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Summary

Three groups of novice trainees received extensive practice training on computer-based vehicle
control tasks. The first group practiced with a primary manual control task and the second and
third group practiced with more complex versions of this task involving secondary tasks.
Individual skill level during training was measured on the basis of times that trainees needed to
successfully complete subsequent trials on the task. A total of 36,000 trial times were measured.
The goal was to investigate whether the required training time for an individual to meet a
particular level of competence could be predicted by extrapolation of that individual’s learning
curve.

Extrapolation of the learning curve over a substantial period requires (1) a valid analytical
model and (2) a model for the random variations in individual performance. These
requirements are met by the ‘linear rate model’, which specifies a learning curve function with
one free parameter (‘dead time’). The model also specifies the probability distribution of the
random variations in performance. On this basis the dead time parameter can be estimated. The
resulting model is used to predict the times that 16 individuals would need to complete 500 and
on average 1800 task trials. The prediction errors are on average 0.46 and 4.1 percent with
standard deviations of 10.3 and 13.7 percent, respectively. We discuss the utility of the model.
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1 Introduction

In this research, we construct and extrapolate learning curves of trainees who practice complex
tasks and do not receive further instructional guidance during training. The learning curve is a
measure of performance (“skill level’) against a measure of practice.

As the measure of practice we choose the number of practice trials on a specific task. We
investigate ‘speed-tasks’, which allow skill level to be measured principally by the time that a
trainee needs to complete a practice trial, once successful completion of the task can be taken
for granted. For the time needed to complete each trial, we use the term ‘trial time’ throughout
this study. We do not use the term ‘response time’, because a trial on a complex task may
require multiple responses.

By extrapolating the individual learning curve function beyond the trial times on which its fit is
based and testing the extrapolation against newly available trial time data, we obtain an
appreciation of the underlying model, in this case the ‘linear rate model’ (Roessingh,
Koenderink & Kappers, 2001a, 2001b). We may thus have a theoretical model that accurately
describes the trend in trial times over a number of past trials. However, this does not guarantee
that the model is able to predict the trend in a series of trials in the future.

The objective of the current research is to quantitatively predict future trial times {7,+;, 7,2,
...} of individual trainees, and associated quantities, such as the practice time to achieve a
criterion, on the basis of their previous trial times {7}, .., T,}.

Complex tasks used in this study

The experimental tasks are increasingly difficult versions of the Space Fortress (SF) game. SF is
a Personal Computer game that was specifically designed for the study of complex skills
acquisition. Experimental research with the SF game has been documented in a special volume
of Acta Psychologica (edited by Donchin, Fabiani & Sanders, 1989) and in various later
research publications, such as field studies at flight schools where SF has been used in flight
training (e.g. Gopher, Weil & Bareket, 1994, Hart & Battiste, 1992, Vidulich, McCoy &
Crabtree, 1995). All three versions of SF used in this study are sufficiently complex and
interesting for trainees to guarantee a very long skill acquisition process. SF also allows for
reliable measurement of valid performance measures, in our case thousands of subsequent trial
times per trainee. We describe the task in more detail in the Method section.

Overview of the study

In the remainder of this paper we shortly describe the ‘linear rate model’, which gives an
explanation for the acquisition of complex skills from practice. We derive a learning curve
function from this model (in terms of subsequent trial times as a function of practice trials) and
a probability distribution for subsequent trial times. We employ the latter distribution to
estimate the free parameter (the dead time parameter 7,) of the learning curve function. We
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propose an iterative algorithm for the estimation of dead time. In the subsequent Method section
we describe the experiment. We start the Results section with a summary of the data.
Subsequently, we provide estimates for the dead time parameter for each individual, using the
previously described method. Then, we present the fits of the extrapolated learning curve
functions to the trial times of individual trainees in numerical and graphical form. We apply
these extrapolations to predict the practice time needed to perform a criterion number of future
trials. Finally we discuss to what extent individual skill acquisition can be predicted.
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2 Theory

A learning curve function with one free parameter

A functional expression for the learning curve seems a necessary condition for the purpose of
predicting ‘future’ trial times of an individual. However, since trial times appear to vary
randomly from one trial to the next, trial times for an individual do not follow a smooth
analytical function with a limited number of parameters. Hence, the trial times have to be
considered as stochastic variables and one can only predict an expected trend in average trial
times. This trend is generally found to decrease with practice. An essential feature of a learning
theory is that it should account for this decrease. To arrive at a functional expression for the
learning curve, we developed the ‘linear rate model’ (Roessingh et al, 2001a, 2001b). This
model considers learning of a complex task from practice as: (1) exposure to the task, (2)
accumulation of information on how to attain the task goals, which accumulated information we
call ‘perception-action patterns’, and (3) retrieval of perception-action patterns. These three
operations are not considered distinct — each one leads to the others. Perception-action patterns
must be considered as mere abstractions, to provide an adequate description level for learning
phenomena.

The proposed model is based on preference for successful exposures to the task, such that
patterns that represent these successful exposures will be accumulated. During each exposure to
the task, a randomly retrieved pattern guides this exposure in terms of perceptions and actions
required to finish the task. If the current exposure to the task is deemed more successful than the
guiding pattern, a new pattern will be created. This new pattern represents the current exposure
and may guide future exposures to the task. Alternatively, when the current exposure is
unsuccessful relative to the guiding pattern (i.e. when the guiding pattern has better prospects
than the actual outcome of the exposure), the guiding pattern will create an approximate copy of
itself, which may also guide future exposures to the task. We refer to this hypothetical
mechanism as ‘paired selection’.

Thus, a new pattern will generally be more successful than an old pattern. More specifically,
with random retrieval of one pattern, and creation of one new pattern on each exposure, as the
result of one paired selection, the new pattern will be on average twice as successful as the
average pattern that guided previous exposures.

In a speed-based task, successful patterns lead to faster trial times. Thus, when we consider each
complete trial on the task as one exposure to the task, paired comparison leads to trial times
whose expected values are exactly half the average trial time of all preceding trials. In formula:

T.=4T) . (1)

<T>, denotes the average trial time over # trials, and fnﬂ denotes the expected trial time of the

subsequent trial. At the first trial n=1, and <7>,=T}.
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We refer to the function of equation 1 as a ‘progressive average function’. However, this model
for the learning curve is not yet complete. Tasks require a certain amount of motor action from
the human operator, which will give rise to signal transport delays, and the nature of the task
may also involve delays in the task environment. Thus, if the number of trials n goes to infinity,
the trial time will eventually asymptote at a constant non-zero level, which level is not sensitive
to further learning. We refer to this level as ‘dead time’ 7. If we generalize the progressive
average function of equation 1 with a free parameter 7, to cater for constant dead time, it

becomes:

T,.-T, =((1), -1,). @)
and hence,

.=+, +1(T) . 3)

Equation 3 has an asymptote at 7,, because the average <7>, of the expected trial times will
approach 7, when n goes to infinity.

