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Summary

In this paper, we present a planning decision support tool for airport tower controllers. The tool

assists controllers in the establishment of optimal departure sequences and the planning of initial

climb phases.

Airports are getting more and more congested with their available runway configuration as one

of the most constraining factors. One of the possibilities to alleviate this congestion is to assist

controllers in the planning process. In this paper, we focus on runway departure planning, but

nevertheless show that this should not be a stand-alone process. Departure planning must be

seen as part of an integrated and co-operative decision making environment.

The runway can be regarded as a resource where departing aircraft need to be scheduled given

that numerous technical and operational constraints apply. Constraints determine separation

between aircraft, departure timeslots, and aircraft performance limits. A novel way of departure

planning is introduced: the planning process starts by sequencing the aircraft at the runway

instead of the gate. We use a constraint satisfaction technique to specify the problem and we

have designed and implemented a prototype. An optimisation function is used to select the best

sequence. Evaluations of the prototype show that sequences can be calculated in real-time.
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Abstract

In this paper, we present a planning decision
support tool for airport tower controllers. The
tool assists controllers in the establishment of
optimal departure sequences and the planning of
initial climb phases.

Airports are getting more and more congested
with their available runway configuration as one
of the most constraining factors. One of the
possibilities to alleviate this congestion is to
assist controllers in the planning process. In this
paper, we focus on runway departure planning,
but nevertheless show that this should not be a
stand-alone process. Departure planning must
be seen as part of an integrated and co-operative
decision making environment.

The runway can be regarded as a resource
where departing aircraft need to be scheduled

given that numerous technical and operational
constraints apply. Constraints determine
separation between aircraft, departure timeslots,
and aircraft performance limits. A novel way of
departure planning is introduced: the planning
process starts by sequencing the aircraft at the
runway instead of the gate. We use a constraint
satisfaction technique to specify the problem and
we have designed and implemented a prototype.
An optimisation function is used to select the
best sequence. Evaluations of the prototype show
that sequences can be calculated in real-time.

1 Introduction

With the increase in air traffic in Europe,
airports are becoming a major bottleneck in air
traffic control (ATC) operations. Expansion of
airports is an expensive and time-consuming
process and has a strong impact on the
environment. Aviation authorities are seeking
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methods to increase airport capacity, while at
least maintaining the current level of safety.

Within the context of A-SMGCS (Advanced
Surface Movement Guidance and Control
Systems) operations, we have designed and built
a prototype for a planning function to support
airport tower controllers in the establishment of
optimal departure sequences. This planning tool
provides a decision support function that has
been designed to achieve an optimal throughput
at the runway and in addition reduce the
controller’s workload and the number of delays
while at least maintaining the current safety
level, even under bad weather conditions (i.e.
low visibility).

Planning of departure sequences comprises sub-
problems as runway (entry) allocation, SID
(Standard Instrument Departure) allocation, and
the application of specific airport procedures
(such as the take-off after procedure). The
objective of a runway departure sequencing
function is to establish an optimal sequence in
which aircraft can depart from the available
runways and to plan their initial climb phase.
Numerous technical and operational constraints
and rules restrict the usage of runways, such as
separation criteria, departure timeslots, and
aircraft performance limits.

The work presented in this paper is based on
findings in the Mantea project (MANagement of
surface Traffic in European Airports), which was
partly funded by the European Commission. The
designed and prototyped departure sequencing
function is called MADS (MAntea Departure
Sequencer).

This paper will firstly address the problem of
departure management by describing current
practice and identifying the role of departure
planning function at airports. Next, the departure
planning process is described in detail and it is
shown how constraint satisfaction can be used.
Some aspects of the implementation of a
prototype are described and results are shown.

2 Departure management
background

In Europe, departure planning is part of the
departure management function that is defined in
EATCHIP (European Air Traffic Control

Harmonisation and Integration Programme
[EATCHIP95]) phase III, which should be
implemented in 2002 at major airports. Several
studies involve the departure planning process,
such as PHARE (Program for Harmonised ATC
Research in Eurocontrol) [Blom93] and
TARMAC (Taxi And Ramp Management And
Control) project [Dippe94].

