )

N

mn m n
m n S

J C A g g



  . (55) 

The solution is 

 
1, 2,

( , )
1,2

2 2

1, 2,
( , )

N

m mn n
m n S

N

m n
m n S

g C g

A
g g











. (56) 

 

 

Figure 13  Source plots of Fokker 100 half model; comparison between beamforming with (left) 
and without (right) auto-powers 
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4.2.4 Example 

The strength of beamforming without auto-spectra is illustrated by array measurements in the 

DNW-LST on a half model of the Fokker 100 aircraft (Figure 4). These measurements were 

used to test flap tip devices (Ref. 41). An array of 96 microphones was used, mounted flush in 

the wall (red surface in Figure 4). In Figure 13 typical results are shown of beamforming with 

and without auto-powers. The necessity of beamforming without auto-powers in this situation is 

clearly demonstrated. 

 

4.3 Source power integration 

Using Conventional Beamforming, absolute source powers can be extracted from array 

measurements only under the following restrictions: 

 The sources are point sources. 

 The source directivity is uniform, at least in the direction of the array. 

 The resolution of the beamforming method is high enough to separate different sources. 

 There is no loss of coherence. 

If the requirements above are fulfilled then the source powers can be found as the (local) peak 

values in the acoustic source plots. 

 

However, in wind tunnel measurements these requirements are seldom fulfilled. To obtain 

absolute levels nonetheless, a source power integration technique was developed (Refs. 16). 

Basically, the integration technique sums the source auto-power estimates for all points of a 

scan grid. Afterwards, the result is scaled such that the exact value is obtained for a simulated 

point source in the centre of the grid. 

 

For successful application of the integration technique, Conventional Beamforming should be 

used for the source auto-power estimates. Conventional Beamforming including auto-powers 

(Section 2.4) is preferred. Conventional Beamforming without auto-powers (Section 4.2) is 

possible too, however some caution is needed. Both methods are discussed below. 

 

The source power integration technique can be applied also to sub-sets of the scan grid. Thus, 

the source power contributions from several parts of a research model can easily be compared. 

 

4.3.1 Standard method 
Suppose H is the number of points in a scan grid, and , ,  1,...s hA h H  are the beamforming 

results (source auto-power estimates) of a simulated point source in the middle of the grid, with 
source auto-power sP . Suppose further that ,  1,...hA h H  are the beamforming results from 

measurements. Then, the integrated source power estimate is 
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 1

,
1

H

h
h

sH

s h
h

A
P P

A





 



 (57) 

For several wind tunnel array measurements, reference 16 reported good agreement with levels 

of individual microphones. Reference 16 also discusses a more advanced integration method, 

using several reference sources instead of one. Usually, the standard method is applied. 

 

4.3.2 Method without auto-powers 

Because of the relatively high auto-power levels in wind tunnel measurements, it is convenient 

to have available also an integration procedure without auto-powers. However, straightforward 
application of (57) may lead to poor results. The source auto-power estimates hA  and ,s hA  can 

be both positive and negative, which makes expression (57) unstable. A good alternative is to 

consider only the positive source auto-power estimates: 

 
 

 
1

,
1

max ,0

max ,0

H

h
h

sH

s h
h

A
P P

A





 



. (58) 

The following, more refined method considers only the source auto-power estimates that are 
less than Z dB (typically 10 dB) below the peak levels maxA  and ,maxsA . In other words, power 

estimates that are more than Z dB below the peak values are neglected. Thus, we have for the 

integrated source power 

 1

,
1

H

h
h

sH

s h
h

A
P P

A





 



, (59) 

where 

 
 10

max0,  if 0 or 10 log ,

, otherwise,
h h
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h

A A A Z
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    
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 (60) 

 and 

 
 10

, , ,max

,

,

0,  if 0 or 10 log ,

, otherwise.

s h s h s

s h

s h

A A A Z
A

A

    


 (61) 

The integration method without auto-power loses its ability to predict correct levels when 

coherence loss becomes significant. This is especially the case in open jet wind tunnels. Even 

then, the integration technique is still convenient as a tool for comparing different integration 

areas and different model configurations. 
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4.4 The use of eigenvalue analysis 

A useful technique, that can be applied when auto-powers are not dominating, is the eigenvalue 

decomposition of the cross-spectral matrix. Herewith, the measured acoustic pressure can be 

split into incoherent “principal” components. This technique can be used for 

a) determining the number of incoherent sources, 

b) increasing the processing speed, 

c) noise filtering. 