We previously investigated (Roessingh et al., 2001a) the correspondence between the
progressive average function of equation 3 and the two-parameter power function:

1

T, =T, +b@", 4)

The two functions are equivalent up to a Taylor correction in » for the first few trial times.
However, the power law of equation 4 has an extra scale parameter b. For the purpose of
extrapolating the individual learning curve, we prefer the progressive average function, because
it has only one free parameter 7, and thus reduces problems related to parameter estimation.

A model for random trial-to-trial errors

The progressive average function of equation 3 has one free parameter 7,, which needs to be
estimated for each trainee separately from the empirical series of trial times {7}, ..., T,}.
However, methods for parameter estimation generally require information on the probability
distribution of the random trial-to-trial errors. Thus, besides a functional expression for the
decreasing trend, information concerning the distribution of the trial-to-trial errors is required
for reliable estimation of the free parameter.

We analyzed the random trial-to-trial error during complex skill acquisition in two experiments
(reported in Roessingh et al., 2001a, 2001b) and we found that random trial-to-trial error is
multiplicative. Moreover, we established that both scale and shape of the probability
distribution of the trial-to-trial error change during the learning process.

The instance theory of automaticity, put forward by Logan (1988, 1992), provides an
explanation for the distribution of the random trial-to-trial error. This theory models a single
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response time during a learning process as the result of a ‘race’ between many memory
instances (memory traces of previous exposures to the task) and a mental algorithm, the latter
being a relatively slow series of steps that takes the learner through the task. As more instances
accumulate with practice trials, it becomes increasingly likely that one of these instances will
win the race from the algorithm. Eventually, the time preceding a response is governed by the
time needed to retrieve the ‘winning’ instance from memory, rather than by the execution of an
algorithm. By formalizing the horse race as a stochastic process, Logan derives the distribution
of subsequent response times (1992, p. 886, Eq. 4), which is a Weibull distribution. More
specifically, the instance theory predicts that the scale of the Weibull distribution decreases with
a power function of trials. This power function has an exponent that is the reciprocal of the
shape parameter.

We simplified Logan’s race mechanism to the previously described paired selection mechanism,
which can be considered as a race mechanism with only two racers. Using Logan’s line of
reasoning, a race mechanism with only two racers predicts that the trial-to-trial errors (and
hence the trial times) that are lower than the expected value follow a Weibull distribution with
shape parameter 2. A precise prediction of trial times that fall above the expected value could
not be made. By introducing a random error variable &,, with expected (mean) value 1 and

minimum value 0, the progressive average function of equation 3 can be rewritten as:
T;l+1 = Td +%(<T>n _];l )gn 2 (5)

We assume that the random error variable ¢, has the previously described probability
distribution, which is the Weibull distribution with shape parameter 2 at the low tail and a
unspecified distribution at the high tail. The lack of specification of the overall distribution
restricts the statistical methods with which we can estimate the free parameter 7,.

Estimating the dead time parameter

In order to predict the trend in a series of stochastic trial times {7}, .., 7,} on the basis of the
model of equation 5 we need to estimate the dead time parameter 7, which eventually causes
the learning curve to saturate at a trial time that is larger than zero. Reliable estimation of the
‘asymptotic trial time’ (when practice time goes to infinity) from a series of trial times is a long-
standing problem in the research of learning (which will be re-addressed in the discussion
section). Common techniques, such as those based on fitting a learning function with least-
squares regression fail to produce reasonable estimates. A frequently encountered problem is
that these general techniques yield estimates that are largely biased, resulting in physically
implausible (e.g. negative) values for dead time. A primary reason might be that the minimum
condition for application of these techniques, a stable and recognized distribution of residual
error, is not satisfied.

As a possible solution to this problem we propose an iterative method for estimating the dead
time parameter 7, from a series of trial times. We fit the Weibull distribution with shape
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parameter 2 to the smallest value of the empirical distribution of the random error variables &

(see equation 5). The assumption that smallest value of the empirical distribution has the
specified Weibull distribution is based on the paired selection mechanism, which is assumed in
the linear rate model. Rather than fitting the Weibull density function f or the cumulative
distribution function F, we fit the hazard rate 4:

_ f@
We = s (©)

Roughly speaking, the hazard rate of the random error variable ¢ can be interpreted as the
probability of immediate completion of the trial, given that the increasing error has a value of ¢
already. The random error ¢ for each trial can be approximated by using the progressive average

function of equation 5, giving:

. 2T -T
£ 220, °1,) "). (7
<T > -1
The method starts by determining the minimum trial time 7(1) from the series {7}, 15, ..., T,,} as

a first estimate 7 - We denote the trial number at which 7(1) occurs by n(1). With the first
estimate for 7}, equation 7 can be used to calculate a series of n approximate random errors. Let
£(@),i=1, ..., n, be the rank ordering of errors € , from the smallest error £(1) to the largest
error £(n) and with £(7) the error having the i" rank. We approximate the hazard rate (£(i))
by the empirical hazard rate /(i) for the i™ interval A&(i)=&(i +1) —£(i), which can be
calculated by (Singpurwalla & Wong, 1983):
A ~ [
h(e(@)) = h(i) = - : ®)

S (n=j+1) DE())

J=l

Low values of £(i) are assumed to have a Weibull distribution with mean 1 and shape

parameter 2. The theoretical hazard rate of £(i) is then given by the Weibull hazard function:

h(e(i)) = L1 (). )

By setting the empirical hazard rate of equation 8 equal to the theoretical hazard rate of equation
9, new (fitted) values for the errors £(i) can be calculated, in particular the smallest error £(1) :
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-2
)= MDA (10)

Now, a new fd can be calculated by again using the progressive average function of equation 5:

Ao 20()~(T), ,, ()

! 2-¢(1) ’ (ah

in which <7>,,) is the mean of trial times T}, i = 1, ..., n(1). Thus, once we have determined the
empirical hazard rate };(1) we can obtain a new estimate 7’ ;- Equation 7 can then be re-applied
to calculate a new series of approximate random errors £(i) . The method can be repeated until
the difference between subsequent estimates f"d vanishes. In practice, a few iterations are

sufficient and the method is generally convergent. To obtain a more reliable f"d than one that

would be solely based on };(l), we calculate l;(l) to };(5) by means of equation 8 and use the

median value to estimate 4(&(1)) .
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3 Method

Tasks

In all three different versions of the SF-game used in this research and described below, the
display contains a rotating fortress in the center and a maneuverable spaceship, which has a
starting position in the lower right corner of the display. The trainee controls the spaceship’s
flight with a joystick. The trajectory of flight can be controlled by rotating the ship and applying
thrust (which causes the ship to accelerate). The ship continues to fly in the direction in which it
is pointing, unless it is rotated and thrust is applied. This ‘control law’ significantly contributes
to the complexity of the task, as it is neither intuitive nor easy to learn for novice trainees.

