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Identification Of A Nonlinear Grey-Box

Helicopter UAV Model

Skander Taamallah∗†

National Aerospace Laboratory (NLR), 1059CM Amsterdam, The Netherlands

We present a flight dynamics nonlinear model for a flybarless helicopter UAV, valid for
a range of flight conditions, including the Vortex-Ring-State (VRS) and autorotation. To
allow for computational efficiency, while maintaining a high-level of model fidelity, a grey-
box modeling framework has been adopted, in which model uncertainty such as parameter
uncertainties, unmodeled higher-order dynamics, and unmodeled static nonlinearities have
been replaced by empirical coefficients. The derivation of these coefficients has been based
upon a novel identification approach, anchored in the combined paradigms of nonlinear
optimal control and neural networks. Preliminary simulation results show that our model
is in good agreement with an equivalent FLIGHTLAB model.

I. Introduction

In the past twenty years, scientific progress related to sensors technology and computational hardware
has allowed for sustained research in the field of robotics. In particular, when considering flying robots, the
availability of increasingly reliable, high performance, and miniaturized sensors, combined with advances in
computing power on miniaturized hardware, has yielded impressive developments in the area of Unmanned
Aerial Vehicles (UAVs)a. These unmanned vehicles have been developed for both civilian and military mis-
sionsb, while their raison d’être stems from the need for (real-time) informationc. Further, UAV deployment
and recovery from unprepared or confined sites may often be necessary, such as when operating from or
above urban and natural canyons, forests, or naval ships. Hence, for these situations, a helicopter UAV
capable of flying in and out of such restricted areas would represent a particularly attractive solution. Now,
the development of such an autonomous helicopter system requires for an elaborate synergy between various
engineering fields, including modeling, system identification, estimation and filtering, control, and finally
software and hardware avionics integration. In this paper, we elaborate on the first and second items, i.e.
the modeling and identification paradigms.

I.A. The Modeling Framework In Engineering

In the realm of physics and engineering, a wide range of systems may be subsumed as energy handling
devices2 that interact with inputs and outputs via energy ports. Understanding such systems is concomitant
to the development of conceptual models, i.e. system models, which define both the system’s structure
and its associated behavior. Building such models requires selection between fundamentally different design
philosophies, namely (i) mechanistic/first-principles, also called White-Box (WB) vs. empirical-based, known
as Black-Box (BB), or even a mixture of both resulting in a Grey-Box (GB) representation,3 and (ii) Linear

∗R&D Engineer, Aircraft Systems Department, National Aerospace Laboratory (NLR), 1059CM Amsterdam, The Nether-
lands.

†Ph.D. Student, Delft Center for Systems and Control (DCSC), Faculty of Mechanical, Maritime and Materials Engineering,
Delft University of Technology, 2628CD Delft, The Netherlands.

aAlthough industry and the regulators have now adopted Unmanned Aerial System (UAS) as the preferred term for Un-
manned Aircraft, as UAS encompasses all aspects of deploying these vehicles and not just the platform itself.

bUAVs have typically been associated with the so-called DDD tasks:1 Dull e.g. long duration, Dirty e.g. sampling for
hazardous materials, and Dangerous e.g. extreme exposure to hostile action.

cSpanning a broad spectrum, i.e. visual, electromagnetic, physical, nuclear, biological, chemical, or meteorological informa-
tion.
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Time-Invariant (LTI) vs. NonLinear and/or Time-Varying (NL-TV), or again a mixture of both resulting in
a State-Dependent Riccati Equation (SDRE), Gain Scheduling (GS), or Linear Parameter Varying (LPV)
description.

I.A.1. White- vs. Black-Box Modeling

White-Box models refer to modeling structures based upon detailed understandings of the underlying physi-
cal laws governing the system, hence providing substantial contribution towards behavior recognition from a
scientific viewpoint. On the other hand, when a thorough understanding of the system’s laws is not required
or necessary, then BB model structures, derived from specific observations, result in simpler representations,
with the additional advantage of shorter design and development cycles.3 When used independently, both
of these approaches may, at times, be unattractive. For instance, in the case of a WB representation, and
when the system’s first-principles laws are only partially understood, the development of such a WB model
may become a challenging task, and further result in a final product with questionable model fidelity. Al-
ternatively, even when the laws of physics happen to be well comprehended, the development and validation
of such WB models may turn out to be highly resource demanding, especially in the case of complex and
high-order industrial plants, such as helicopters. Next, one also has to consider the intended model appli-
cation, since this latter may as well impose restrictions on the modeling structure and its complexity. For
example, depicting a system with an accurate mathematical representation, in a computationally tractable
way for its intended application, may result in conflicting requirements.4

On the other hand, for the case of BB models, their development may be impaired by the well-known
principle of inductiond deficiencies. Indeed it is conspicuously accepted that induction has serious endemic
limitations, as a finite number of observations is generally not sufficient to envelop the infinite number of
model operating regimese.3, 5

I.A.2. Grey-Box Modeling

Consequently, and for some practical applications, it is the appropriate mixing of mechanistic with empirical
knowledge that allows to leverage, in a reciprocal way, the drawbacks of one method with the benefits of
the other. By so doing we create the so-called GB modeling paradigm, also known as hybrid modeling.6

For instance, in a mainly WB approach, aspects of the system that are not sufficiently well understood,
which in general are regrouped under the umbrella of modeling uncertainties (i.e. unmodeled higher-order
dynamics, unmodeled static nonlinearities, parametric uncertainties, and delays) may be described by a BB
model, this latter being identified through parameter estimation techniques based upon experimental data.
Conversely, in a predominantly BB approach, some physical insight may often be instrumental to make
certain structural choices, such as the adequate model order and the nature of its nonlinearities.3 In this
context, the GB modeling meets (i) the required end-product accuracy and reliability, (ii) the computational
tractability specifications, and (iii) the development cost limits, all of which have resulted in a growing
interest towards the GB modeling structure, imbued by the increasing demand for nonlinear models to be
applied in intelligent and autonomous systems and vehicles, and various optimization based disciplines.

I.B. Our Grey-Box Helicopter Model

The purpose of this paper is to present a novel, highly accurate, computationally efficient, GB helicopter
UAV model, suitable for optimal trajectories computation.7, 8 While the WB model is loosely based on the
ideas we presented in Ref. 9, the derivation of the BB model is based upon a novel identification approach,
anchored in the combined paradigms of nonlinear optimal control and neural networks.

Now with regard to the WB representation, it has been tailored towards small-scale flybarlessf helicopter
UAVs, and is also valid for a range of flight conditions including the Vortex-Ring-State (VRS) and autoro-
tation. The nonlinear dynamics includes the twelve-states rigid body equations of motion, the single-state

dThe principle of induction suggests that it is possible to generalize from a sufficiently large number of consistent observa-
tions.3, 5

eThe region for which the model is locally valid is called an operating regime.
fWithout a Bell-Hiller stabilizing bar.
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main rotor Revolutions Per Minute (RPM), a static Tip-Path-Plane (TPP) main rotor model, and a static
uniform main rotor inflow model. Besides, the model accommodates for flight in the VRS, and for determin-
istic wind and Dryden stochastic atmospheric turbulence. Further, static ground effect has been accounted
for by a correction factor applied to the non-dimensional total velocity at the rotor disk center. The fuselage
model is based upon aerodynamic lift and drag coefficients, which are tabulated as a function of airflow
angle of attack and sideslip angles. These lookup tables are derived from a scaled-down full-size helicopter
fuselage aerodynamic model. The horizontal and vertical tails are based upon flat plate models, whereas
the tail rotor has been modeled as a Bailey type rotor. Finally the paper reviews all assumptions made in
deriving the model, i.e. structural, aerodynamics, and dynamical simplifications, which are valid for stability
and control investigations of helicopters up to an advance ratio limitg of about 0.3.10–12

II. White-Box Modeling

II.A. Rigid Body Equations of Motion

II.A.1. Assumptions

• The vehicle has a longitudinal plane of symmetry, and has constant mass, inertia, and Center of Gravity
(CG) position, hence fuel consumption and/or payload pickup/release are neglected. The vehicle is
also a rigid system, i.e. it does not contain any flexible structures, hence the time derivative of the
inertia matrix is zero. Further variations of helicopter CG locations due to main rotor blades position
are neglected.

• The vehicle height above ground is very small compared to the earth radius, implying a gravitation
independent of height and thus constant. Additionally the center of mass and CG are identical for a
constant gravity field.

• The earth is assumed fixed and flat. There is then no longer a distinction between the directions of
gravitational force and the force of gravity, hence the external force becomes the force of gravityh.
Gravity is also a function of latitude, for all practical purpose we will consider the medium latitudes
of 52◦.