Successful applications of this technique are described in references 17 and 42. The analysis is 

as follows. 

 

Suppose there are L independent sources: 

 
1

L

l
l

p p . (62) 

For the cross-spectral matrix, we have 

 
1 2

1 21 1 1 1

1 1

2 2

L L L L

l l l l
l l l l




   

     
  
  C p p p p . (63) 

After averaging, the following expression remains: 

 
1

1

2

L

l l
l





 C p p . (64) 

Herewith, C is a matrix with rank L. In other words, the number of non-zero eigenvalues of C  

is equal to the number of incoherent sources. Since the matrix C  is Hermitian (invariant to 

complex conjugate transposition) and positive definite, its eigenvalues are non-negative and the 

corresponding eigenvectors form an orthogonal set. The eigenvectors of C  or "principal 

components" correspond to virtual sources, which need not coincide with the physical 

incoherent sources. 

 

The cross-spectral matrix C  can be written as 

 C QEQ , (65) 

where E  is an L L  diagonal matrix containing the non-zero eigenvalues, and Q  is an N L  

matrix, the columns of which are the normalised eigenvectors of C. For the Conventional 

Beamforming algorithm (29) we then have 

 4A
 


g QEQ g

g
. (66) 

In general, the matrix C  will not have a number ( L ) of non-zero and a number ( N L ) of 

zero eigenvalues. In actual measurements C  has a full spectrum. If the signal-to-noise ratio is 
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sufficiently high, then the signals can be recognised in the space spanned by the eigenvectors 

corresponding to the highest eigenvalues. In other words, if a number of eigenvalues has 

significantly higher values than the rest, they can be attributed to incoherent sources. The lower 

eigenvalues represent noise, which can be filtered out by replacing the lowest eigenvalues by 

zero. 

 

When one principal component is dominant, we can enlarge the dynamic range of the array by 

filtering this component out, viz. removing from the cross-spectral matrix the eigenvector 

corresponding to the highest eigenvalue (Ref. 43). 

 

4.5 Deconvolution using CLEAN 

4.5.1 Traditional CLEAN 

An other method of removing a dominant source is CLEAN (Ref. 44), a technique that 

researchers in astronomy use to remove side lobes of bright stars from maps obtained with 

multiple telescopes. Basically, CLEAN performs the following steps 

 It searches for the location of the maximum source auto-power in the acoustic image. 

 It subtracts the appropriately scaled theoretical beam pattern of that source (“dirty beam”, 

including side lobes) from the acoustic image. 

 It replaces this “dirty beam” by a “clean beam” (beam without side lobes).  

This process can be done iteratively, for multiple sources. Ignoring the issue of constructing 

“clean beams”, the analysis is as follows. 

 

First, we express the Conventional Beamforming expression (29) as 

 A  w Cw , (67) 

where w is the “weight vector”: 

 2
g

w
g

. (68) 

Suppose that maxw  is the weight vector with the maximum array output maxA : 

 max max maxA  w Cw . (69) 

The weight vector maxw  points to a source location max


, to which a steering vector maxg  is 

associated. A modified array output modA , without the disturbing influence of the source in 

max


 can formally be written as 

 mod maxA   w Cw w C w , (70) 

where maxC  is the cross-spectral matrix induced by the source in max


. This matrix maxC  is 

unknown, but a reasonable guess seems to be 

 max max max maxA C g g . (71) 
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Equations (70) and (71) form the basis for the CLEAN algorithm, which is as follows: 

Step 1:  Apply the beamforming algorithm to the scan plane, search for the peak source 

location max


, and determine the corresponding matrix maxC . 

Step 2: Replace the cross-spectral matrix C by maxC C , where  is a safety factor with 

0 1  , called the “loop gain”. 

Step 3: Return to step 1, unless a certain stop criterion is fulfilled.  

Afterwards, the information that has been subtracted in Step 2 can be used to produce a “clean 

map”. 