The A-SMGCS working group of AWOP (All
Weather Operations Panel [AWOP96]) regards
planning as part of the routing function. AWOP
describes routing as “the planning and
assignment of a route to individual aircraft and
vehicles to provide safe, expeditious, and
efficient movements from its current position to
its intended position”. For departure planning,
this definition implies that aircraft should take
off without conflicts (safe), as early as possible
(expeditious), and make optimal use of airport
resources (efficient).

Departure planning is a difficult process; even
under normal operating conditions at least three
different controllers (one for each of the “pre-
flight”, “taxiways” and “runways” areas)
manage the aircraft on the airport. Under stress
situations, even more controllers may be
assigned to handle all airport traffic. Each
controller will try to establish an optimal plan
for his/her own area and will try to provide the
aircraft to the next controller in an efficient way.
Unfortunately, this next controller is not always
fully aware of the plans of the previous one. The
runway controller is the last planner in line and
is dependent on the sequence of aircraft that is
handed over by the previous (taxiway)
controller. At the runway only minor changes to
the provided sequence can be made through the
use of runway holdings and intersection take-
offs.

The problem in the current way of working is
that the actual provided departure sequences
cannot be modified sufficiently to optimally use
the available runway capacity. Hence the need
exists to carry out co-operative planning and
decision making by controllers to increase
airport capacity.

Departure planning must become an integral part
of the overall air traffic management system (see
e.g. [Dippe95] and [Böhme94]). An integrated
A-SMGCS must be able to support controllers
and pilots to optimise the traffic flow of
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incoming and outgoing traffic. Planning must
not be done independently, but in co-ordination
and co-operation with other systems. In this
integrated environment, a departure planning
function co-operates with an arrival planner, a
surface movement planner, and a conformance
monitoring function, which compares the aircraft
observed positions to their planned positions, to
detect and solve deviations. Further, a guidance
function should be implemented in order to
assist controllers and pilots in enabling the
possibility to have the aircraft stick to their
plans.

3 MADS

The Mantea Departure Sequencer, MADS
[Hesselink97] [Hesselink98], is integrated in a
co�operative environment of methods with
accompanying tools, where several controllers
act on one plan for each aircraft. MADS starts
the planning process at the runway, usually the
scarcer resource, and a taxi plan is then
generated by the surface movement planner
backwards through time. The process ends with
the establishment of a start-up time by a push-
back or pre-flight planner. The MADS tool is
able to handle mixed mode operations in
co-ordination with an arrival planning tool.

3.1 Problem definition in constraints
External constraints that play a role in the
planning process are numerous, ranging from
long term runway use strategies through current
meteorological conditions to pilot, airport
operator, and controller actions and external
schedules. The runway departure planning tool
that we have designed and prototyped, assures
that each aircraft takes off within its allocated
time slot, is safely separated with respect to
other aircraft (both on the ground and in the air),
and guarantees that feeders to the next sectors
are not overloaded.

Departure sequencing is based on wake vortex
separation (weight and speed categories) and an
optimal use of SIDs. At most European airports,
the structure of the SIDs is such that several
routes can be taken from the runway to one
TMA (Terminal Manoeuvring Area) exit point.
The planner will normally assign shortest routes,
but will consider longer ones to ensure
separation at the exit point and to make optimal

use of the route structure itself (e.g. separation at
waypoints where two SIDs cross).

We have defined five categories of constraints:
� Separation constraints. These concern

restrictions on the departure of aircraft at the
same runway because of preceding aircraft
that may be too close. Separation constraints
also specify the relation between arrivals
and departures when using a runway in
mixed mode.

� Runway usage constraints. These determine
the runway that will be used, based on
runway availability, the necessary runway
length, meteorological conditions, runway
surface conditions, and runway equipment.

� Line-up constraints. These concern the
possibility of lining up other than at the
runway holding point and special operations
that may be used under good visibility
conditions.

