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Summary

Many aerospace systems with operational and environmental restrictions are examples of con-

strained dynamical systems. Mathematical models of constrained dynamical systems usually con-

sist of a combination of equalities and inequalities. In this report some examples are presented to

illustrate this fact.

Some of the results obtained and difficulties encountered in our research towards a generalisation

of a result first derived by Farkas in 1895 are presented. Such a novel Farkas Lemma is necessary

in order to arrive at a systematic approach to deriving efficient representations of constrained

dynamical systems.
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1 Introduction

The National Aerospace Laboratory NLR is actively involved in engineering of aerospace systems

such as aircraft, satellites and robotic manipulators. Aerospace systems are complex systems that

contain many subsystems, each with its own specific function. More often than not, aerospace

systems are designed in international project teams, where companies are responsible for specific

subsystems. Consequently, system integration aspects also involve the specification and verifi-

cation of (sub)system interactions, and operational and environmental restrictions. Dynamical

systems that include (descriptions of) restrictions are often referred to as constrained dynamical

systems.

An important aspect of aerospace systems is that in many cases the environment in which a final

product will operate is not readily accessible. This fact is obvious (at least today) for systems that

will operate in space, such as a robotic manipulator. Simulation studies offer the opportunity to

gain experience with the system to be designed already at an early stage of a project. In addition,

simulation allows for early testing of various interactions between subsystems, and for early testing

of the control laws that are being designed to direct the system. In case of digital simulation, the

need for mathematical models and methods that are capable of handling system complexity and

interactions is apparent.

Modelling operational and environmental restrictions of systems often leads to inequalities. For

systems described by equalities many algorithms are available to arrive at efficient representations,

e.g. representations that contain no redundant equations, however, similar results for systems that

involve inequalities are not so abundant. For static inequality systems, a constructive algorithm to

obtain minimal representations can be found in [7,11(chapter 3)]. The extension of these results

to dynamic inequality systems is the main subject of this report.

In chapter 2 we will present a number of examples to illustrate that modelling of real-world sys-

tems with real-world restrictions leads in many cases to inequalities in the mathematical model.

Chapter 3 contains a contribution to the book ’Open Problems in Mathematical Systems and Con-

trol Theory’. Some of the results obtained and difficulties encountered in our research towards a

generalisation of a result first derived by Farkas in 1895 are presented. Concluding remarks can

be found in chapter 4. Appendix A gives an overview of the notation that is used in this report.
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2 Illustrative Examples

In applied mathematics, inequalities have since long been used to describe certain physical phe-

nomena. Fourier discussed inequalities motivated by the observation that constraints in mechanics

are often ’one-sided’. This led him to formulate what is now known as the mechanical principle

of Fourier, which states that for a solid body in equilibrium the sum of the moments of the ap-

plied forces satisfies an inequality [16]. At the end of the 19th century Farkas studied static linear

inequalities. Farkas’ interest in linear inequalities can be traced back to his interest in Fourier’s

principle. A result obtained by Farkas in 1895, and known as Farkas Lemma [13], was used by

Kuhn and Tucker in 1951 to derive necessary conditions for optimality for nonlinear programming

theory, leading to a rapid development of nonlinear optimization theory [16].

Most research on dynamical systems where part of the behaviour can be described by inequali-

ties began after the advent of game theory and mathematical programming. This was motivated

principally by questions in economics and operations research. In system theory, inequalities are

also discussed, but here attention was until recently almost exclusively restricted to systems in

first-order form. Many applications however, yield models that are not in first-order form. More-

over, in many applications inequalities appear as a natural part in the description of the system. In

the remainder of this chapter we will give a series of examples ranging from elementary systems

to complex physical systems. First we give an example where the model is given by inequalities

only.