Task 1 is a subset of the SF-game (Mane & Donchin, 1989). This specific task was used
previously by Frederiksen & White (1989). The trainee controls the spaceship’s flight with a
joystick and fires missiles from the ship by pressing a fire button on top of the joystick. The
trainee’s task is to attack the fortress by hitting it ten times with a missile, at intervals of at least
250 ms, before destroying it with a burst of two shots (fired at an interval of less than 250 ms).
The fortress defends itself against the ship. It does this by rotating to face the ship and then
trailing the ship’s movements while firing shells at it. When the ship is hit for the fourth time by
a shell from the fortress, it is returned to its starting position. When this happens, the shot
counter, which counts the hits scored against the fortress, is set to zero. A trial on the task
finishes as soon as the fortress is destroyed.

Task 2 is a more complex version of Task 1. Additionally, the fortress is protected by moving
‘mines’ which emerge on the display periodically. These mines chase the ship. Unless the
trainee takes action, these mines will hit the ship. Moreover, when a mine is present on the
display, missiles fired at the fortress have no effect. Thus, the mine has to be eliminated by a
missile immediately. However, if the trainee fails to hit the mine within 10 seconds, the mine
disappears from the screen automatically. The interval between the disappearance of one mine
and the appearance of the next is four seconds, during which time the trainee can fire at the
fortress. When the ship is hit for the fourth time by either a mine or a shell from the fortress, the
ship is returned to its starting position and its shot counter is set to zero. As with Task 1, a trial
on the task finishes as soon as the fortress is destroyed.

Task 3 is the full SF-game. In addition to Task 2, the trainee has to distinguish between two
types of mines, and react accordingly. The more difficult mine can be identified by a letter that
appears in the information panel at the bottom of the screen (prior to each five minute block of
play, the trainee is presented with a new set of three letters that are used to identify ‘difficult’
mines). Appearance of a difficult mine requires the trainee to press the right (‘identification”)
button on the mouse twice with an interval of 250-400 ms before the mine can be destroyed by a
missile. The ‘easy’ mine, as in Task 2, can simply be destroyed by hitting it with a missile
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without pressing the identification button. However, falsely pressing the identification button
for an easy mine makes this mine invulnerable for missiles, such that it cannot be eliminated
and will either hit the ship or automatically disappear after 10 seconds. Since missiles fired at
the fortress have no effect when a mine is present, the trainee can choose whether to avoid the
invulnerable mine and wait for it to disappear or let it damage the ship. Another complication in
this task is that the supply of missiles is limited, and the stock has to be monitored in the
information panel at the bottom of the screen. Extra supply can be obtained by using ‘resource
opportunities’. The availability of these opportunities are indicated by a random sequence of
symbols (&, #, $, %, !, etc.) which appear in the center of the display (beneath the fortress).
When the $ symbol appears for the second time in a row, the trainee can get extra missiles by
clicking the middle button of the mouse. As with the less complex tasks, a trial finishes as soon
as the fortress is destroyed.

Trainees

Sixteen male university undergraduates aged between 20 and 23, with normal vision,
participated in the study. Trainees were recruited via an advertisement in the University
magazine of Utrecht University. In total 36 trainees were selected from a larger group of 51
candidates by means of the Aiming Screening Task, a task that is known to be a reasonable
predictor for training success on this task (see Foss, Fabiani, Mane & Donchin, 1989). A
minimum aiming screening score of 740 points was required to participate in the study. As the
current study is part of a larger training study, the sixteen trainees in the current study are a
balanced subset of the full set of 36 trainees who participated in the larger study. The subset has
the same average screening score (870 points) as the full set, and each trainee with an above-
average screening score is paired with a trainee with a below-average screening score. None of
the trainees reported playing video games for more than 4 hours per week. Trainees were paid
30 euro per day plus a bonus of 68 euro upon completion of the experiment.

Procedure

We selected the conditions from the larger experiment in which trainees practiced with only one
task (either Task 1, Task 2 or Task 3) and received no previous practice training on a different
task. Eight trainees practiced with Task 1, two trainees practiced with task 2 and six trainees
practiced with task 3. The different numbers of trainees in each of those three conditions are the
result of the design of the larger study, but are of minor interest for the current study as the
focus is on individual measures rather than group measures.

In the course of the experiment, each trainee received practice training on the task to which he
had been assigned. The trainees completed on average 2300 trials (ranging from 1273 to 3857
trials). To this end, we scheduled eight training days over a five-week period for each trainee.
During a training day, the trainee would complete three training sessions consisting of eight
blocks of five minutes each, separated by two breaks of twenty minutes. The effective time-on-
task was thus forty minutes per session and 120 minutes per day. Trainees were allowed to take
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one-minute breaks between five-minute blocks. The data collected with Task 1 and Task 3 have
been reported previously in Roessingh et al. (2001a, 2001b).

Software and equipment

The experiment room contained individual computer stations in separate cubicles. Each
computer station was equipped with a PC and a joystick of type FlightStick (CH-products). The
joysticks were modified so that they could be connected to an A/D converter card
(DataTranslation) in the PCs. The fire-button on the joystick and the three other response
buttons were connected to a timer card in the PC. A camera system was installed in the cubicles
to control the course of the experiment.

The original SF software was made available by the Dept. of Psychology, University of Illinois
at Urbana-Champaign. To facilitate Task 1 and Task 2, the software was modified to remove the
specified components of the full SF-game. The software was also modified to record additional
parameters, most importantly total time-on-task and trial-times, with a timing accuracy of 50
milliseconds.