 
A good stop criterion could be maxnorm( ) norm( ) C C C , where the norm is defined by 

 
1 1

norm( )
N N

nm
n m

C
 

 C . (72) 

The CLEAN algorithm, as sketched above, is based on the assumption of point sources. 
Furthermore, it assumes that the sound transfer is well described by maxg . The latter assumption 

includes a uniform directivity and no loss of coherence, which is seldom fulfilled in aero-

acoustic measurements.  

 
To overcome this limitation, alternative approximations for maxC  are proposed below, which 

form the basis of the CLEAN-SC method (Ref. 23). 

 

4.5.2 CLEAN-SC 
In CLEAN-SC, the matrix maxC  is defined such that the source cross-power (cf. Eq. (30)) of 

any scan point 


 with the peak location max


 is determined entirely by maxC . In other words, 

 max max max , for all possible  w Cw w C w w . (73) 

This is satisfied when 
 max max maxCw C w . (74) 

Equation (74) does not have a unique solution for maxC , but it does when we write  

 max maxA C hh . (75) 

The solution of (74) with (75) is 

 max

maxA


Cw
h , (76) 

and, consequently, 

 max max
max

maxA




Cw w C

C . (77) 
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Herewith, we have an alternative for (71) that does not make use of the steering vector maxg , 

except to define the weight vector maxw . It is noted that maxh g  if max max maxA C g g .  

For beamforming without the main diagonal of C we have 

 1 2

2 2

( , )

N

m n
m n S

g g



 
 
 


g
w . (78) 

Furthermore, Eq. (75) can be replaced by 

  max max ,A  C hh H  (79) 

where H is a matrix of which the diagonal elements are equal to those of hh , and the off-

diagonal elements are zero. Eq. (74) is solved when  

 
 

max
max1 2

maxmax

1

1 A

 
  

  max

Cw
h Hw

w Hw
. (80) 

This is not an explicit expression for h, as H contains diagonal elements of hh . However, we 
can work out Eq. (80) iteratively, starting with maxh g . Only a few iterations are required for 

convergence. Now, we do not necessarily have maxh g  when max max maxA C g g . 

 

More details about the CLEAN-SC can be found in reference 23. 

 

A successful example of beamforming with CLEAN-SC is shown in Figure 14, which is from 

airframe noise array measurements on a scale model of the Airbus A340 in the 8×6 m2 closed 

test section of the DNW-LLF wind tunnel (see Ref. 23).  

 

 

Figure 14  Typical beamforming results from Airbus A340 array measurements in DNW-LLF 
closed test section; left: Conventional Beamforming, right: CLEAN-SC 
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5 Moving sources 

For array measurements on moving objects, the correct acoustic transfer function from moving 

source to receiver is required, incorporating the effect of Doppler frequency shift (Refs. 11, 12). 

For that purpose, an expression has to be used for a moving monopole source in a uniform flow. 

A brief derivation of such an expression is given below. For a more thorough approach, the 

reader is referred to reference 45. Using this transfer function, and by proper interpolation of the 

sampled microphone data, the emitted signals can be reconstructed. This is necessarily a time-

domain technique. It will be explained, however, that the signal/noise ratio can be enlarged by a 

technique, which is similar to the frequency-domain technique of removing the main diagonal 

(auto-powers) of the cross-spectral matrix. 

 

5.1 Source description 

The acoustic pressure field  of a monopole source moving in a uniform flow is governed by the 

differential equation (cf. (18)) 

  
2

2
2

1
( ) ( )U t x t

c t
            

 
, (81) 

in which ( )t


 is the time-dependent source location. Following Dowling and Ffowcs Williams 

(Ref. 46), equation (81) can be solved by writing the right-hand side as a superposition: 

  
2

2
2

1
( ) ( ) ( )U x t d

c t
         





          
 

. (82) 

Then, the solution can be expressed as 

  ( , ) ( ) , ( ), ,x t G x t d      




 
 

, (83) 

where G (the “Green’s function”) is a solution of  

  
2

2
2

1
( ) ( )G U G x t

c t
             

 
. (84) 

The solution of (84) can be derived from the Green’s function of the ordinary wave equation 