Example 2.1 A Leontief economy [14]. Consider an economy that produces at each stage of the

production cycle amounts xi, i ∈ {1, . . . , n}, of n products. Assume that in order to produce

one new item of the jth product one needs at least aij units of product i. The aij’s are called the

technology coefficients. This induces the following constraints on the feasible production paths

{x(t), t ∈ Z+}:

xi(t) ≥
n∑

j=1

aijxj(t+ 1), ∀t ∈ Z+, (1)

with the natural constraint

xi(t) ≥ 0, ∀t ∈ Z+. (2)

The difference between the left and right side of inequality (1) will be due to, for instance, imbal-

ance of the available products and consumption. ✁
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Also in the field of electrical systems, inequalities play an important role.

Example 2.2 An ideal diode. An ideal diode is an electrical device which allows currents to flow

in one direction but blocks it from flowing in the other direction.

Let V denote the voltage and I denote the current. Then

I ≥ 0 ∧ V = 0, or

V ≤ 0 ∧ I = 0.
(3)

The system can also be represented by the following conditions:

I ≥ 0, and

V ≤ 0, and

V · I = 0.

(4)

Note that now part of the behaviour is represented by a nonlinear equality. Of course, (models for)

electrical circuits will contain many diodes and other devices. ✁

In the field of mechanical systems research into the mechanics of contact, i.e. interaction of a

system with obstacles in its environment has a long history [1, 2]. A simple example is given next.

Example 2.3 A falling ball and a circular basin [5]. Consider a ball of massm that is constrained

to move in a circular basin of radius r. Let the position of the ball be denoted by (y1, y2)T ∈ R
2.

Let g denote the constant of gravity.

A mathematical model of the position of the ball is given by

m
d2y1
dt2

(t) = 0,

(5)

m
d2y2
dt2

(t) = −m g,

for all t ∈ R+. The motion of the ball is on the boundary of the basin, which gives

y2
1(t) + y2

2(t) = r2,

y2(t) ≤ 0,
(6)

for all t ∈ R+. It is possible to give a dynamics model without constraint equations if we assume

that y2(0) ≤ 0 holds initially. Define the angle φ such that

y1 = r sin(φ),

y2 = −r cos(φ).
(7)
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An alternative dynamics model can now be given as

m
d2φ

dt2
(t) +

m g
r

sin(φ(t)) = 0, ∀t ∈ R+. (8)

This model can also be interpreted as a description of an undamped pendulum. Note that we still

need the kinematic equations (7) of the system to obtain the trajectories in terms of the original

variables.

Next consider the same ball, but now assume that the ball is initially above the basin. In this case

the first equation in (6) must be replaced by

y2
1(t) + y2

2(t) ≤ r2. (9)

This inequality is not so easily eliminated from the governing equations. ✁

It can be seen that further detailing of a model or modelling additional features (or requirements)

of a system at hand, may result in a new model that again has some of the original model charac-

teristics, such as the presence of inequalities, despite the earlier effort to eliminate some of these

characteristics. As a consequence, it may be advantageous to maintain the original (sub)models

and to treat further interaction constraints simply as additional equations. This implies that, as a

default, system representations contain both equalities and inequalities.

The following two examples are taken from NLR’s involvement in the design of aerospace sys-

tems.

Example 2.4 Constrained robotic manipulator [2, 9]. A robotic system consists of a series of

links, where two neighbouring links are connected by joints. A model for a rigid manipulator

without gearbox flexibility is given by

M(q(t))
d2q

dt2
(t) +N(q(t),

dq

dt
(t)) = τ, ∀t ∈ R+. (10)

Here q denotes the n-vector of joint angles, M(q) denotes the inertia matrix function, while