• Finally, we neglect the effect of buoyancy or Armichedes force, which is negligible with respect to all
other forces.

II.A.2. Modeling

To start, our model is defined by a thirteen-state vector, and a four-control input vector

x =
(

xN xE xZ φ θ ψ u v w p q r ΩMR

)T

u =
(

θ0 θTR θ1c θ1s

)T (1)

Then, classical Newtonian mechanics and the fundamental relationship of kinematics provide us with the
standard twelve-state rigid body equations of motion, following notations of Ref. 13.







ẋN

ẋE

ẋZ







o

=







VN

VE

VZ







o 





VN

VE

VZ







o

= Tob.







u

v

w







b

(2)







u̇

v̇

ẇ







b

= −







q.w − r.v

r.u− p.w

p.v − q.u







b

+ g.







− sin θ

cos θ sinφ

cos θ cosφ







b

+
Faero,GFus

mFus

b

(3)

gThe flight envelope of small-scale helicopters is well within this limit.
hFor further details on the geoid earth and gravity see Ref. 13, 14.
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ṗ

q̇

ṙ







b

= I
−1
Fus.

(

Mb
GFus

−







p

q

r







b

×

(

IFus.







p

q

r







b
)

)

(4)







φ̇

θ̇

ψ̇







b

=







1 sin θ. sin φ
cos θ sin θ. cosφcos θ

0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ






.







p

q

r







b

(5)

Tob =







cos θ cosψ sin θ sinφ cosψ − sinψ cosφ cosψ sin θ cosφ+ sinφ sinψ

sinψ cos θ sin θ sinφ sinψ + cosψ cosφ sin θ cosφ sinψ − sinφ cosψ

− sin θ cos θ sinφ cos θ cosφ






(6)

With Fb
aero,GFus

the aerodynamic forces experienced by the fuselage CG in the body frame Fb, and

Mb
GFus

the moments of all forces expressed at the fuselagei CG in frame Fb.

These total forces include contributions from the main rotor, tail rotor, fuselage, vertical tail, and hori-
zontal tail, and are given by

Fb
aero,GFus

=







FXaero,GFus

FY aero,GFus

FZaero,GFus







b

= ...







FxMR

FyMR

FzMR







b

+







FxTR

FyTR

FzTR







b

+







FxF

FyF

FzF







b

+







FxV T

FyV T

FzV T







b

+







FxHT

FyHT

FzHT







b

+







ΘFx

ΘFy

ΘFz






(7)

with (ΘFx ΘFy ΘFz)
T a vector of empirical coefficients, which will be addressed in Section III. The total

moments, which also include the components due to the non-collocation of the vehicle CG and fuselage CG,
are given by

Mb
GFus

=







MX,GFus

MY,GFus

MZ,GFus







b

=







MxMR

MyMR

MzMR







b

+







MxTR

MyTR

MzTR







b

+







MxF

MyF

MzF







b

+







MxV T

MyV T

MzV T







b

+







MxHT

MyHT

MzHT







b

+







−yF .FZaero,GFus
+ zF .FY aero,GFus

−zF .FXaero,GFus
+ xF .FZaero,GFus

−xF .FY aero,GFus
+ yF .FXaero,GFus







b

+







ΘMx

ΘMy

ΘMz






(8)

with again (ΘMx ΘMy ΘMz)
T a vector of empirical coefficients, which will be addressed in Section III.

The derivation of the here-above presented forces and moments is given in the next sections.

iNote that fuselage inertia and fuselage CG are used here rather than vehicle inertia and vehicle CG, since in the moments
term M

b

GFus
we have already accounted for rotor moments due to main rotor inertial loads.
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II.B. Main Rotor Modeling

II.B.1. Assumptions

Structural Simplifications

• Rotor shaft forward and lateral tilt-angles are zero. The blade has zero twist, constant chord, zero
sweep, constant thickness ratio, and a uniform mass distribution.

• Rigid rotor blade in bending. Neglecting higher modes (harmonics), since higher modes are only
pronounced at high speed.15, 16 Further, blade torsion is neglected since small-scale helicopter blades
are generally relatively stiff.

• Rotor inertia inboard of the flap hinge is assumed small and thus neglected.

Aerodynamics Simplifications

• Vehicle flies at a low altitude, hence neglecting air density and temperature variations. Blade element
theoryj is used to compute rotor lift and drag forces. Radial flow along blade span is ignored. Pitch,
lag, and flap angles are assumed to be small.

• Momentum theoryk is used to compute the uniform inflow component.

• Compressibility effects are disregarded, which is a reasonable assumption considering small-scale heli-
copter flight characteristics. Viscous flow effects are also disregarded, which is a valid assumption for
low angle of attacks and un-separated flow.19, 20

• Aerodynamic interference effects between the main rotor and other helicopter modules, e.g. fuselage
or tail rotor, are neglected.

• When deriving an expression for the main rotor torque (i.e. yaw moment), only a vertical flight inflow
and power component is considered, hence omitting forward flight contributions.

• The presence of the fuselage just under the main rotor acts as a so-called pseudo-ground effect, resulting
in some thrust recovery. This phenomenon is neglected in our paper, although an estimate of its effect
may be obtained from Ref. 21.

Dynamical Simplifications

• Dynamic twistl is neglected. Hence blade CG is assumed to be located on the blade section quarter
chord line.

• Unsteady (frequency dependent) effect for time-dependent development of blade lift and pitching mo-
ment, due to changes in local incidence are ignored. For example dynamic stall, due to rapid pitch
changes, is ignored.

• A balanced rotor is assumed. In general most of the inertial terms, contributing to main rotor moments,
vanishm when integrated around 2π azimuth.

jCalculates the forces on the blade due to its motion through the air. It is assumed that each blade section acts as a 2-D
airfoil to produce aerodynamic forces, with the influence of the wake contained in an induced angle of attack at the blade
section.17

kStates that the total force acting on a control volume is equal to the rate of change of momentum, i.e. mass flow entering
and leaving this control volume.17, 18

lAny offset in blade chordwise CG or aerodynamic center position will result in a coupling of the flap and torsion Degrees
Of Freedom (DOF) in blade elastic modes.15

mThese terms should be retained when evaluating rotor out-of-balance loads.22
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II.B.2. Modeling

Velocities The main rotor hub aerodynamic velocity in the body frame Fb is given by

Vb
a,MR =







Va,MRu

Va,MRv

Va,MRw







b

=







u+ (q − qw).zH − (r − rw).yH

v − (p− pw).zH + (r − rw).xH

w + (p− pw).yH − (q − qw).xH







b

−







uw

vw

ww







b

(9)

With







uw

vw

ww







b

= Tbo.







uw

vw

ww







o

and Tbo = T
−1
ob (10)

And the non-dimensional velocities are expressed as follows

µx = −Va,MRu
/VMRref (11a)

µy = −Va,MRv
/VMRref (11b)

µz = −Va,MRw
/VMRref (11c)

µxy =
√

µ2
x + µ2

y and VMRref = ΩMR.Rrot (11d)

Inflow As for the inflow, we consider only the uniform component and we neglect inflow dynamics. Our
model is a simplified implementation of the expressions presented in Ref. 23, 24, with the inclusion of the
VRS correction from Ref. 25. The momentum theory induced flow λm is given from Ref. 17

λ2m.
[

(λm + µz)
2 + µ2

xy

]

=

(

vh
VMRref

)4

if µz ≥ 0 or µz.
VMRref

vh
≤ −2 (12)

In the VRS, it is given from Ref. 25

λ2m.
[

(λm + µz)
2 + µ2

xy +

(

vh
VMRref

)2

.f( ¯µxy).g(λ̄)
]

=

(

vh
VMRref

)4

if µz.
VMRref

vh
∈ [−2, 0] (13)

In the static case, also from Ref. 23, 24, the rotor uniform induced velocity, normal to the TPP, is given
by

vio = Geff/(2VT ).(−C
TPP
T ).VMRref (14)

Where CTPP
T is the main rotor thrust coefficient in the TPP frame. Since the TPP angles are assumed

small, we conjecture that it is also valid in the Hub-Body frame, i.e. CHB
T ≃ CTPP

T . Now, from Ref. 17 we
get, after rearranging terms, the thrust coefficient in the Hub-Body frame

CHB
T = A+B.vio with

A = −0.5.σMR.CLMRα
.θ0/3.(B

3 + 1.5B.µ2
xy)

−0.25.σMR.CLMRα
.B2.