Further training materials

After screening and well before the start of the experiment, the trainees received the instruction
booklet for the SF game by mail at their home address. This instruction booklet specified the
rules of the game and explained control of the space ship. No reference was made to specific
tactics or strategies. The trainees were instructed to study the booklet carefully before the
experiment began.
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4 Results

Table 1
Grouped summary of trial time data over trials 1-500 and trials 501-1000"

Max. trial Min. trial Coefficient of
Task N’ Trials time® time* Variation
[s] [s] vy’
M SO M SD M SD M SD
1-500 220 149 79 2.1 082 024 190 78
1-500 733 - 7.3 - 1.19 - 291 -
1-500 1048 320 9.2 2.8 138 033 407 87
501-1000 62 20 6.7 1.3 045 0.13 116 40
501-1000 64 - 6.5 - 0.46 - 152 -
501-1000 92 21 7.4 0.8 048 0.08 187 28

Practice time®
[minutes]

W =W N -
()N \S e o} e N NS Je o)

Brief description of trial times

Table 1 summarizes the trial time data, with separate figures for the first 500 trials (trial 1 to
500) and the second 500 trials (trial 501 to 1000). The trial time data have been summarized per
task, task 1 being the least complex task, etc. In appendix F we provide the corresponding data
for individual trainees. The mean M and standard deviation SD in table 1 represent group
figures. For example, the first column in table 1 reports the maximum observed trial time. The
maximum trial time of the eight trainees that trained with task 1 is on average 220 seconds
during the first 500 trials with a standard deviation of 149 seconds. The standard deviations
reveal that initially the variation in the maximum trial time between individuals with the same
task is high. Maximum trial times are much higher with more complex tasks and strongly
decrease in magnitude with practice trials. Conversely, the minimum observed trial times vary
only slightly between individuals and hardly increase with more complex tasks. Moreover, with
an increase in practice trials the minimum trial times drop only slightly.

"individual figures are reported in appendix F.

? number of trainees (16 in total) on each task/group.

3 group mean (M) and group standard deviation (SD) of max. individual trial times.

*M and SD of minimum individual trial time.

M and SD of ratio of standard deviation and mean (o/w) in 500 individual trial times.
M and SD of time needed to complete 500 trials. Practice time is the sum of trial times.
7 SDs are not reported for task 2 (N=2).
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TASK1 - TRAINEE1-2

TRIAL TIME (s)

TRIAL TIME (s)

®0 f TASK3 - TRAINEE3-5 ]
300 F
® %0 [
w
g 20 [
2
@ 150 [
z
100
o F

PRACTICE TRIALS
Figure 1: Trial times plotted against trial number for trainees from different task-
groups. The line connects average trial times of subsequent series of 25 trials. The
error bars denote the standard deviation in each series. Note the different time scales

for the vertical axes.

The mean coefficient of variation (CV, the ratio between standard deviation and mean in 500
individual trial times) is initially higher for more complex tasks. However, for the second 500
trials, the CV is considerably lower for all three tasks and the dependence of the CV on task
complexity has vanished. Roughly speaking, the CV for the first 500 trials is in the order of 1.0
or larger and drops to a value in the order of 0.5 in the second 500 trials. With more basic tasks,
Logan (1992) reports considerable lower CV’s, in the order of 0.2 to 0.4. For example, the CV
for a dot counting task was 0.342. It must be noted that the CV relies on the standard deviation,
which is based on squared deviations and thus emphasizes extreme deviations. Even if the data
contain relative few extreme deviations, the CV will be determined predominantly by these
deviations. Since with more complex tasks the maximum trial times are relatively large with
respect to the mean, this may explain the high CV’s in the first 500 trials of our data. Finally,
the last column of table 1 reveals that the second 500 trials took approximately half the practice
time needed for the first 500 trials, irrespective of task complexity.

In figure 1, the first 1000 trial times have been plotted for one trainee of each group, as
representative examples. The trial times of all trainees show a decreasing trend and these trends
seem to reach an asymptote. Figure 1 also reveals that trial times are more likely to be extremely
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positive than extremely negative with respect to an average value. Thus, trial times have a
probability distribution that is skewed towards small values and with a long high tail. At first
sight, there do not appear to be any specific features that distinguish the three plots from each
other, apart from seemingly random deviations from the average trend and the differences
between the trainees (tasks) in the time scale at which trials are completed.

Dead time estimates

The estimates for T, using the estimation method outlined in the theory section, are presented in
table 2. We report estimates for each trainee based on the first 500, the first 1000 trials and all
trials (on average 2300 trials per trainee). The 95 percent confidence intervals reveal which
estimates are significantly (p<0.025) larger than zero.

If dead time estimates are based on 500 trials, only 25 percent of the estimates are significantly
larger than zero. When based on 1000 trials, roughly half are significantly larger than zero.
When based on all trials (on average 2300 per trainee), roughly 75 percent of all estimates are
significantly larger than zero. In particular with the more complex tasks 2 and 3, the confidence
intervals reflect large uncertainties. Thus, the method requires many observations to reliably
determine dead time. Therefore, the differences between individuals with respect to dead time
T, are seldom significant. Only for Trainee 1-2 we estimated a dead time (3.94 s) that was
significantly smaller (p<<0.025) than that of Trainee 1-1 (5.13 s) and Trainee 1-4 (5.84 s).

The rules of task 1 (which is also the basis for task 2 and task 3) determine that each trial
contains at least 2.5 seconds of waiting time (see the task description) and this waiting time
biases 7. Potentially, Trainee 1-2, whose estimated 7 is 3.94 s, is able to execute Task 1 in the
intervals between shots (ten times 250 milliseconds) and a net 1.44 seconds. A trial time of 4.45
s has actually been observed in the data of Trainee 1-2.

As indicated by the last column of Table 2, even task 3 can be completed within 7.5 seconds by
all trainees that practiced with this task. Given the complexity of the task, which includes
actions like ‘applying thrust to accelerate/decelerate the space ship’, ‘aiming’, ‘firing with
constant intervals’, and ‘monitoring the shot counter’, such short trial times are quite
astonishing.

All estimates of 7} in table 2 are higher than 2.5 seconds and always lower than the lowest value
actually observed in an individual series. Clearly, the method for estimating 7, yields plausible
values.
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Table 2

Estimates of dead time parameter T} for each trainee.