N(q, dq
dt ) is a vector function which characterizes the Coriolis, centrifugal and gravitational load of

the manipulator, and τ is the vector of inputs. Assume the following relation between end-effector

position y, and velocity dy
dt , and joint values q, and joint angular values dq

dt , respectively:

y(t) = H(q(t)), (11)
dy

dt
(t) = J(q(t))

dq

dt
(t), (12)
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for all t ∈ R+. Here J(:= ∂H
∂q ) is called the manipulator Jacobian matrix. In this setting the

differential equations model the unconstrained behaviour of the manipulator. Inevitably, during

operations with a robotic arm situations will occur where the manipulator is, or comes, in contact

with its environment. The environmental restrictions can be modelled by algebraic equalities and

inequalities. For instance, a manipulator that is in contact with a satellite is not allowed to damage

this satellite. This clearly puts restrictions on the possible control choices. If we model the satellite

simply as a surface in the environment this gives rise to a unilateral constraint, i.e. it is assumed

that the constraint surface can be approached from one side only. This gives

φ(y(t)) ≥ 0, ∀t ∈ R+, (13)

where the boundary of this unilateral constraint models the surface. Interaction with the surface

will inevitably mean restrictions on the position, velocity and forces. In addition, there are usually

physical limitations on joint rotations

α ≤ qi(t) ≤ β, i ∈ n, ∀t ∈ R+, (14)

which imply further restrictions on the behaviour. ✁

Example 2.5 Wind tunnel experiments [4]. During a test in a wind tunnel, a model of an aerospace

object moves within the test section of this tunnel. The model is mounted on a special type of

robotic manipulator. The test section is modelled as a rectangular box, with virtual walls in front

and back of the model to ensure optimal measurement conditions. Let (x, y, z) denote a position

in a Cartesian coordinate system. The region of the test section in which tests can be conducted in

a safe manner can be modelled as:

xmin + δ ≤ x ≤ xmax − δ,
ymin + δ ≤ y ≤ ymax − δ, (15)

zmin + δ ≤ z ≤ zmax − δ.

The parameter δ (δ > 0) is a safety parameter. The problem at hand is the following. During

the moves, collisions between manipulator or model on the one hand and the test section walls on

the other hand must be avoided. For this, a number of so called critical points are chosen on the

manipulator and the model of the aerospace object. For instance, the tip of a wing of an aeroplane

is usually taken as a critical point. Suppose that there are k critical points, denoted by (xi, yi, zi),

i ∈ k. The problem is to plan and control the moves such that all points (xi, yi, zi) satisfy (15)

during the complete move. ✁
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It is worth emphasizing that although examples 2.4 and 2.5 both deal with a robotic manipulator

that is restricted in its behaviour, the operational goals are quite different; the robotic manipulator

in example 2.4 is deliberately put in contact with its environment, whereas the robotic manipulator

in example 2.5 should avoid contact with its environment.

We end this chapter with an example taken from studies on vehicle behaviours (see also [15]).

Example 2.6 Carts riding on a track (modified from [10]). Suppose that two carts are moving on

the same track, where the second cart is initially to the right of the first cart. Denote y1, y2, the

position of the first cart, the second cart, respectively. Let u1 and u2 denote the control vectors.

The dynamics equations are given by:

M1(y1(t))
d2y1
dt2

(t) +N1(y1(t),
dy1
dt

(t)) = u1(t), (16)

M2(y2(t))
d2y2
dt2

(t) +N2(y2(t),
dy2
dt

(t)) = u2(t), (17)

for all t ∈ R+. The requirement that the second cart must remain to the right of the first cart reads:

y2(t) − y1(t) ≥ 0, ∀t ∈ R+. (18)

If y2(t) = y1(t) for some t ∈ R+ then the carts are in contact with each other. ✁

Other examples of mathematical models that involve inequalities can be found in for instance

flight path planning of aircraft, and modelling of the behaviour of a condenser for a two-phase

heat transport system [3, 8].

Constrained dynamical systems, of which examples have been presented in this chapter will be

discussed in a general mathematical framework in the next chapter, where we pursue a generalisa-

tion of Farkas Lemma to so called behavioral inequalities. Such a generalisation is crucial to the

development of algorithms to obtain models of restricted dynamical systems. The research will be

done in a discrete-time linear setting. (Recall that application of numerical methods to continuous-

time systems also yield discrete-time systems.) The straightforward process of rewriting models

obtained from first principles into behavioral (in)equalities can be found in [11, 18]. Note that any

equality can always be written as a system of two inequalities.
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3 A Farkas Lemma for Behavioral Inequalities

3.1 Description of the problem

Within the systems and control community there has always been an interest in minimality issues.