(

Va,MRw
/VMRref + µxy.(β1c + θ1s)

)

B = 0.25.σMR.CLMRα
.B2/VMRref

(15)
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And VT gives the total flow,25 through the rotor disk, as

VT =
√

(λm + µz)2 + µ2
xy + (vh/VMRref )2.f( ¯µxy).g(λ̄) (16)

With the following correction factors

f( ¯µxy) = 1− 2.µ̄xy
2 if ¯µxy ∈ [0, 0.707]

f( ¯µxy) = 0 otherwise

g(λ̄) = 1
(2+λ̄)2

− λ̄2 + (1 + λ̄).
[

0.109 + 0.217(λ̄− 0.15)2
]

if λ̄ ∈ [−1, 0.6378]

g(λ̄) = 0 otherwise

λ̄ = (λm + µz)/(vh/VMRref )

¯µxy = µxy/(vh/VMRref )

(17)

From Eq (14) - Eq (15), we can now derive an approximated and simplified expression for the static
uniform inflow, in which we have assumed the longitudinal rotor TPP tilt angle to be small β1c ≃ 0, we get

vio = A.C/(1−B.C)

C = −Geff/(2VT ).VMRref

(18)

Finally, the ground effect correction factor is given from Ref. 26 as

Geff =
1

0.9926 + 0.0379(2Rrot/hH)2
(19)

Tip-Path-Plane (TPP) Angles As for the Tip-Path-Plane (TPP) model, here too we assume a static
behavior. The model is a simplifiedn implementation of the expressions presented in Ref. 11,12. In particular
we neglect the effect of roll, pitch and vertical accelerations on the rotor TPP angles.







β0

−β1c

−β1s






= K

−1.

(

Fθ.







θ0

−θ1c

−θ1s






+ Fpq.

(

p

q

)

+ λ.Fλ + F0

)

(20)

With the rotor total inflow expressed by

λ = (−Va,MRw
+ vio)/VMRref (21)

And the matrices K, Fθ, Fpq, Fλ, and F0 given by

K = Ω2
MR.







P 2 F1.µxy 0

F2.µxy P 2 − 1 G1

0 −G1 P 2 − 1






(22)

nWe do not use the wind-axis formalism of Ref. 11, 12
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Fθ = Ω2
MR.







G2 0 F2.µxy

0 G2 0

F2.µxy 0 G2






(23)

Where we modified the element Fθ(3, 1), in Eq (23) compared to Ref. 11,12, since this gives better results.
The remaining matrices are given by

Fpq = ΩMR.







−F3.µxy 0

H1 −H2

H2 H1






(24)

Fλ = Ω2
MR.







G3

0

F4.µxy






(25)

F0 =







−C0/Ib.g

0

0






(26)

With

P 2 = 1 +KSβ
/(Ib.Ω

2
MR) + ∆e/Ib.C0 (27a)

F1 = −ǫ/8.γ (27b)

F2 = −1/2(1/3− ǫ/2).γ (27c)

F3 = 1/8(2/3− ǫ).γ (27d)

F4 = −1/2(1/2− ǫ).γ (27e)

G1 = 1/2(1/4− 2/3ǫ).γ (27f)

G2 = 1/2(1/4− 1/3ǫ).γ (27g)

G3 = 1/2(1/3− 1/2ǫ).γ (27h)

H1 = 2(1 + ∆e/Ib.C0) (27i)

H2 = 1/2(1/4− 1/3.ǫ).γ (27j)

Forces The rotor force coefficients, in the Hub-Body wind-axis frame FHBw are given in Ref. 17. We did
not use the side-force coefficient from Ref. 17 since it did not provide satisfactory results (when our model
was compared with an equivalent FLIGHTLAB R© model). For the drag, and thrust coefficients we have

CH
HBw
MR =

σMR.CDMR

8
.
(

3µxy + 1.98µ2.7
xy

)

+
σMR.CLMRα

2
.

(

θ0
2
.µxy.λ−

θ1c.β0
6

+
θ1s
4
.λ+

µxy.β
2
0

4

)

(28)

CT
HBw
MR = −

σMR.CLMRα

2
.

(

θ0
3
.
[

B3 +
3

2
B.µ2

xy

]

−
B2

2
.
[

λ− µxy.(β1c + θ1s)
]

)

(29)

Which gives in the body frame Fb

8 of 35

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 N

at
io

na
l A

er
os

pa
ce

 L
ab

or
at

or
y 

N
L

C
 o

n 
Ju

ne
 3

0,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

3-
48

47
 



  
NLR-TP-2014-286 

  
 11 

 







CHMR

CY MR

CTMR







b

= Tb(HBw).







CHMR

0

CTMR







HBw

(30)

With

Tb(HBw) = Tb(HB).THB(HBw) (31)

Now since the main rotor shaft tilt angle is zero, the Hub-Body frame FHB and the vehicle body frame
Fb are identical, i.e. Tb(HB) = I. And

T(HB)(HBw) =







− cosβMR − sinβMR 0

− sinβMR cosβMR 0

0 0 1






(32)

The main rotor sideslip angle is expressed from the fuselage sideslip angle Eq (54) as

βMR = mod (βF , 2π) (33)

Finally expressing the main rotor forces in the body frame we get







FxMR

FyMR

FzMR







b

=







CHMR

CY MR

CTMR







b

.ρ.π.R2
rot.V

2
MRref (34)

Moments The roll and pitch moments due to the flap hinge spring are given as in Ref. 17

Lb
(MR,flap) = −

1

1− ∆e

Rrot

.
Nb

2
.KSβ

.Γ.β1s (35a)

M b
(MR,flap) = −

1

1− ∆e

Rrot

.
Nb

2
.KSβ

.β1c (35b)

The inertia roll and pitch moments, which arise when the plane of a rotor with offset hinges is tilted
relative to the shaft, are given as in Ref. 18

Lb
(MR,inertial) = −

Nb

2
.Mbl.∆e.yGbl

.Ω2
MR.Γ.β1s (36a)

M b
(MR,inertial) = −

Nb

2
.Mbl.∆e.yGbl

.Ω2
MR.β1c (36b)

For the main rotor torque (i.e. yaw moment), we simplify the description by only considering the induced
and profile components of a rotor in vertical flight,17 hence omitting forward flight components

N b
(MR,aero) = Γ.

(

− λ.CTMR + σMR.CDMR/8.
[

1 + 4.6µ2
xy

])

.ρ.π.R3
rot.V

2
MRref (37)

Next, and by adding the main rotor forces times the respective moment arms, we obtain the total main
rotor moments as







MxMR

MyMR

MzMR







b

=







L(MR,flap) + L(MR,inertial) + yH .FzMR
− zH .FyMR

M(MR,flap) +M(MR,inertial) + zH .FxMR
− xH .FzMR

N(MR,aero) + xH .FyMR
− yH .FxMR







b

(38)
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Rotor RPM Dynamics The main rotor RPM dynamics is related to the available and required power
by the following expression21

Nb.Ib.ΩMR.Ω̇MR = Pshaft − Preq (39)

With Pshaft the available shaft power, and Preq the required power to keep the vehicle aloft. This latter
is the sum of main rotor induced and profile power, tail rotor induced and profile power, power plant trans-
mission losses, vehicle parasite power (i.e. drag due to fuselage, landing skids, rotor hub, etc), and finally
main rotor, tail rotor, and fuselage aerodynamic interference losses.27

Considering the case of an engine failure, a first-order response in Pshaft is generally assumed to represent
the power decay for turboshaft engines,28, 29 we have

Ṗshaft = −
Pshaft

τp
(40)

With τp a to-be-identified time constant. For the required power Preq, we simplify the model by only
considering the contributions from the main rotor as

PMR = ΘMRpwr.N(MR,aero).ΩMR (41)

with ΘMRpwr an additional empirical coefficient, which will be addressed in Section III.

II.C. Tail Rotor Modeling

II.C.1. Assumptions

Structural simplifications

• The blade has zero twist, constant chord, zero sweep, and has constant thickness ratio.

• The blade is rigid, hence torsion is neglected.

Aerodynamics simplifications

• Linear lift with constant lift curve slope, and uniform induced flow over the rotor.

• Aerodynamic interference effects from the main rotor is neglected, although this may well be an over-
simplification, for some flight conditions.30, 31 Similarly, the aerodynamic interference from the vertical
tail (due to blockage) is also neglected.

• Compressibility, blade stall and viscous flow effects are disregarded.

Dynamical simplifications

• No blade dynamics and simplified inflow dynamics.

• Unsteady effects neglected.