Basis = 500 trials Basis = 1000 trials Basis = all trials
Task- ,Tds 95% c.i. in ng ,wa 95% c.i.in Ty _Td” 95% c.i.in Ty
Trainee (estimated) (estimated) (estimated)
1-1 5.94 2.84 - 6.30 5.32 2.73 -5.56 5.13 4.50-5.14
1-2 4.75 2.00 —5.20 4.87 2.86 —5.15 3.94 3.33-4.33
1-3 5.03 -3.15-5.81 5.49 2.88—5.54 4.67 3.30 - 4.68
1-4 5.03 0.98 -9.10 6.86 3.52-6.94 5.84 4.63-5.88
1-5 6.39 0.85-6.78 5.54 1.82-6.28 5.37 3.83-5.56
1-6 6.57 -3.63-8.73 5.44 -0.44 —7.52 6.16 3.48 - 6.50
1-7 11.01 -5.38-11.62 8.50 -0.02-9.20 7.10 3.14-7.29
1-8 7.95 -14.46 — 8.69 6.43 -9.35-6.82 6.11 -0.53 - 6.37
Mean 6.58 6.06 5.54
2-1 7.24 -10.62 —7.95 6.22 2.49 -17.93 7.81 3.45-17.99
2-2 4.05 -14.57 -5.71 4.93 -9.71 - 5.62 5.17 -9.85 -5.67
Mean 5.65 5.58 6.49
3-1 7.54 2.11-8.53 7.18 -3.81-7.22 5.62 426-5.71
3-2 2.92 -16.75 -4.17 2.55 -13.98 —4.57 4.03 -12.83 —4.46
33 6.25 -3.38-7.97 6.83 0.378 —7.04 5.77 2.11-5.95
34 5.44 -4.04 - 8.19 5.90 -2.35-6.48 5.63 1.02-5.72
3-5 5.82 -17.14 - 12.74 6.21 -1.52-7.64 7.23 -0.03 -7.51
3-6 6.99 -29.38 —10.22 6.53 -2.88 - 8.20 6.62 -0.50-6.96
Mean 5.83 5.87 5.82

Extrapolation of the learning curve

The progressive average function (equation 3) predicts trial times from preceding trial times.
We now test this model against individual trial time data. To standardize the analysis for the
three different tasks and groups, we estimate dead time parameter 7, on the basis of the first 500
trials of each trainee. We estimate each subsequent trial time by recursive use of equation 3,
without feeding new observations into the model. We estimate all remaining trial times (on
average 1800) of each trainee in this fashion. In figure 2, we represent these results for three
trainees graphically. To plot trial times 7, against trial number n, we used both linear and

¥ Estimates of T, and 95 percent confidence intervals (c.i.) in these columns are based on the first 500
trials of each trainee.

’95 percent confidence intervals. When the lower bound is larger than zero, T is significantly larger
than zero (p<0.025).

' Estimates and intervals in these columns are based on the first 1000 trials.

' Estimates and intervals in these columns are based on all trials (on average 2300 trials per trainee).
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logarithmic co-ordinates. Since the latter co-ordinates markedly straighten the curves, they
provide a more balanced view of the deviations.

We evaluate the extrapolations by calculating the lack-of-fit to the observed trial times. Roughly
speaking, there may be two reasons for the lack-of-fit of the extrapolation. First, the model is
unable to predict “‘unexpected’ variations in the data. Second, the estimate of parameter 7 (table
2) may be inaccurate. In appendix B we report the following four lack-of-fit measures: (1) Mean
Percentage Error, (2) Mean Absolute Percentage Error, (3) Root of Mean of Squared Errors and
(4) Coefficient of Determination R>. These will be explained in detail hereafter. These lack-of-
fit measures have been calculated for the description of all trial times, and for two ‘extrapolation
periods’: (1) trials 501-1000 and (2) all trials beyond trial number 500. In table 3, we report
averaged lack-of-fit measures by means of a summary. Table 3a summarises lack-of-fit of the
description, table 3b summarises lack-of-fit of 500 trials extrapolation and table 3¢ summarises
lack-of-fit of all trials beyond trial number 500, i.e. ‘the full extrapolation’.

Mean Percentage Error (MPE). An obvious purpose of extrapolation is to evaluate the prospects

of a trainee, for example in terms of the trend in trial times over some future period (the
extrapolation period) or, equivalently, in terms of trials or training time required until the trend
in the curve exceeds a certain criterion skill level. In both examples, the most appropriate lack-
of-fit measure is the sum of residual errors in the extrapolated trial times (i.e. predicted trial time
minus observed trial time, summed over all extrapolated trials). The sum of errors provides us
with the gross error in predicted training time. To obtain a general reference, we compute the
relative sum of errors by dividing the sum of errors by the sum of observed trial times.
Multiplication by a factor hundred yields the Mean Percentage Error (MPE, StatSoft, 2001).
These MPEs, averaged per task, are included in table 3.

The upper panels of figure 2, depict the extrapolation of the learning curve for Trainee 1-2, who
practiced with task 1 (the least complex task). This extrapolation is the second worst of all
extrapolations (see Appendix B), with an MPE of —23.7 percent over the extrapolated part of the
curve.

As is apparent from figure 2, the lack-of-fit for Trainee 1-2 is caused primarily by the inability
of the model to predict extremely large trial times. The peaks in the trial times of Trainee 1-2
possibly indicate temporary loss of skill of this trainee (e.g. due to forgetting during days on
which no training took place).

Trainee 2-1, in the middle panels of figure 2, provides an example of a fairly accurate
extrapolation, with an MPE in the full extrapolation of —1.28 percent.

The data for Trainee 3-5, who practiced the most complex task 3, is depicted in the lower panels
of figure 2. The MPE is here 3.87 percent. Overall, the MPEs in the 500 trial extrapolations
have a mean value of only -0.46 percent (standard deviation 10.3 percent). The MPEs in the full
extrapolation (1800 trials on average) have a mean value of 4.07 percent (standard deviation
13.7 percent).
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Figure 2: Extrapolations beyond 500 trials (vertical line) of the one-parameter model
(equation 3) for three trainees (each with a different task) in linear and logarithmic
coordinates. The jagged lines in the linear plots are the moving averages of observed
trial times (window of 25 trials). The dots in the logarithmic plots are the average trial
times for subsequent windows of 50 trials. The horizontal dashed lines denote the
estimated asymptotes 7, based on 500 trials (thick) and all trials (thin).