� TMA and en route constraints. Separation in
the air must be guaranteed and the feeders to
the following control sectors must not be
overloaded. SID operations and separations
must be followed.

� Sequencing and timing constraints. These
specify that each aircraft must take off
within its time slot and give specific
constraints for sequencing.

3.2 Constraint satisfaction
Constraint satisfaction is a well-understood
technique for solving planning problems (see
e.g. [Beck94], [Stumptner97]). A general model
of constraint satisfaction is to describe the
problem as a set of variables each with a domain
of allowed values. Constraints define the
combinations of values for several variables that
are not allowed. A solution for a problem defines
for each variable in the problem a single value,
while making sure that all constraints are
satisfied.

All search algorithms for constraint satisfaction
start with an initial search space which contains
all possible values for all variables in the
problem. An algorithm for solving constraint
satisfaction problems that uses backtracking is
the following:

Restrict the domains of all variables as much as
possible, using the constraints and the values of
the variables (constraint propagation).
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When this has been completed the remaining
search space can be in one of three possible
states:
1. All variables have only one possible value

left:
A solution is found and returned.

2. One or more variables have no possible
values left:
This state is called a contradiction because
the chosen values result in a violation of the
constraints. A failure is returned.

3. One or more variables have at least two
possible values left:
The search space may still contain solutions.
To actually find a solution to the problem a
value for a variable has to be guessed. Now,
the algorithm is entered recursively, starting
from the constraint propagation again.

This algorithm ultimately finds a solution or a
contradiction. If a guessed value leads to a
contradiction, it was apparently not a good guess
and the domain of the variable can be reduced by
removing the guessed one.

3.3 Heuristics
Heuristics are needed to speed up the search
process. Even with the use of constraint
satisfaction and thus excluding numerous
possibilities, the number of valid sequences can
be enormous. It is important therefore, that the
guess described in the algorithm is a smart guess
so that contradictions are not found (or if they
exist, as soon as possible) and the algorithm
converges to the best solution as quickly as
possible.

The strategy for determining which variable to
examine first has been extensively described in
literature. Domain independent strategies are
general problem solving strategies and will try to
find a feasible solution as quickly as possible.
Domain dependent strategies add a component to
this, to relate the heuristic to the runway
departure sequencing problem, so that the search
converges rapidly to the best solution.

3.4 Departure planning with constraint
satisfaction
To specify the departure planning problem so
that it can be solved with constraint satisfaction,
we need to define variables, their associated
domains (i.e. allowed values), and constraints.
The constraints restrict certain combinations of

variables (e.g. no two aircraft can take off at the
same time from the same runway). The planner
tries to find a single value for each variable in
such a way that none of the constraints are
violated.

The basic object in this model is the flight
object. A flight contains an aircraft, its crew, and
a flight plan. The latter is an object that contains
general information like departure and
destination airport and a detailed 4-dimensional
path. The underlying problem concerns the
creation of this detailed path.

Let F1, F2,.., FN be the set of flights to be
planned. For each flight Fj, is given:
� The departure point, i.e. the gate or parking

position.
� The destination point, which is the TMA

exit point in our case.
� The CFMU (Central Flow Management

Unit) time interval for departure, or a
requested ETD (Estimated Time of
Departure). There are two types of flights,
scheduled and non-scheduled. Scheduled
flights will need take-off within their CFMU
time slot; non-scheduled flights do not have
a mandatory take-off time interval, but wish
to depart as soon as possible.

� A pilot preferred plan (4-dimensional).
� Aircraft performance.

For each flight Fj, the following will be planned:
� A take-off time, the time at which the

aircraft should start the run on the runway.
� A sequence number, the number that

indicates for the specified runway the order
in which the aircraft must depart.

� A SID route to the TMA exit point, if there
are more available. Part of the actual SID
structure of Rome Fiumicino is shown in
Figure 1.

� The time on the way points between the
runway and the TMA exit point.