(Ref. 47) by using the following co-ordinate transformation: 

 
1

1

,

.

t t

x x Ut




 
   (85) 

In the transformed system, we have 

    
2

2
1 1 1 1 1 12 2

1

1
( ) ( ) ( ) ( )

G
G x Ut t x U t

c t
          

         


   
. (86) 
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The causal solution of (86) is 

 
1 1

1

1
( )

4 ( )

t x U
c

G
x U

    

   

     
  

 



 . (87) 

Therefore, the causal solution of equation (84), in other words the pressure field induced by an 

impulsive blow in a uniform flow, is 

  
1

( ) ( )
, ( ), ,

4 ( ) ( )

t x U t
c

G x t
x U t

    
  

   

      
  

  

 
   , (88) 

in which t  . It follows that the solution of (82) and hence the solution of (81) is 

 
( ) ( ) ( )

4 ( ) ( )

1

( , ) .
t x U t

x U t

cx t d
      

   
 





    

  

 
 
   

 

 


 (89) 

To elaborate this integral, introduce the emission time ( )e t  as the solution of 

 
1

( ) ( )e e et x U t
c

       
 

. (90) 

As long as the motion is subsonic, this solution is unique. Using (90) and the identity (Ref. 46) 

   0
0

0

( )
( ) ( ) ,  where ( ) 0

( )

f
f d
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 





 
 , (91) 

equation (89) can be worked out as 

 

     
( )

( , )
1

4 ( ) ( ) ( )

e

e e e e

x t
c t U x U t

c

 
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


         
 


  

. (92) 

It follows that the transfer function F from moving source in ( )t


 to receiver in x


 is given by 

  
     

( , ) 1
, ( ), ,

1( ) 4 ( ) ( ) ( )
e e

e
e e e e

x t
F x t

c t U x U t
c

  
        


 

         
 


  

, (93) 

where the relation between t  and e  is given by equation (90).  

 
It is noted that, in general, an explicit solution for e  as a function of t  does not exist. In other 

words, in most cases F is an implicit function of t . For source reconstruction, this is not a 

limitation, because we can solve explicitly the inverse problem, i.e., derive from Eq. (90) an 
explicit expression for t  as a function of e . This is worked out in Section 5.2. 
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5.2 Reconstruction of source signals 
Suppose ( ),  1,...,n t n N   are acoustic pressure signals, recorded by the N microphones. If a 

monopole source with time-dependent location ( )t


 is present, then we can write for the 

microphone signals  

  ( ) , ( ), , ( ) ( )n n e e e nt F x t t       


, (94) 

where ( )n t  is noise and/or contributions from other sources.  

 
In order to reconstruct the source signal ( )   from the microphone signals ( )n t , we take in 

equation (94) a fixed emission time e , independent of microphone number. Then the receiver 

time t depends on n and it is better to write equation (94) as 

  ( ) , ( ), , ( ) ( )n n n e n e e n nt F x t t       


, (95) 

or, briefly, 
 ( ) ( , ) ( ) ( )n n n n e e n nt F t t      . (96) 

The microphone-dependent receiver times nt  follow from equation (90): 

 
1

( ) ( )n e n e n et x U t
c

       
 

. (97) 

Though in general an explicit solution e  as a function of nt  does not exist, we do have an 

explicit expression nt  as function of e : 

 n e et t   , (98) 

with 

     2 2
2

2

1
( ) ( ) ( )e n e n e n et M x M x x

c
      


 

          
 

     
. (99) 

A reconstructed source signal ( )e  can be found with the delay-and-sum procedure: 

 
1

1
( ) ( )

N

e n e
nN

   


   , (100) 

with 
 ( ) ( ) ( , )n e n n n n et F t    . (101) 

It is noted that nt , as calculated by (98), does not coincide with a sample time k t . The best 

way to proceed is to linearly interpolate the sampled data: 

 , , 1( ) ( 1) n n
n n n k n k

t t
t k k

t t
   

              
. (102) 
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To avoid the frequency spectrum from being spoiled by side lobes from higher frequencies, the 

sample frequency should be taken higher than two times the maximum analysis frequency, 

without raising the low pass filter cut-off frequency. This problem was addressed for instance 

by Howell et al (Ref. 12). 