Mean Absolute Percentage Error (MAPE) A characteristic of the MPE is that positive and
negative error values in individual trial times neutralise each other, such that this measure is a
poor indicator of overall fit. Therefore we also report (table 3) the Mean Absolute Percentage

Error (MAPE, StatSoft, 2001), which is computed as the average absolute error value, expressed
as a percentage. However, when the distribution of errors is asymmetrical, the MAPE will not
be minimal, even if the learning curve describes exactly the expected values.

The average MAPE for the full extrapolation is 35.7 percent (standard deviation 12.3 percent).
The MAPE reflects that the average prediction of a single trial time is “off” by 35.7 percent.
This indicates that single trial times on complex tasks are largely unpredictable.
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The MAPE generally increases with task complexity. For the most complex task (task 3) the
MAPE for the full extrapolation is 44.3 percent (table 3c). Table 3a reveals that this figure
differs little from the MAPE in the described trials, which, on average, is 42.8 percent for task
3.

Root of Mean Squared Errors (RMSE) and R>. We additionally report (appendix B) the
commonly used RMSE and the percentage of variance accounted for (R*). The table in appendix

B reveals that both RMSE and R* decrease when applied to the extrapolations. Curiously, the
decrease in RMSE would point to a better fit and the (dramatic) drop in R* would point to a
worse fit. Considering this apparent paradox, one should recall that the interpretation of these
measures depends on the assumption of stable additive Gaussian error, or, at least, on a stable
and balanced distribution of errors, which is not justified when fitting a learning curve function
to trial times. Both measures are based on squared errors, and therefore emphasise extreme error
values. The latter occur frequently in trial time data whose probability distribution is skewed,
not symmetric. Moreover, the mean and variance of trial times tend to decrease as a function of
trial number Thus, both RMSE (the root of the mean of squared errors) and R* (the coefficient
of determination) are inappropriate goodness-of-fit measures for the current application.
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Table 3

. 12
Learning curve model: lack-of-fit measures *.

A — Descriptive model (for all trials)

N® MPE MAPE
Task 3 (%] (%
Mean SD Mean SD
1 8 -7.31  7.03 26.6 6.58
2 ) 0.49 - 43.1 -
3 6 2.20 8.31 42.8 11.6
Total 16 277 832 34.7 11.9

B — Extrapolated model (for trials 501-1000)

MPE MAPE
Task N [%] %]
Mean SD Mean SD
1 8 -4.28 11.8 27.9 6.69
2 2 -2.45 - 37.5 -
Total 16 -0.46 103 33.8 9.14

C —Extrapolated model (for trials 501-All)

MPE MAPE
Task N [%] [%]
Mean SD Mean SD
1 ] -1.28 14.2 28.7 9.03
) ) -1.11 - 38.1 -
3 6 12.9 10.9 443 13.1
Total 16 4.07 13.7 35.7 12.3

"2 Mean Percentage Error (MPE) and Mean Absolute Percentage Error (MAPE) in the model’s

prediction of trial times.

"> Number of trainees over which Mean and Standard Deviation (SD) in the lack-of-fit measure is

calculated.
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Table 4

Learning curve model: Predicted training time, observed training time and relative error in the predicted
training time for 16 trainees. (A) predictions over 500 trials (trials 501-1000); (B) predictions over on

average 1800 trials (trials 501-total number of trials).

A — Trials 501-1000 B - Trials 501-total no. of trials
Pred. Obs. Rel. Pred. Obs. Rel. Total
. training training  Error training  training  Error no. of
Trainee . . . . .
time time [%] time time [%] trials
[min] [min] [min] [min]
1-1 81.8 72.3 13.2 471.0 418.3 12.6 3857
1-2 66.9 86.9 -23.0 328.0 429.9 -23.7 3327
1-3 80.1 923 -13.3 328.5 392.0 -16.2 2880
1-4 95.4 94.2 1.26 386.1 385.5 0.15 2921
1-5 97.0 97.7 -0.68 361.7 369.4 -2.08 2618
1-6 123.3 141.3 -12.7 351.2 370.2 -5.11 2112
1-7 171.1 159.9 7.0 398.5 332.6 19.8 1758
1-8 171.9 183.0 -6.1 304.3 291.8 4.26 1447
Mean 111.0 116.0 -4.3 366.2 373.7 -1.28 2615
(SD) (11.8) (14.2)
2-1 136.8 136.9 -0.1 359.3 347.1 3.5 1971
2-2 159.5 167.6 -4.8 243.0 257.7 -5.7 1312
Mean 148.1 152.2 -2.45 301.1 3024 -1.1 1641
3-1 151.2 142.7 6.0 696.3 625.4 11.3 3346
3-2 184.5 177.2 4.1 526.1 439.6 19.7 2282
3-3 188.5 186.2 1.2 546.0 480.5 13.6 2229
3-4 181.9 180.2 1.0 488.6 491.5 -0.6 2090
3-5 221.8 222.7 -0.4 361.7 348.2 3.9 1379
3-6 254.0 211.9 19.8 371.5 286.4 29.7 1273
Mean 196.8 186.8 5.3 498.3 445.3 12.9 2100
(SD) (7.5) (10.9)
Mean 147.3 147.9 -0.5 407.6 391.6 4.1 2300

(SD) (10.3) (13.7)
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Training time predictions

In table 4 we tabulate the predictions of the model with respect to training time duration for
individual trainees. In order to make these predictions, dead time estimate T ., and average trial

time <7> (equation 3) were calculated on the basis on the first 500 trials (which took on average
284 minutes of training time). On this basis we can use equation 3 to calculate the training time
required for the next 500 trials (table 4a) and the training time required for all remaining trials
(table 4b). From the predicted training time and the actual observed training time, the relative
(percentage) error can be calculated. It should be noted that this relative error is equal to the
previously discussed MPE, except for round off error (training times have been rounded off to
the nearest 0.1 minute). For all tasks and all trainees together, the model predicted an average
training time of 147.3 minutes (roughly 2.5 hours) for completion of the next 500 trials. The
actual required training time was on average 147.9 minutes, a negligible difference. For all
remaining trials beyond the first 500 trials, the model predicted that on average 407.6 minutes (6
hours, 48 minutes) would be required, whereas in fact an average of 391.8 minutes (6 hours, 32
minutes) was required.