II.C.2. Modeling

The tail rotor is a powerful design solution for torque balance, directional stability and control of single main
rotor helicopters. The theory we apply here is based on the work done by Bailey in Ref. 32. The model
represents a standard approach towards tail rotor modeling, as implemented among others in Ref. 22,33,34.
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Velocities The tail rotor hub aerodynamic velocity in the body frame is given by

Vb
a,TR =







Va,TRu

Va,TRv

Va,TRw







b

=







u+ (q − qw).zTR − (r − rw).yTR

v − (p− pw).zTR + (r − rw).xTR

w + (p− pw).yTR − (q − qw).xTR







b

−







uw

vw

ww







b

(42)

In the tail rotor frame FTR of Ref. 33, we have

VTR
a,TR =







1 0 0

0 0 1

0 −1 0






.Vb

a,TR (43)

The non-dimensional velocities in frame FTR are expressed as follows

µTRx = V TR
a,MRu

/VTRref (44a)

µTRy = V TR
a,MRv

/VTRref (44b)

µTRz = Γ.V TR
a,MRw

/VTRref (44c)

µTRxy =
√

µ2
TRx + µ2

TRy and VTRref = ΩTR.RrotTR
(44d)

Inflow The theory we apply here is based on the work done by Bailey in Ref. 32, implemented among
others in Ref. 22, 33, 34. The model given in this paper is a simplified approach of the Bailey model. First,
the tail rotor blade pitch is given by

θTR = θ0TR
− TTR.

∂β0TR

∂TTR

. tan δ3TR
+ θbiasTR

(45)

The Bailey coefficients are given next by

t1 =
B2

TR

2
+
µ2
TRxy

4
(46a)

t2 =
B3

TR

3
+
BTR.µ

2
TRxy

2
(46b)

Assuming zero twist for the tail rotor blades, the inflow is then derived using momentum theory

λdw =
CLTRα

.σTR

2
.

(

µTRz.t1 + θTR.t2

2
√

µ2
TRxy + λ2TR +

CLTRα .σTR

2 .t1

)

(47)

And the total tail rotor inflow is given by

λTR = λdw − µTRz (48)

Where it is common practice to iterate between Eq (47) and Eq (48) until convergence within a reasonable
tolerance.
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Forces The tail rotor thrust is given by

TTR = 2/KTRcorr
.λdw.

√

µ2
TRxy + λ2TR.ρ.π.

(

ΩTR.R
2
rotTR

)2

(49)

Finally in the body frame we have







FxTR

FyTR

FzTR







b

=







0

Γ.TTR

0






(50)

Where we have neglected any aerodynamic interference effects with the main rotor and vertical tail (e.g.
blockage effect).

Moments The tail rotor moments are primarily due to the tail rotor force times the respective moment
arms. For completeness we also add the rotor torque acting on the pitch axis,17 we get







MxTR

MyTR

MzTR







b

=







−zTR.TTR

σTR.CDTR/8.(1 + 4.6µ2
TRxy).ρ.π.Ω

2
TR.R

5
rotTR

xTR.TTR






(51)

II.D. Fuselage Modeling

The flow around the fuselage is characterized by strong nonlinearities, and is further distorted by the influence
of the main rotor wake. Hence, the associated forces and moments, due to the surface pressures and skin
friction, are complex functions of flight speed and direction.15 Indeed, it is well-known that important
unsteady separation effects exist, but are rather complex to model.15

II.D.1. Assumptions

Aerodynamics Simplifications

• Fuselage aerodynamic center collocated with vehicle CG.

• Effect of rotor downwash on fuselage is neglected. It can however be modeled as in Ref. 35, using a
polynomial in wake skew angle, where the polynomial coefficients need to be fit from flight data.36

• Only steady airloads effects on the fuselage are considered.

II.D.2. Modeling

The fuselage model is based upon aerodynamic lift and drag coefficients, which are tabulated as a function
of airflow angle of attack and sideslip angles. For low speed sideways flight, the important fuselage charac-
teristics are in general, the sideforce, vertical drag, and yawing moment. While in forward flight, the three
most important characteristics include drag, and pitching and yawing moments variations with incidence
and sideslip.15 The fuselage rolling moment is usually small, except for configurations with deep hulls where
the fuselage aerodynamic center may be significantly below the vehicle CG.15 For additional information,
see also Ref. 37, 38.
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Velocities And Airflow Angles The fuselage aerodynamic velocity, at its aerodynamic center, in the
body frame is given by

Vb
a,F =







Va,Fu

Va,Fv

Va,Fw







b

=







u+ (q − qw).zF − (r − rw).yF

v − (p− pw).zF + (r − rw).xF

w + (p− pw).yF − (q − qw).xF







b

−







uw

vw

ww







b

(52)

The fuselage angle of attack is given by

αF = arctan(Va,Fw
/|Va,Fu

|) (53)

And the fuselage sideslip angle is given as in Ref. 13 by

βF = arcsin(Va,Fv
/Va,F ) if Va,Fu

≥ 0

βF = π/2 + arccos(Va,Fv
/Va,F ) if Va,Fu

< 0 and Va,F v
≥ 0

βF = −π/2− arccos(−Va,F v
/Va,F ) if Va,Fu

< 0 and Va,Fv
< 0

(54)

With Va,F =
√

V 2
a,Fu

+ V 2
a,Fv

+ V 2
a,Fw

.

Forces In the body frame Fb we have

F b
xF

= qdp.Cx
b
F (αF , βF )

F b
yF

= qdp.Cy
b
F (αF , βF )

F b
zF

= qdp.Cz
b
F (αF , βF )

qdp = 1/2.ρ.SrefF .V
2
a,F

(55)

The aerodynamic coefficients CxF (.), CyF (.), and CzF (.) are tabulated as a function of airflow angle
of attack αF , and sideslip angle βF . These lookup tables have been derived from a scaled-down full-size
helicopter fuselage aerodynamic model.

Moments In the body frame Fb we have

M b
xF

= qdp.MxF (αF , βF ).LrefF

M b
yF

= qdp.MyF (αF , βF ).LrefF

M b
zF

= qdp.MzF (αF , βF ).LrefF

qdp = 1/2.ρ.SrefF .V
2
a,F

(56)

Here too, the aerodynamic coefficientsMxF (.),MyF (.), andMzF (.) are tabulated as a function of airflow
angle of attack αF , and sideslip angle βF . These lookup tables have also been derived from a scaled-down
full-size helicopter fuselage aerodynamic model.

II.E. Vertical Tail Modeling

The role of the vertical tail is twofold: (i) in forward flight, it generates a sideforce and yawing moment,
hence reducing the tail rotor thrust requirement, in order to increase the fatigue life of the tail rotor,15, 21 and
(ii) during maneuvers, and during wind gusts, it provides yaw damping and stiffness, enhancing directional
stability.15
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II.E.1. Assumptions

Aerodynamics Simplifications

• Effect of main rotor downwash on vertical tail is neglected. It can however be modeled by using flat
vortex wake theory39 (valid for small sideslip angles), as presented in Ref. 40,41, or it may be modeled
as a polynomial in wake skew angle as in Ref. 35.

• As an aside, the effect of the main rotor downwash on the tail boom is neglected, but ought to be
considered at low speed, since it may influence yaw damping.15

II.E.2. Modeling

The vertical tail is basically a wing,19, 20 several modeling approaches can be found in Ref. 22, 35, 37, 38.
Here, we use a flat plate representation.

Velocities and airflow angles The vertical tail aerodynamic velocity, at its aerodynamic center, in
the body frame is given by

Vb
a,V T =







Va,V Tu

Va,V Tv

Va,V Tw







b

=







u+ (q − qw).zV T − (r − rw).yV T

v − (p− pw).zV T + (r − rw).xV T

w + (p− pw).yV T − (q − qw).xV T







b

−







uw

vw

ww







b

(57)

Since in the sequel we will neglect the spanwise flow (along the z-axis), we have Va,V T =
√

V 2
a,V Tu

+ V 2
a,V Tv

.

And the vertical tail angle of attack is given by

αV T = − arctan(Va,V Tv
/Va,V Tu

) if Va,V Tu
≥ 0

αV T = −π/2 + arctan(Va,V Tu
/Va,V T v

) if Va,V Tu
< 0 and Va,V Tv

≥ 0

αV T = π/2 + arctan(Va,V Tu
/Va,V Tv

) if Va,V Tu
< 0 and Va,V T v

< 0

(58)

Forces In the body frame Fb we have

F b
xV T

= qdp.CxV T (CL,CD,αV T )

F b
yV T

= qdp.CyV T (CL,CD,αV T )

F b
zV T

= 0

qdp = 1/2.ρ.SrefV T
.V 2

a,V T

(59)

The aerodynamic coefficients CxV T (.) and CyV T (.) are first functions of the lift CL(.) and drag CD(.)
aerodynamic coefficients of a flat plate. Additionally the CxV T (.) and CyV T (.) coefficients are also functions
of the airflow angle of attack αV T , through the aerodynamic forces projection on the body frame Fb. Further
the CL(.) and drag CD(.) coefficients are also tabulated as a function of airflow angle of attack and Mach
number.