 

5.3 Reconstruction of source auto-powers 

5.3.1 Straightforward method 

A straightforward way to calculate the frequency spectrum of a source signal is to evaluate 
equation (100) for ,  1,...,e k t k K     and then perform an FFT, resulting in pressure 

amplitudes 

 
1

1
( ) ( )

N

n
n

a a
N

 


   . (103) 

The source auto-power estimate A  is calculated as 
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  

        . (104) 

 

5.3.2 Error estimate 

With equations (96), (101), and (104), we can write 

  
2

1

1 1
( )

2

N

n n
n

A a a F
N

 


   . (105) 

Now assume that ( )n t  is stochastic and incoherent from one microphone to the other (e.g. 

wind noise). Then, after averaging, the following expression remains: 

    2 22

2 2
1 1

1 1 1
( )

2 2 2

N N

n n n n
n n

A a a F A a F
N N

  
 

     . (106) 

 

5.3.3 Removal of auto-powers 

Consider the following approximation of equation (104):  
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A a a a a
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

 
       

       . (107) 

Again under the assumption that ( )n t  is stochastic and incoherent, and after averaging over 

many time periods, we simply get A A . In other words, the expected error is now zero now. 

This method is analogous to the elimination of the main diagonal from the cross-spectral matrix 

(Section 4.2). Just like its frequency-domain counterpart, the right-hand side of equation (107) 

may become negative, which is not physical. This may happen, for instance, if a secondary 
source exists, giving a coherent contribution to ( )n t , or in case of insufficient averaging. 
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5.4 Microphone weights 
It is possible to apply microphone weights nv  (see Section 4.1) in the processing techniques of 

this chapter. Equations (104) and (107) are then changed into 

 
1 1 1 1

1
( ) ( )

2

N N N N

m n m n m n
m n m n

A v v a a v v  
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and 
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5.5 Source power integration 

The source power integration technique, as described in Section 4.3, can also be applied to 

moving sources. In fact, the same equations (Eqs. (57) or (59)) can be used. However, since the 

scan grid is moving, the monopole should be moving also. But when the integration time is 

short, the position of the monopole source can be centred in space and in time. Then, the 

simulations can be done with a stationary monopole. 

 

5.6 Applications  

As examples of applications of the beamforming technique with moving sources, results are 

given of array measurements on a wind turbine model in the DNW-LLF (Refs. 13, 48), and on 

landing aircraft at Schiphol airport (Refs. 10, 24). Typical source plots (at typical frequency 

bands) are shown in Figure 15 and Figure 16, respectively. 

 

 

Figure 15  Acoustic image of wind turbine rotor in DNW-LLF 
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Figure 16  Acoustic images of Fokker 100 and Boeing 777 during approach 

 

In reference 24, a source breakdown of an Airbus A340 was presented, as obtained from the 

Schiphol fly-over measurements. The A340 flew over the array at an altitude of 44 m and a 

speed of 68 m/s. The source breakdown was obtained with the source power integration 

technique, for which areas were defined as drawn in Figure 17. For 17 successive time intervals 

of 0.1 s, corresponding to emission angles varying from 46 to 137 with respect to the flight 

direction, source power integration was performed on all these areas. Some areas in Figure 17 

seem to contain no noise sources, but that depends on frequency and directivity angle. 

 

 

Figure 17  Acoustic image of Airbus A340 during approach, with integrations areas 
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Table 1: Noise source ranking of A340 in landing 

Peak dB(A) Average dB(A) 

engine 3 exhaust 135.10 Engine 3 exhaust 131.12 

engine 2 exhaust 134.33 Engine 2 exhaust 130.49 

engine 1 exhaust 133.86 engine 1 exhaust 130.40 

engine 4 exhaust 133.85 engine 4 exhaust 129.91 

nose gear 131.39 nose gear 128.51 

right gear 130.72 left gear 127.87 

left gear 130.53 right gear 127.86 

tail 2 129.80 tail 2 126.03 

flap edge 4 127.80 engine 2 inlet 125.73 

middle gear 127.68 engine 3 inlet 125.55 

left slat horn 127.60 flap edge 4 125.34 

engine 3 inlet 127.40 middle gear 125.14 

flap edge 2 127.34 engine 1 inlet 125.10 

right slat horn 127.30 engine 4 inlet 124.98 

flap edge 3 127.23 right slat horn 124.74 

engine 2 inlet 127.10 left slat horn 124.71 

flap edge 1 127.06 flap edge 1 124.22 

engine 4 inlet 126.97 flap edge 3 124.02 

engine 1 inlet 126.42 flap edge 2 123.91 

engine 4 vane 125.86 engine 4 vane 123.71 

 