In this chapter1 we conjecture a Farkas Lemma for behavioral inequalities that, when true, will

allow to study minimality and elimination issues for behavioral systems described by inequalities.

Let R
n×m[s, s−1] denote the (n × m) polynomial matrices with real coefficients and positive

and negative powers in the indeterminate s. Let R
n×m
+ [s, s−1] denote the set of matrices in

R
n×m[s, s−1] with nonnegative coefficients only. In this chapter we consider discrete-time sys-

tems with time-axis Z. Let σ denote the (backward) shift operator, and let R(σ, σ−1) denote

polynomial operators in the shift.

Of interest is the relation between two polynomial matrices R(s, s−1) and R′(s, s−1) when they

satisfy

R(σ, σ−1)w ≥ 0 ⇒ R′(σ, σ−1)w ≥ 0. (19)

Based on the static case, one may expect that such a relation should be the extension of Farkas

Lemma to the behavioral case. This leads to the raison d’être of this chapter.

Conjecture 3.1 Let R ∈ R
g×q[s, s−1] and R′ ∈ R

g′×q[s, s−1]. Then: {R(σ, σ−1)w ≥ 0 ⇒
R′(σ, σ−1)w ≥ 0} if and only if there exists a polynomial matrix H ∈ R

g′×g
+ [s, s−1] such that

R′(s, s−1) = H(s, s−1)R(s, s−1). ✁

In order to prove this conjecture, one could try to extend the original proof given by Farkas in

[13]. However, this proof explicitly uses the fact that every scalar that is unequal to zero is invert-

ible. Such a general statement does not hold for elements of R
g×q[s, s−1]. The most promising

approach for the dynamic case seems to be the use of mathematical tools such as the separation

theorem of Hahn-Banach (see for instance [17]). The basic mathematical preliminaries read as

follows.

Denote E := (Rq)Z with the topology of point-wise convergence. The dual of E, denoted by

E
∗, consists of all R

q-valued sequences that have compact support. Let R ∈ R
g×q[s, s−1]. Let

1The content of this chapter has been submitted for inclusion in the book ’Open Problems in Mathematical Systems

and Control Theory’, authors A.A. ten Dam and J.W. Nieuwenhuis (University Groningen)
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B = {w ∈ E|R(σ, σ−1)w ≥ 0}. The polar cone of B, denoted by B#, is given by {w ∈
E
∗|∀w ∈ B :

∑
t∈Z

w∗(t)w(t) ≥ 0}. We would like to establish that B# = {w ∈ E|∃α ∈
E
∗, α ≥ 0 such that w∗ = RT (σ−1, σ)α}, but we have so far not been able to prove or disprove

these statements. These statements, together with the fact that {B1 ⊆ B2} implies {B#
2 ⊆ B

#
1 }

are believed to be useful in a proof of the conjecture.

3.2 Motivation and history of the problem

In the early nineties we started to investigate minimality issues for so called behavior inequality

systems, e.g. systems whose behavior B allows a description B = {w ∈ E|R(σ, σ−1)w ≥ 0}.

Examples can be found in chapter 2 and in [11].

The first publication that we are aware of that deals with this class of systems is [6]. And the con-

jecture mentioned above can already be found in that paper. As the problem proved hard to solve,

a number of investigations where carried out in the context of linear static inequalities, where the

problem of minimal representations of systems containing both equalities and inequalities was

solved completely [11]. As the study is placed in the context of behaviors, the Farkas Lemma for

behavioral inequalities is also discussed in the Willem’s Festschrift [12].

Until the Farkas Lemma for behavioral inequalities has been proven, issues like minimal represen-

tations, elimination of latent variables etcetera can not be solved in their full generality. It is our

belief that the Farkas Lemma for behavioral inequalities as conjectured here, will be a cornerstone

for further investigations in a theory for behavioral inequalities.