Moments The vertical tail moments are due to the tail forces times the respective moment arms, and to
the aerodynamic pitch moment of a flat plate. This aerodynamic moment produces a yaw moment about
the vehicle CG. In the body frame Fb we have

M b
xV T

= −zV T .FyV T

M b
yV T

= zV T .FxV T

M b
zV T

= xV T .FyV T
− yV T .FxV T

+ qdp.MzV T .LrefV T

qdp = 1/2.ρ.SrefV T
.V 2

a,V T

(60)

Here the aerodynamic coefficient MzV T (.) represents the pitch aerodynamic coefficient of a flat plate.
This latter coefficient is tabulated as a function of airflow angle of attack and Mach number.
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II.F. Horizontal Tail Modeling

The role of the horizontal tail is also twofold: (i) in forward flight, it generates a trim load that reduces the
main rotor fore-aft flapping, and (ii) during maneuvers, and during wind gusts, it provides pitch damping
and stiffness, enhancing pitch stability.15

II.F.1. Assumptions

Aerodynamics Simplifications

• Effect of main rotor downwash on horizontal tail is neglected. Again it can be modeled by using flat
vortex wake theory39 (valid for small sideslip angles), as presented in Ref. 40,41, or it may be modeled
as a polynomial in wake skew angle as in Ref. 35.

II.F.2. Modeling

Here too, we use a flat plate representation. Again, more sophisticated models exist,19, 20 and several
approaches can be found in Ref. 22,35,37,38. It is also well-known that, depending on the longitudinal and
vertical position of the horizontal tail with respect to the main rotor, erratic longitudinal trim shifts may
happen when the helicopter is transitioning from hover to forward flight,21 as the main rotor wake impinges
on the tail surface.15

Velocities And Airflow Angles The horizontal tail aerodynamic velocity, at its aerodynamic center,
in the body frame is given by

Vb
a,HT =







Va,HTu

Va,HT v

Va,HTw







b

=







u+ (q − qw).zHT − (r − rw).yHT

v − (p− pw).zHT + (r − rw).xHT

w + (p− pw).yHT − (q − qw).xHT







b

−







uw

vw

ww







b

(61)

Since in the sequel we will neglect the spanwise flow (along the y-axis), we have Va,HT =
√

V 2
a,HTu

+ V 2
a,HTw

.

And the horizontal tail angle of attack is given by

αHT = arctan(Va,HTw
/Va,HTu

) if Va,HTu
≥ 0

αHT = π/2 + arctan(−Va,HTu
/Va,HTw

) if Va,HTu
< 0 and Va,HTw

≥ 0

αHT = −π/2− arctan(Va,HT u
/Va,HTw

) if Va,HTu
< 0 and Va,HTw

< 0

(62)

Forces In the body frame Fb we have

F b
xHT

= qdp.CxHT (CL,CD,αHT )

F b
yHT

= 0

F b
zHT

= qdp.CzHT (CL,CD,αHT )

qdp = 1/2.ρ.SrefHT
.V 2

a,HT

(63)

Again, the aerodynamic coefficients CxHT (.) and CzHT (.) are first functions of the lift CL(.) and drag
CD(.) aerodynamic coefficients of a flat plate. Additionally the CxHT (.) and CzHT (.) coefficients are also
functions of the airflow angle of attack αHT , through the aerodynamic forces projection on the body frame
Fb. Further the CL(.) and drag CD(.) coefficients are also tabulated as a function of airflow angle of attack
and Mach number.
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Moments The horizontal tail moments are first due to the tail forces times the respective moment arms,
and further are also due to the aerodynamic pitch moment of a flat plate. This aerodynamic moment
produces a pitch moment about the vehicle CG. In the body frame Fb we have

M b
xHT

= yHT .FzHT

M b
yHT

= zHT .FxHT
− xHT .FzHT

+ qdp.MyHT .LrefHT

M b
zHT

= −yHT .FxHT

qdp = 1/2.ρ.SrefHT
.V 2

a,HT

(64)

Here too the aerodynamic coefficientMyHT (.) represents the pitch aerodynamic coefficient of a flat plate.
This latter coefficient is tabulated as a function of airflow angle of attack and Mach number.

III. Black-Box Modeling

A BB model may often be viewed as an empirical, yet simple, system representation, and its purpose
is generally threefold, namely (i) to compensate for inaccuracies in model parameters (e.g. CG position,
vehicle inertia, flap stiffness, flap hinge offset), (ii) to compensate for not sufficiently well understood areas
of a WB model (unmodeled high-order dynamics and/or unmodeled nonlinearities), and (iii) to replace com-
putationally intensive WB sub-systems.

Now since attitude angles and inertial position are readily derived from the linear and rotational velocities,
see Eq (2) and Eq (5), it is clear that the crucial states in our model are (u, v, w), (p, q, r), and the MR RPM
ΩMR. Hence, the goal of the BB model is to enhance the overall helicopter model accuracy, by improving
the behavior of these seven states. This BB model is thus based on seven empirical coefficients, see also
Appendix A, defined as

• Three force coefficients (ΘFx ΘFy ΘFz)
T to better fit the body linear velocities (u, v, w), see Eq (7).

• Three moment coefficients (ΘMx ΘMy ΘMz)
T to better fit the body rotational velocities (p, q, r), see

Eq (8).

• One MR power coefficient ΘMRpwr to better fit the MR RPM ΩMR dynamics, since we omitted the
contributions due to forward flight when deriving an expression for the main rotor torque, see Eq (41).

The presence of these coefficients allows for a versatile enough modeling framework, which permits us
to conjecture that the true system is believed to lie inside the representation capacity of our GB modeling
structure. We present next the identification method that is used to estimate these empirical coefficients.

III.A. Identification Through Nonlinear Optimal Control

The aim here is to identify the seven empirical coefficients, regrouped in Θ(t)

∀t ≥ 0 Θ(t) =
(

ΘFx(t) ΘFy(t) ΘFz(t) ΘMx(t) ΘMy(t) ΘMz(t) ΘMRpwr(t)
)T

(65)

We use a time-domain identification method, formulated as a continuous-time, nonlinear, constrained,
optimal control problem. Note that since flight data is not available at this stage, the FLIGHTLAB non-
linear simulation model is used as a proxy, albeit in a noise-free setting, for experimental data. In the sequel,
the given thirteen-state vector originating from FLIGHTLAB is denoted as xFL, and the corresponding
four-control input vector as uFL. Note that this thirteen-state vector corresponds to rigid body and RPM
parameters (either measured or estimated through extended/unscented Kalman filtering), which are deliv-
ered by any standard helicopter UAV avionics unit. We assume also that an observed Input-Ooutput signal

sequence ZN :=
{

(uFL(ti),xFL(ti))
}N

i=1
, collected under the desired operating conditionso, is available for

oBasically a set of trajectories spanning the vehicle’s flight envelope.
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the identification.

We consider the following problem, consisting in minimizing the Bolza cost functional J(x(t),Θ(t), To, Tf ),
with the state-vector x(t), and control input-vector Θ(t), both defined on compact sets x(t) ∈ Px ⊆ R

nx ,
Θ(t) ∈ PΘ ⊆ R

nΘ , denoting the feasible state and control spaces respectively, with nx = 13 and nΘ = 7 in
our case. Further, the independent time variable t is defined over the time domain Ω = (To, Tf ), where the
final time Tf may be free or fixed. Note that To and Tf do not necessarily represent the initial and final
time in set ZN , since it is generally not computationally tractable to estimate Θ(t), for a large set ZN , in
one shot. Rather, the time domain Ω may equally refer to a sub-set of the data present in ZN , implying
that the optimization procedure outlined hereunder may need to be repeated for each new Ω, in which case
the result of any optimization problem will serve as an initial value for the subsequent one.