After having calculated the integrated values for all areas, for all emission angles, and for all 

frequency bands, an overview of these results was made by considering the total SPL, i.e., the 

values summed over all frequency bands (including A-weighting). This yielded a matrix of 

values, dependent on integration area and on emission angle. For each area the peak level and 

the average level over all emissions angles were calculated, yielding values that depend on 

integration area only. From these numbers, a ranking was made of all possible noise sources. 

This ranking is shown in Table 1, where the results have been scaled to a fixed distance from 

the source. This table shows that the loudest noise source is the exhaust of engine 3 (numbered 

from left to right). 
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Appendix A Cross-spectral density function 

In the following, the relation between cross-powers (Section 2.2.3) and the cross-spectral 

density function is explained. 

 

The cross-correlation function of the signals from microphones n and m is defined as (Ref. 28) 
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The cross-spectral density function is defined as the Fourier transform of the cross-correlation 

function: 
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In real life, we can not evaluate these integrals. We have to start from the assumption that the 
signals ( )n t  are periodic with some period T. Then, the same holds for the cross-correlation 

( )mnR  , and equation (111) can be expressed as (Ref. 49) 
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where  is the Dirac-delta function. The periodicity further implies that the limit variable 0T  in 

(110) can be replaced by T. It follows that (112) can be rewritten as 
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where 
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The cross-spectral density function, as defined in (113) is valid for positive as well as for 

negative frequency f. Usually, only positive frequencies are considered. For that purpose, the 

“single-sided” cross-correlation function is defined as 

 ˆ( ) 2 ( ),  0mn mnG f G f f  . (115) 
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We can derive 
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which is the continuous version of (2). Thus, we can write for the cross-spectral density 
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Note that the cross-powers (see Section 2.2.3) are defined in terms of the complex conjugate of 

the cross-spectral density function. 

 

 


	Executive summary

	Title page

	Summary
	Contents
	Nomenclature
	1 Introduction
	2 Basic principles
	2.1 Sampled microphone data
	2.2 Fourier transformation of microphone data
	2.2.1 Discrete Fourier transform
	2.2.2 Aliasing
	2.2.3 Cross-powers
	2.2.4 Windows
	2.2.5 Averaging

	2.3 Source description
	2.3.1 Plane waves
	2.3.2 Point sources
	2.3.3 Corrections for wind tunnel shear layer

	2.4 Conventional Beamforming

	3 Array performance
	3.1 Example with random array
	3.1.1 Beam pattern
	3.1.2 Main lobe
	3.1.3 Side lobes

	3.2 Improvement of microphone layout
	3.2.1 Aperture smoothing function
	3.2.2 Reduction of side lobes by array design
	3.2.3 Example with optimised array


	4 Advanced methods
	4.1 Microphone weights
	4.1.1 Corrections for microphone density
	4.1.2 Corrections for effective aperture

	4.2 Beamforming without auto-spectra
	4.2.1 Boundary layer noise
	4.2.2 Loss of coherence
	4.2.3 Elimination of auto-powers
	4.2.4 Example

	4.3 Source power integration
	4.3.1 Standard method
	4.3.2 Method without auto-powers

	4.4 The use of eigenvalue analysis
	4.5 Deconvolution using CLEAN
	4.5.1 Traditional CLEAN
	4.5.2 CLEAN-SC


	5 Moving sources
	5.1 Source description
	5.2 Reconstruction of source signals
	5.3 Reconstruction of source auto-powers
	5.3.1 Straightforward method
	5.3.2 Error estimate
	5.3.3 Removal of auto-powers

	5.4 Microphone weights
	5.5 Source power integration
	5.6 Applications 

	6 References
	Appendix A Cross-spectral density function