3.3 Available results

For the static case the conjecture is nothing else than the famous Farkas Lemma for linear inequal-

ities. For the dynamic case, the conjecture holds true for a special case.

Proposition 3.2 Let R ∈ R
g×q[s, s−1] be a full-row rank polynomial matrix. Let R′ ∈

R
g′×q[s, s−1]. Then: {R(σ, σ−1)w ≥ 0 ⇒ R′(σ, σ−1)w ≥ 0} if and only if there exists a

unique polynomial matrix H ∈ R
g′×g
+ [s, s−1] such that R′(s, s−1) = H(s, s−1)R(s, s−1). ✁

The proof of this proposition can be found in [11, proposition 4.5.12].
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3.4 A Related Conjecture

It is of interest to present a related conjecture, whose resolution is closely linked to the Farkas

Lemma for behavioral inequalities.

Recall from [18] that a matrix U ∈ R
g×g[s, s−1] is said to be unimodular if it has an inverse

U−1 ∈ R
g×g[s, s−1]. We will call a matrix H ∈ R

g×g
+ [s, s−1] posimodular if it is unimodular and

H−1 ∈ R
g×g
+ [s, s−1]. Omitting the formal definitions, we will call a representation minimal if the

number of equations used to describe the behavior is minimal.

Conjecture 3.3 Let {w ∈ (Rq)Z|R1(σ, σ−1)w = 0 and R2(σ, σ−1)w ≥ 0} and {w ∈ (Rq)Z|
R′

1(σ, σ
−1)w = 0 and R′

2(σ, σ
−1)w ≥ 0} both be two minimal representations. They represent

the same behavior if and only if there are polynomial matricesU(s, s−1),H(s, s−1) and S(s, s−1)

such that

 R′

1(s, s
−1)

R′
2(s, s

−1)


 =


 U(s, s−1) 0

S(s, s−1) H(s, s−1)





 R1(s, s−1)

R2(s, s−1)


 (20)

with U unimodular, H posimodular and no conditions on S. ✁

We remark that this conjecture holds true for static inequalities and for that case is given as propo-

sition 3.4.5 in [11].
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4 Concluding Remarks

In this report we have shown by illustrative examples that inequalities are often present in descrip-

tions of systems with operational and environmental restrictions. The treatment of these kind of

systems, both theoretically and by simulation, is hampered as a complete theory on system repre-

sentations is lacking. One particular difficulty in establishing such a theory has been discussed. It

has been conjectured that a Farkas Lemma holds for dynamical systems described by behavioral

inequalities.

In the light of the many aerospace applications and the common mathematical denominator in

these applications, theory building on efficient representations and simulation of constrained dy-

namical systems is an activity that warrants further attention in the Systems and Control Commu-

nity.
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Appendix A: Notation

Below the notation that is used in this document is given. A short explanation is included. Equation

refers to equalities and inequalities alike. All inequalities are componentwise.

R The reals.

Z The integers.

Z+ The nonnegative integers {0, 1, 2, 3, . . .}.

R+ The nonnegative reals [0,∞).

R
q The q-dimensional real vectors.

R
q
+ The q-dimensional real vectors with nonnegative real coefficients.

R
n×m The (n×m) matrices with real coefficients.

R
n×m
+ The (n×m) matrices with nonnegative real coefficients.

R[s, s−1] The polynomials with real coefficients and positive and

negative powers in the indeterminate s.

R
n×m[s, s−1] The (n×m) polynomial matrices with real coefficients and

positive and negative powers in the indeterminate s.

R
n×m
+ [s, s−1] Idem as R

n×m[s, s−1] but with nonnegative coefficients only.

I The identity matrix.

AT The transpose of matrix A.

A ≥ 0 (Aij) ≥ 0 for all i, j.

σt The (backward) t-shift.

R(σ, σ−1) A polynomial operator in the shift.

B A behavior.