The errors in predictions at the level of the individual trainee may be considerably larger, as
reflected by the standard deviations in the relative error (these errors can be assumed to have a
normal distribution). The most erroneous prediction is the prediction of the total training time of
Trainee 3-6, the prediction being 371.5 minutes (roughly 6 hours, 11 minutes) for the
completion of 2827 trials (total number of trials of Trainee 3-6 minus 500), whereas in fact only
286.4 minutes (4 hours, 46 minutes) were required, an absolute error of one hour and 25
minutes.

5 Discussion of results

Performance of the model

The results demonstrate the ability of a simple one-parameter function (a progressive average
function), based on the linear rate model, to predict the fundamental trend in learning complex
tasks, irrespective of the precise organisational structure of the task or its response requirements.
The speed-based setting employed in this research allowed us to assume that skill level can be
measured principally by the speed at which trials on the tasks are completed. The learning curve
can thus be considered as the expected course (the trend) in the trial times for completion of the
task.

The linear rate model predicts the expected value of trial times and derived quantities, such as
the practice time needed to perform a certain number of trials. The model predicts a decreasing
trend in trial times in which the expected value of each subsequent trial time is half the average
of all preceding trial times plus half the dead time. We tested the latter prediction against data
from 16 trainees and three different tasks of increasing complexity. Each of these tasks is
known to require tens of hours of practice training before being mastered.

Evaluation of the learning curve model yields the following results:
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- The Mean Percentage Error in the model’s description of the complete learning curve (2300
trials on average, corresponding to on average 11.3 hours of training) of individual trainees
is on average —2.77 percent.

- When, on the basis of the first 500 trial times, the second 500 trial times are predicted
(corresponding to on average 2.5 hours of practice time), the Mean Percentage Error over
those 500 trials is on average —0.46 percent.

- When, on the basis of the first 500 trial times, all remaining trial times are predicted (on
average 1800 trials, corresponding to on average 7.2 hours of practice time), the Mean
Percentage Error over those trials is on average 4.1 percent.

The trend in trial times is slightly better predictable when the task is less complex and the
extrapolation period is shorter, as is reflected by the Mean Percentage Errors (MPE, table 3) for
the distinct tasks and extrapolation periods. Moreover, the natural variation in trial times, as
reflected by the Mean Absolute Percentage Error (MAPE, table 3), will increase as the task
becomes more complex. In other words, the random trial-to-trial variations are larger with more
complex tasks. The average MAPE for the full extrapolation is 35.7 percent (standard deviation
12.3 percent), which means that the average prediction of a single trial time is “off” by 35.7
percent. This indicates that single trial times on complex tasks are largely unpredictable by the
model. As the MAPE predominantly represents random trial-to-trial variations, we argue that it
is unlikely that this error will substantially decrease with more refined models (that is, with
models based on more elaborate theories or with more parameters).
The irregularities in the individual learning curve that account for the Mean Percentage Error in
individual extrapolations may be largely attributable to two sources: (1) The model is unable to
predict extremely large trial times, which seem to occur more frequently during certain periods.
Extremely large trial times are possibly due to temporary loss of skill in the time spans between
training sessions. These extremely large trial times cause the model to underestimate the trial
times, such that a negative Mean Percentage Error results. (2) The estimate of dead time 7; may
be inaccurate. When the estimate of T, is based on a lower number of trial times, the estimate
will be more inaccurate. Generally, the estimates of 7, based on 500 trial times are slightly
higher than the more accurate estimates based on 1000 or more trials, which causes
overestimation of trial times and hence a positive Mean Percentage Error.
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Estimating dead time

No tasks can be performed in an infinitely small amount of time. We denoted the
incompressible part of a trial time by dead time 7,. The parameter has commonly been called
an ‘asymptote’ (Newell & Rosenbloom, 1981, Logan, 1992, Speelman & Kirsner, 2001) and it
has been interpreted as the theoretical minimum response time for a particular task determined
by human processing limitations and/or mechanical limitations. In terms of the probability
distribution of trial times, this parameter can be viewed as a position parameter, which defines
the location of the lower bound of the probability density function of trial times (see e.g.
Cousineau, Goodman & Shiffrin, 2002).

To determine this parameter accurately from a series or trial times {77, ..., 7,,} is not a trivial
task. For example, Seibel (1963) investigated trial times for a complex pattern discrimination
task (a ‘1023-alternatives task’). Seibel fitted a power function with dead time parameter 7, to
nine learning curves, each consisting of thousands of trial times, using least-squares regression.
In six out of those nine cases he found negative, implausible parameter values for 7. On the
basis of these results Seibel remarked (p 219-220): “Thus while the fitted function accounts for
more than 93 percent of the variance of the data, the fits are statistically and theoretically not
adequate”.

In a comparative review of learning curve functions, Newell & Rosenbloom (1981) fitted the
same power function with the dead time parameter 7, to trial times for 15 complex tasks of
varying nature (including Seibel’s data). Although their curve fitting procedure was a
complicated mixture of computation and visual judgment, Newell & Rosenbloom (table 2.1, p.
24) found highly implausible 7, values of zero seconds for even the most complex tasks found
in industry.

In a more recent comparative review by Heathcote, Brown & Mewhort (2000), the same power
function was fitted to 17 published sets of empirical learning data (and numerous unpublished
sets). Heathcote et al. used various combinations of least-squares regression. It was found that
87.7 percent of all estimates of asymptotic performance were physically implausible. This
strengthened their arguments that a power function should be totally dismissed as the
‘ubiquitous’ description of learning curves.

Apparently, common techniques, such as those based on least-squares regression of the learning
curve function fail to come up with reasonable estimates for the dead time parameter 7,. We
argue that a primary reason for finding bad estimates for 7, with least-squares regression is an
unsatisfied minimum condition for application of these techniques: a stable and recognized
distribution of residual error.

In this research we presented an iterative method for estimating 7, independent of the
estimation of any other parameter and not reliant on the full distribution of residual errors. The
method only assumes a distribution for the smallest residual error observed in a series of trials.
By using a first estimate for 7, in the assumed learning curve function, we can approximate the
random trial-to-trial errors. We subsequently obtain an improved estimate of 7, by fitting a
Weibull distribution with specified scale and shape to the smallest error. This distribution is
assumed for the smallest error, and is a consequence of the assumed learning mechanism, based
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on paired selection (Roessingh, Koenderink & Kappers, 2001b). More generally, the Weibull
distribution is predicted by the instance theory (Logan, 1992). To further improve the estimate
for 7, the method can be iterated until it converges to a stable estimate.

We argue that this method for estimating dead time 7, is more robust than least-squares
regression of the learning curve when the probability distribution of residual errors is only
known partially. For the 16 learning curves studied in this experiment, application of the
method resulted in plausible estimates.