We define next the cost functional

J(x(t),Θ(t), To, Tf ) := Φ(x(To), To,x(Tf ), Tf ) +

∫

Ω

Ψ(x(t),Θ(t), t)dt (66)

In the general problem formulation, the cost functional J(·) has contributions from a fixed cost Φ(·), and
a running cost over time

∫

ΩΨ(·)dt. Additionally, this cost functional J(·) is subject to the system dynamic
constraints (see Section II), where the usual representation is given by a set of Ordinary Differential Equations
(ODEs), of the form

ẋ = f(x(t),Θ(t), t) t ∈ Ω (67)

The initial and final-time boundary inequality conditions are given by

Bo(x(To),Θ(To), To) ≤ 0

Bf (x(Tf ),Θ(Tf ), Tf ) ≤ 0
(68)

which may describe the initial and final trimmed flight conditions. Conjointly any algebraic trajectory
inequality constraints are given by

T (x(t),Θ(t), t) ≤ 0 t ∈ Ω (69)

having a fourfold objective: (i) account for vehicle’s inherent physical and flight envelope limitations
(bounds on speeds, attitude, and main rotor RPM), (ii) account for environmental constraints (the helicopter
cannot descend below ground), (iii) prescribe the actuator control inputs u(t) = uFL(t), and (iv) bound
any modeling misfits by ||x(t) − xFL(t)||2 ≤ ǫ, with ǫ small. For generality, the boundary and trajectory
constraints Eq (68)-Eq (69) have been expressed as inequality constraints, equality constraints can simply
be enforced by equating upper and lower bounds. Further, in Eq (66)-Eq (69) the functions Φ(·), Ψ(·), f(·),
Bo(·), Bf (·), and T (·) are assumed to be sufficiently smooth, i.e. at least C2. Finally, the solution to the
trajectory planning gives the optimal empirical coefficients, which minimize the cost functional J(·), while
enforcing the here-above predefined constraints

Θ̂(t) := arg min
Θ(t)∈PΘ

J(x(t),Θ(t), To, Tf) (70)

III.B. Direct Optimal Control and The Pseudospectral Discretization

We chose to solve our problem through a direct optimal control method. In this context, the continuous-time
optimal control problem is first discretized in some manner and the problem is transcribed to a NonLinear
Programming problem (NLP),42–44 without formulating an alternate set of optimality conditions as done
through indirect methods.45–48 The resulting NLP can be solved numerically, by well known and efficient op-
timization techniques, such as Sequential Quadratic Programming (SQP) methods49–51 or Interior Point (IP)
methods.52–56 These methods in turn attempt to satisfy a set of conditions called the Karush-Kuhn-Tucker
(KKT) conditions.42 Now regarding the discretization of the continuous-time optimal control problem, the
three most common discretization approaches to solve an indirect or direct method are: (i) Single-Shooting
(SS),57 (ii) Multiple-Shooting (MS),58, 59 and (iii) State and Control Parameterization (SCP) methods;60–64

this latter is sometimes also known as transcription in the aerospace community, or as simultaneous strategy
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in the chemical and process community. Here SS and MS approaches are so-called control parameterization
techniques where the control signals alone are discretized,65 whereas in SCP as indicated by its name, both
state and control are parameterized.66

Briefly summarized, in shooting techniques the dynamics are satisfied by integrating the differential equa-
tions using a time-marching algorithm. The advantage of direct SS is that it generates a small number of
variables, while its main disadvantage is that a small change in the initial condition can produce a very large
change in the final conditions.67 Further, the issue of stability is a major concern. Indeed, time integration
over a relatively large shooting segment may lead to catastrophic results for unstable systems, and this is
why SS generally fails to get a converged solution for such systems.68 The SS has been most successful in
launch vehicle trajectories and orbit transfer problems, primarily because this class of problem lends itself
to parameterization with a relatively small number of variables.69

On the other hand, direct MS breaks the problem into shorter steps,67 greatly enhancing the robustness
of the shooting method, at the cost of having a larger number of variables. It is then primordial to exploit
matrix sparsity to efficiently solve the NLP equations.69 Despite the increased size of the problem, the
direct MS method is an improvement over the standard direct SS method because the sensitivity to errors
in the unknown initial conditions is reduced, since the differential equations are integrated over significantly
smaller time intervals. Further, MS have shown to be suited for applications of high complexity, having large
number of states.70 However, an additional difficulty exists with the shooting techniques, namely the neces-
sity of defining constrained and unconstrained subarcs a priori, when solving problems with path inequality
constraints.69 This issue however does not exist with SCP methods,71 which is one of the reasons why SCP
methods have actively being investigated.69

In addition, SCP methods are known to be very effective and robust,70 and SCP techniques have been ap-
plied to solve nonlinear optimal control problems, such as in space and launch/reentry applications,61, 62, 72–76

in aircraft applications,61, 77–80 in helicopter applications,81–83 in UAV applications,84–86 and glider applica-
tions.87 Since SCP methods have been intensively researched in the last decade, we present next a general
overview of this concept. In SCP, several discretization procedures have been studied, namely local Runge-
Kutta methods in Ref. 65, 66, 88, 89, local orthogonal methods in Ref. 60, 62, 75, 90, 91, Global Orthogonal
Approaches (GOA) or spectral methods in Ref. 91–98, and most recently hybrid local/global methods in
Ref. 99. Of these four procedures, the GOA have received much attention in the last decade, since they
have the advantage of providing spectral convergence, i.e. at an exponential rate, for the approximation of
analytic, i.e. sufficiently smooth, functions.100–102 Thus, for a given error bound, GOA methods generate a
significantly smaller scale optimization problem when compared to other methods.101 This is an important
aspect since the efficiency and even convergence of NLPs improves for a problem of smaller size.103

In a GOA the system’s state-vector is expressed as a truncated series expansion, characterized by BAsis
(BA) functions, and Expansion Coefficients (EC) determined from test functions, which attempt to ensure
that the Ordinary Differential Equations (ODEs), defining the system dynamics, are optimally satisfied.
The choice of the BA functions is what distinguishes GOA methods from finite-difference or finite-element
methods. In both finite-type methods, the BA is local in character, while for GOA methods the BA consists
of infinitely differentiable global functions, such as orthogonal polynomials,104 trigonometric functions, or
constant basis function like Haar105 or block-pulse. Further, the EC distinguish the three most common
types of GOA methods, namely Galerkin, Tau, and collocation. Of these three, the last one, often referred
to as the PseudoSpectral (PS) discretization, has received considerable attention in recent years. In PS
methods, the BA is described by Lagrange interpolating polynomials,106 and are expressed using a set of N
support points. The location of these support points is determined by orthogonal polynomials, for example
Legendre polynomials,104 although other choices exist, such as Chebyshev polynomials.107 Besides the choice
of these N support points, another set of K points is required for the discretization of the integral within the
cost functional, and the system dynamic constraints. These K points are chosen such that the quadrature
approximation of an integral is minimized.106 Now, it is well known that the highest accuracy quadrature
approximation, for a given number of K points, is the Gauss quadrature.106 In this case, the location of
these K quadrature points, called Legendre-Gauss (LG) points, is determined by the roots of a Kth-degree
Legendre polynomial.94, 96 It is also worth noting that two additional variations to the LG approach have
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extensively been investigated in the last decade, namely the Legendre-Gauss-Lobatto (LGL) method,92, 93

and the Legendre-Gauss-Radau (LGR) method.91, 97, 98 It was further reported in Ref. 108 that the LG and
LGR methods have been found to be very similar in accuracy, while outperforming the LGL method.

PS methods have been extensively used in solving fluid dynamics problems,109, 110 but only recently have
these methods been used for solving a variety of optimal control problems. It is clear that PS methods exhibit
a number of advantages when compared to other discretization methods, even when compared to the popular
spline parametrization.67, 84, 111 Indeed, PS techniques have been widely used in space and launch/reentry
applications, see the results of Ref. 112–129. However, they have so far only seen limited use in other aero-
nautical applications such as: aircrafts,117, 130–133 helicopters,134 fixed-wing UAVs,119, 135–138 and helicopter
UAVs.139, 140 Accordingly, we opt for a PS numerical structure, as the discretization framework for our
identification problem.

Once the optimal empirical values Θ̂(t) have been obtained, the following step consists in finding a
smooth and continuous-time nonlinear mapping, gΘ(·) s.t.

Θ̂(t) = gΘ(x̃(t), ũ(t)) (71)

with x̃ ∈ R
ñx , ũ ∈ R

ñu , ñx ≤ nx, ñu ≤ nu representing either, the full state and control vectors
respectively as given in Eq (1), or a subset of these vectors.

III.C. Neural Networks Model

For physically-intuitive plants, one may select the required states x̃ and inputs ũ, based upon engineer-
ing judgment, and derive thes nonlinear mapping gΘ(·) through popular curve-fitting methods. For non-
transparent systems, exhibiting significant dependences among variables, one may consider formal/systematic
approaches such as principal component analysis, statistical analysis, fuzzy tools, or Neural Networks (NNs).
Now, NNs have found a wide range of applications in control theory. Indeed, under mild assumptions on
continuity and boundedness, a network of two layers, the first being hidden sigmoid and the second linear,
can be trained to approximate any Input-Output (IO) relationship arbitrarily well, provided the number of
neurons L in the hidden layer is high enough.141, 142 Hence, we propose here to anchor the gΘ(·) modeling
within the NN paradigm.

Θ̂(t) = gΘ(x̃(t), ũ(t)) = CΘ.sΘ(t)

sΘ(t) =WoΘ .κ
(

WxΘ
x̃(t) +WuΘ

ũ(t) +WbΘ

) (72)

where WoΘ ∈ R
nΘ×L and WxΘ

∈ R
L×ñx , WuΘ

∈ R
L×ñu , contain the output and hidden layer weights

respectively. Further, WbΘ ∈ R
L contains the sets of biases in the hidden layer, CΘ ∈ R

nΘ×nΘ contains the
output linear map, and κ(·) is the activation function, taken as a continuous, diagonal, differentiable, and
bounded static sigmoid nonlinearity.

IV. Simulation Results

We implemented our model in a MATLAB R© environment.143 The modeled UAV is an instrumented R/C
Align T-REX helicopter, belonging to the flybarless two-bladed main rotor class, which physical character-
istics as documented in Appendix B. Additionally, for the FLIGHTLAB model, the following options have
been selected

• Articulated rotor, and blade element model. Quasi-steady airloads, based on the Peters-He three-state
inflow model, with no stall delay effects.

• Bailey tail rotor, and ideal engine.

In this paper, and purely for the sake of illustration, we base the identification on a single trajectory,
starting from hover. The applied input corresponds to an 5 s long collective sine-sweep, from 0.1 to 2 Hz,
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with an amplitude of 0.5 ◦. Now, the very low vehicle roll inertia, and the low pitch inertia (see Appendix
B) have resulted in very noisy roll and pitch rates, due to blade flapping. Indeed, a power spectral density
analysis revealed the presence of a high energy component at the 2/Rev = 45 Hz harmonic. Hence, we
decided to low-pass the roll and pitch rates, before using them in the identification, with a zero-phase shift,
fifth order, digital Butterworth filter, having a cutoff frequency set at 10 Hz.

To solve the nonlinear control problem of Section III.A, the pseudospectral numerical method, as de-
scribed in Section III.B, is used. This numerical discretization framework is available in a MATLAB envi-
ronment, through the open-source General Pseudospectral OPtimal control Software GPOPS R©.95, 144–146 In
order to use GPOPS, the optimal control problem must first be reformulated into a GPOPS format, as a set
of MATLAB m-files.146 Second, the helicopter model must also be expressed in a vectorized structure, imply-
ing that each model variable and parameter is a vector, which values are time-dependent. This latter aspect
is particularly relevant for complex models, where for instance standard matrix-matrix multiplications have
to be handled with care, as each matrix element is a vector. Third, (cubic) B-Splines interpolating functions
ought to be used, when querying lookup tables, as the spectral convergence of PS methods only holds when
the functions under consideration are smooth.104, 147 It is also best practice to non-dimensionalize and scale
model variables and quantities, in order to improve conditioning of the numerical problem. With respect
to the cost functional of Eq (66), we chose to minimize the variance of Θ(t), on each Ω = (To, Tf ) interval.
Next the trajectory constraint ||x(t) − xFL(t)||2 ≤ ǫ in Eq (69) has been set to ǫ = 10%. Further, finite
differencing has been used to estimate the objective gradient and constraint Jacobian. Once the control
problem discretized, it is then transcribed into a static, finite-dimensional NLP optimization problem. An
NLP is generally sparse, and many well-known efficient optimization techniques exist to numerically solve
large-scale and sparse NLPs. In our case, we use the SNOPT R© software,51 which solves finite-dimensional
optimization problems through SQP.

From a computational tractability and solvability viewpoint, it is preferable to solve a large number of
small optimization problems - defined each on a very short Ω = (To, Tf) interval and having each very few
nodes - than to solve a single large optimization problem, defined on a large Ω = (To, Tf ) interval with
many nodes. Accordingly, we have decided to base the discretization of the optimal problem on just 3 nodes,
yielding a NLP problem with 55 variables and 44 constraints. Now since the data provided by FLIGHT-
LAB is sampled at 540 Hz, we will use a very small Ω = (To, Tf) interval of 9.26 ms, corresponding to a

sampling frequency of 540/5=108 Hz. Once the optimal empirical coefficients Θ̂ have been computed, and
before fitting the NN model of Eq (72), we low-pass these coefficients with again a zero-phase shift, fifth
order, digital Butterworth filter, having a cutoff frequency set at 2 Hz, in order to remove the unrealistic
high-frequency behavior, and any additional outliers. Finally, the NN model of Section III.C is based upon
a 5-neurons feedforward network, with a hyperbolic tangent activation transfer function in the hidden layer,
and backpropagation training for the weights and biases.

Next, we apply a collective sweep input, at a constant main rotor RPM, to both our estimated model and
FLIGHTLAB, and briefly compare the open-loop responses. The simulation plots are given in Appendix
C. Figure 1 shows the evolution of the body states, whereas Figure 2 displays the inertial positions and
velocities. Compared to the FLIGHTLAB benchmark model, we see that the model’s preliminary results
are encouraging. Note however that the NN model is rather approximate, since trained with only a single
trajectory. Hence, future work shall concentrate on NN modeling improvement, since this latter accounts
for most of the misfit between our model and FLIGHTLAB.

V. Conclusion

We have presented a novel methodology, which allows for the formulation of a highly-accurate, yet
computationally tractable, grey-box nonlinear helicopter model. The adopted strategy consists in replacing
all modeling uncertainty - parameter uncertainties, unmodeled higher-order dynamics, and unmodeled static
nonlinearities - by empirical coefficients. Next, the identification of these coefficients has been based upon the
combined paradigms of nonlinear optimal control, and Neural Networks (NN). Our preliminary encouraging
results invite further application and investigations of the here-presented approach.
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Appendix A: Nomenclature

• Frames
FI Geocentric inertial frame

FE Normal earth fixed frame

Fo Vehicle carried normal earth frame

Fb Body (vehicle) frame

Fa Aerodynamic (air path) frame

Fk Kinematic (flight path) frame

FHB Hub-Body frame

FHB Hub-Body frame

FHBw Hub-Body wind-axis frame

FTR Tail-Rotor frame

• Frame origins

A Origin of frame FI , earth center

O Origin of frames FE and Fo, an earth surface point

G Origin of frames Fb, Fa and Fk, aircraft center of mass

• Angles between frames

ψ Azimuth angle (yaw angle, heading)

θ Inclination angle (pitch angle, or elevation)

φ Bank angle (roll angle)

• Position
xN , xE , xZ Coordinates of CG position vector in FE frame

xH , yH , zH Coordinates of Hub position wrt vehicle CG in Fb frame

• Altitude

hH = −xZ − zH Hub position above ground

• Linear velocities are denoted V and their components u, v, w

Vk,G Kinematic velocity of the vehicle center of mass

Va,G Aerodynamic velocity of the vehicle center of mass

uok = VN x component of Vk,G on Fo, VN North velocity

vok = VE y component of Vk,G on Fo, VE East velocity

wo
k = VZ z component of Vk,G on Fo, VZ Vertical velocity

ubk = u x component of Vk,G on body frame Fb

vbk = v y component of Vk,G on body frame Fb

wb
k = w z component of Vk,G on body frame Fb

• Angular velocities are denoted Ω and their components p, q, r

Ωk = ΩbE Kinematic angular velocity of the vehicle (b)

relative to the earth (E)

pbk = p Roll velocity (roll rate) of the vehicle relative to the earth (frame FE)

qbk = q Pitch velocity (pitch rate) of the vehicle relative to the earth

rbk = r Yaw velocity (yaw rate) of the vehicle relative to the earth
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• Wind
Vw Wind linear velocity in FE , of an atmospheric particle

which could have been located at the vehicle center of mass

uw Wind x-velocity in FE

vw Wind y-velocity in FE

ww Wind z-velocity in FE

pw Wind roll-velocity in FE

qw Wind pitch-velocity in FE

rw Wind yaw-velocity in FE

Ψw Wind azimuthal angular position

ρ Air density

• Mass and Inertia
mFus Fuselage mass

IFus =







A −F −E

−F B −D

−E −D C






Fuselage inertia

• Main Rotor (MR) properties

Γ Direction of rotation, CCW : Γ = 1 CW : Γ = −1

Nb Number of blades

Mbl Blade 0th mass moment (blade mass from flap hinge)

C0 =Mbl.yGbl
Blade 1st mass moment

Iβ Blade 2nd mass moment (inertia about flap hinge)