6 Conclusions

The progressive average function has proved robust for extrapolation over long series of trial
times (on average 1800 trials ~ 7.2 practice hours) of individual trainees who practiced with
complex tasks.

The Mean Percentage Errors in individual predictions for the time needed to complete such a
large number of trials are on average 4.1 percent with a standard deviation of 13.7 percent. The
predictions do not depend on the precise organisational structure of the task or its response
requirements. The progressive average function simply states that the expected value of each
subsequent trial time is half the average of all preceding trial times plus half the dead time. The
dead time parameter (‘asymptotic trial time’) causes the learning curve to saturate when practice
time proceeds to infinity. For the purpose of estimating the dead time parameter from a series of
trial times we presented a novel algorithm. Unlike usual techniques, such as least-squares
regression of the learning curve, this algorithm provides plausible estimates for individual dead
time.

The observed similar trend in all individual learning curves can be straightforwardly explained
in terms of a simple cognitive strategy for learning a complex task from practice: In each task
trial, the trainee compares the memory representation that controls his/her task execution with
actual task execution. This leads to a new and likely superior memory representation of task
execution. The latter is added to the set of existing memory representations. In a subsequent
trial, a memory representation is randomly selected from this set.

This accumulative scheme predicts the observed trend in a series of trial times during a learning
process and predicts the observed statistical properties of trial times. The explanation may be
viewed as a simplified version of the instance theory of automaticity (Logan, 1988a, 1992),
applicable to the acquisition of complex skills.

The authors thank Dr. John van Rooij (Royal Netherlands Army) for enabling the data collection, Dr.
Stefan Louw and Dr. Harold Nefs for valuable remarks concerning the analysis. Finally, the authors are

grateful to the sixteen participants who devoted their time to the experiments.
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Appendix A: Summary of trial time data.

ALL TRIALS FIRST 500 TRIALS SECOND 500
TRIALS
(501-1000)
Task- Max. Min. Mean SD Max. Min. Mean SD Max. Min. Mean SD
trial trial trial trial  trial trial trial trial trial trial trial- trial
Subj - time time time time time time time times time time time times
[s] [s] [s] s [s] [s] s [s] [s] [s] [s] [s]
1-1 112 52 85 52 112 64 153 103 39 57 87 3.0
1-2 98 44 9.6 63 98 54 127 9.0 73 53 104 74
1-3 120 47 11.0 7.2 120 6.1 16.1 135 57 56 11.1 5.1
1-4 502 59 114 119 502 83 205 264 40 70 113 33
1-5 393 56 121 103 393 69 191 203 53 64 117 53
1-6 129 6.6 16.8 12.0 129 9.2 264 16.6 74 7.7 17.0 9.2
1-7 198 74 210 152 198 119 340 223 58 93 192 63
1-8 204 6.5 254 19.6 204 9.1 385 258 101 7.1 220 109
M 220 58 145 11.0 220 79 228 18.0 62 6.7 139 6.3
SD 149 1.0 6.0 4.8 149 2.1 9.3 6.7 20 1.3 48 2.8
2-1 267 6.2 18.0 143 267 81 294 226 58 70 164 7.2
22 1198 59 272 422 1198 64 405 652 70 59 201 99
M 733 6.1 22.6 282 733 73 349 439 64 65 183 85
3-1 638 58 162 164 638 8.8 331 356 87 76 17.1 8.2
3-2 1399 4.6 224 479 1399 5.0 493 96.1 127 63 213 133
33 853 6.1 232 317 853 85 457 599 108 7.2 223 109
3-4 1098 5.8 249 309 1098 88 450 56.6 77 6.7 21.6 102
3-5 867 7.7 355 420 867 134 56.0 635 77 7.8 267 10.8
3-6 1433 7.3 385 663 1433  11.0 63.7 999 76 8.6 254 112
M 1048 6.2 268 392 1048 9.2 488 68.6 92 74 224 107
SD 320 11 85 171 320 28 104 248 212 0.8 34 1.7
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Appendix B: Learning model: individual lack-of-fit measures.

Lack-of-fit in described Lack-of-fit in Lack-of-fit in
trials (All) extrapolated trials (501- extrapolated trials (501-
1000) All)

Task- MPE MAPE RMSE 1000 MPE MAPE RMSE 100-R> MPE MAPE RMSE 100-R?

[%0] [%] [s] R [%0] [%] [ [%]  [%]  [%]  [s] [%0]
Subj [%]

1-1 0.34 194 352 555 132 281 313 3.04 126 265 272 737
1-2 -173 239 583 193 230 244 7.64 204 237 229 577 541
1-3 2126 237 617 323 -132 219 549 0.19 -162 208 4.83 229
1-4 4.12 218 635 740 1.27 186 362 238 0.15 175 3.18 14.7
1-5 583 258 627 657 -0.68 299 534 0.02 -208 271 460 1.18
1-6 -10.6 334 103 322 -127 324 917 464 -511 329 789 807
1-7 -5.65 25.1 11.0 563 7.00 274 617 853 198 372 576 304
1-8 -10.9 394 158 47.7 -6.11 403 109 1.85 426 446 9.28 15.6
Mean -7.31 266 8.16 479 -4.28 279 643 512 -1.28 287 551 10.6
SD 7.03 6.58 394 18.7 118 6.69 266 6.74 142 9.03 222 9.53
2-1 -2.05 372 104 48.6 -0.08 350 740 0.06 350 378 639 548
2-2 3.04 489 253 66.6 -4.82 400 982 1.67 -572 385 922 297
Mean 0.49 431 178 57.6 -245 375 861 086 -1.11 381 7.81 4.22
3-1 2.80 284 1049 600 6.00 335 797 9.60 113 336 571 140
3-2 17.4 61.1 282 663 4.12 512 129 927 197 586 9.18 231
33 5.29 402 18.7 65.6 1.23 374 112 153 13.6 418 8.13 17.7
3-4 -5.07 377 262 289 097 395 104 004 -06 360 861 6.79
3-5 1.12 377 237 68.1 -039 30,7 107 577 3.87 33.0 991 15.4
3-6 -2.76 51.6 61.0 169 198 500 112 134 297 626 11.1 248

Mean 2.20 428 280 51.0 5.30 404 107 6.60 129 443 877 17.0
SD 8.31 11.6 173 223 17.50 847 160 514 109 131 182 6.54