Ib Blade 2nd mass moment (inertia about rotor shaft)

Rrot Rotor radius measured from hub center

Rbl Blade radius measured from flap hinge

∆e Distance between hub and flap hinge

cbl Blade chord

yGbl
Blade CG radial position from flap hinge

σMR = Nb.cbl
π.Rrot

Solidity

B Tip loss factor, expressed as percentage of blade length Rbl

no lift is generated outboard of position B.Rbl

γ =
ρ.cbl.CLMRα .R4

bl

Iβ
Blade Lock number

λm Momentum theory induced flow due to rotor thrust (TPP)

λh Rotor induced inflow in hover

λh =
√

CT MR

2 = vh/VMRref

µ Advance ratio

µx Non-dimensional forward flight air velocity

µy Non-dimensional sidewards flight air velocity

µxy =
√

µ2
x + µ2

y Non-dimensional in-plane (rotor disk) air velocity

µz Non-dimensional vertical flight air velocity (normal to the TPP)

KSβ
Hub spring restraint coefficient (due to flap)

µ̄ = µ
λh

Normalizing advance ratio

λ̄ = λm+µz

λh
Normalizing total inflow

Geff Ground effect corrective factor

ǫ = ∆e

Rrot
Normalized flap hinge offset
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• Main Rotor (MR) properties (Cont’d)

ΘMRpwr Form factor on rotor power

• MR position vector components

xH , yH , zH Position of Hub center wrt vehicle CG G

• MR angles

ψbl Azimuthal angular position of blade

β0 Rotor TPP coning angle

β1c Longitudinal rotor TPP tilt (positive forward)

β1s Lateral rotor TPP tilt (positive towards retreating side)

θbl Blade pitch outboard of flap hinge (feathering) angle

ψPA Swashplate phase angle

θ0 Blade root collective pitch

θ1c Lateral cyclic pitch

θ1s Longitudinal cyclic pitch

βMR Sideslip angle

βbl ≃ β0 + β1c cosψbl + β1s sinψbl

θbl = θ0 + θ1c cos(ψbl + ψPA) + θ1s sin(ψbl + ψPA)

• MR angular velocities

ΩMR100%
Nominal (100%) angular velocity

ΩMR Instantaneous angular velocity

• MR linear velocities
vio Rotor uniform induced velocity, normal to the TPP and positive when oriented downwards

vh Rotor induced velocity in hover

vh =
√

m.g

2.ρ.π.R2
rot

VMRref Reference velocity

VMRref = ΩMR.Rrot

• MR forces/moments

FxMR
x-force

FyMR
y-force

FzMR
z-force

MxMR
Total roll moment

MyMR
Total pitch moment

MzMR
Total yaw moment

L(MR,inertial) Roll moment due to inertia loads

M(MR,inertial) Pitch moment due to inertia loads

L(MR,flap) Roll moment due to hub spring restraint (flap)

M(MR,flap) Pitch moment due to hub spring restraint (flap)

N(MR,aero) = QMR Yaw moment due to aerodynamic loads

PMR Power

23 of 35

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 N

at
io

na
l A

er
os

pa
ce

 L
ab

or
at

or
y 

N
L

C
 o

n 
Ju

ne
 3

0,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

3-
48

47
 



  
NLR-TP-2014-286 

  
 26 

 

• MR aerodynamic and force/moments coefficients

CHMR Drag coefficient

CY MR Side-force coefficient

CTMR Thrust coefficient

CLMRα
Blade section lift curve slope

CLMR Lift coefficient

CDMR Mean drag coefficient (profile drag)

• Tail Rotor (TR) properties

NbTR
Number of blades

RrotTR
Rotor radius measured from shaft

∂β0TR

∂TTR
Partial coning angle wrt thrust

tan δ3TR
Tangent of hinge skew angle for pitch-flap coupling

cTR Blade chord

σTR =
NbTR

.cTR

π.RrotTR

Solidity

µTRx x-component of advance ratio

µTRy y-component of advance ratio

µ2
TRxy = µ2

TRx + µ2
TRy

µTRz z-component of advance ratio

λTR Total inflow

λdw Inflow

t1 t2 Bailey coefficients

CLTRα
Blade section lift curve slope

CDTR Mean drag coefficient (profile drag)

BTR Tip loss factor, expressed as percentage of blade length

KTRcorr
Correction factor

• TR position vector components

xTR, yTR, zTR Position wrt vehicle CG (in FHB frame)

• TR angles

β0TR
Coning angle

θTR Blade pitch angle

θ0TR
Blade root collective pitch

θbiasTR
Preset collective pitch bias

• TR angular velocities

ΩTR100%
Nominal (100%) angular velocity

ΩTR Instantaneous angular velocity

• TR linear velocities
Va,TR Aerodynamic velocity of the TR hub

VTRref Reference velocity

VTRref = ΩTR.RrotTR
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• TR forces/moments

TTR Thrust

FxTR
x-force

FyTR
y-force

FzTR
z-force

MxTR
Total roll moment

MyTR
Total pitch moment

MzTR
Total yaw moment

• Fuselage (Fus) properties

SrefF Reference area

LrefF Reference length

• Fuselage angles

αF Angle of attack

βF Sideslip angle

• Fuselage position vector components

xF , yF , zF Position of fuselage CG wrt

• Fuselage forces/moments

FxF
x-force

FyF
y-force

FzF z-force

MxF
Total roll moment

MyF
Total pitch moment

MzF Total yaw moment

• Horizontal/Vertical Tails (HTVT) properties

SrefHT
HT Reference area

LrefHT
HT Reference length

SrefV T
VT Reference area

LrefV T
VT Reference length

• Horizontal/Vertical Tails (HTVT) angles

αHT HT angle of attack

βHT HT sideslip angle

αV T VT angle of attack

βV T VT sideslip angle

• Horizontal/Vertical Tails (HTVT) position vector components

xHT , yHT , zHT Position of horizontal tail aerodynamic center

xV T , yV T , zV T Position of vertical tail aerodynamic center
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• Horizontal/Vertical Tails (HTVT) forces/moments

FxHT
HT x-force

FyHT
HT y-force

FzHT
HT z-force

FxV T
VT x-force

FyV T
VT y-force

FzV T
VT z-force

MxHT
Total HT roll moment

MyHT
Total HT pitch moment

MzHT
Total HT yaw moment

MxV T
Total VT roll moment

MyV T
Total VT pitch moment

MzV T
Total VT yaw moment

• Empirical coefficients (black-box model)

ΘFx Added on total x-force

ΘFy Added on total y-force

ΘFz Added on total z-force

ΘMx Added on total x-moment

ΘMy Added on total y-moment

ΘMz Added on total z-moment

ΘMRpwr Form factor on MR power
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Appendix B: Align T-REX Physical Parameters

Name Parameter Value Unit

Environment

Air density ρ 1.2367 kg/m3

Static temperature T 273.15 + 15 K

Specific heat ratio (air) γ 1.4

Gas constant (air) R 287.05 J/kg.K

Gravity constant g 9.812 m/s2

Total mass m 7.75 kg

Inertia moment wrt xb A 0.0705 kg.m2

Inertia moment wrt yb B 0.4760 kg.m2

Vehicle Inertia moment wrt zb C 0.2855 kg.m2

Inertia product wrt xb D 0 kg.m2

Inertia product wrt yb E 0.0018 kg.m2

Inertia product wrt zb F 0 kg.m2

Direction of rotation Γ CW (-1)

Main Number of blades Nb 2

Rotor Nominal angular velocity ΩMR100%
131.37 rad/s

Rotor radius from hub Rrot 0.9 m

Blade mass Mbl 0.208 kg

Spring restraint coef. due to flap KSβ
163.8 N.m/rad

Distance between hub and flap hinge ∆e 0.32 m

Number of blades 2

Tail Nominal angular velocity ΩTR100%
612.61 rad/s

Rotor Rotor radius from rotor hub RrotTR
0.14 m

MR collective θ0 [-3,10].π/180 rad

TR collective θTR [-12,18].π/180 rad

MR lateral cyclic θ1c [-7,7].π/180 rad

Actuators MR longitudinal cyclic θ1s [-7,7].π/180 rad

MR collective rate θ̇0 [-52,52].π/180 rad/s

TR collective rate θ̇TR [-120,120].π/180 rad/s

MR lateral cyclic rate θ̇1c [-56,56].π/180 rad/s

MR longitudinal cyclic rate θ̇1s [-56,56].π/180 rad/s
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Appendix C: Simulation Results
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Figure 1. Vehicle response in body frame
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Figure 2. Vehicle response in inertial frame
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