A number of constraints, C1, C2,…, CM, specifies
restrictions for a specific flight or restrictions
between two flights. They are now modelled as
relations between aspects of a single flight and
its 4D position or as relations between two or
more flights. Hard constraints must be satisfied
for each flight, such as separation criteria and the
necessary and available runway length. Soft
constraints are preferred to be satisfied, such as a
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pilot preferred plan and the wish to give priority
to aircraft that are late in their time slot.

An example of a constraint is the following.
Aircraft in lighter weight categories should be
scheduled at least three minutes after their
preceding one (separation constraint to avoid
wake turbulence effects). This constraint defines
the situation where the aircraft of flight Fi is
heavier than that of flight Fj and then specifies
the four conditions, Ck, that should not apply
(otherwise it is allowed to schedule flight Fi

before Fj, e.g. when they are on different
runways):

Ck = � Fi, � Fj, where Fi�Fj

� ((R(Fi) = R(Fj))
�� (ttakeoff(Fi) > ttakeoff(Fj))
�� (w(Fi) <= w(Fj))
�� (ttakeoff(Fi) + 3 <=

ttakeoff(Fj)))

where
Fi and Fj are flights to be scheduled,

R is a function that provides the allocated
runway,
w is a function that provides the aircraft
weight category,
ttakeoff  is a function that provides the takeoff
time.

SID

structure
runway

2 min.

5 min.

exit

holding A

runway

holding A
2 min.

5 min.

exit

Figure 2 Model of the sequencing problem

    Figure 1 North and West Bound SIDs of Rome Fiumicino (from AIP)



-9-

NLR-TP-99279

Figure 2 shows the model used to represent the
sequencing problem. In this figure the 2 min. and
5 min. separation values are intended as
examples.

4 Prototype

We have developed an object oriented prototype
that has been implemented in C++. The
prototype is integrated in a tower control
simulation environment. Co-ordination between
the MADS prototype and the other (planning)
tools in MANTEA has been established using
the Orbix implementation of the CORBA
standard. The planner has been compiled and
tested on several UNIX based systems (Solaris
and Linux) and on Windows 95/NT.

4.1 Operational aspects and controller
interaction
There are usually several possible solutions for
planning a number of departing aircraft at an
airport. Once a solution is found, it will be
evaluated against a predefined ‘cost’ function
that indicates how ‘good’ this solution is. The
MADS planner can be used in any-time mode so
that it will present each new better solution at the
moment it is found.

Because there is no guarantee that a departure
sequence for all aircraft actually exists, the
MADS planner has been designed to always
provide a departure sequence for as many
aircraft as possible. So even if no complete
solution exists (i.e. a sequence that lets all
aircraft depart), MADS will generate a safe
departure sequence for as many aircraft as
possible.

One of the capabilities of MADS is that it allows
the controller to manually specify additional
requirements to the sequence if these are desired.
These requirements are in terms of “this aircraft
must depart before that aircraft” and “this
aircraft must depart at time t”. MADS will then
only suggest sequences that comply with both
the safety constraints and the controller imposed
requirements.

4.2 Performance results
Results of our planner prototype show that
acceptable performance can be achieved to
enable practical use of MADS. Table 1 gives an

example for planning aircraft with the same
performance characteristics, within one time
interval (sixteen minutes), on one available SID,
and on one runway. In this scenario, the
following parameters were used:
� Separation at runway = 2 minutes.
� Separation at way points = 3 minutes.
� Acceptance rate next control sector = 5

minutes.

Two types of heuristics were used for the
backtracking algorithm, one for selection of a
variable and one for the selection of a value
within the domain of that variable. For the
variable selection we used the following: take
the departure time variable that has at least two
possible values left of the aircraft which has the
earliest end time in its interval. This flight has
the least possibilities left for shifting to a later
time and as such is planned as quickly as
possible. For the value selection we used:
� In case of a departure time: try the earliest

untried time value first.
� In case of a SID: try the shortest untried SID

first.

The optimisation function we used minimises
the total departure time (i.e. minimum
throughput time at the runway and all aircraft as
early as possible) and minimises the total length
of the flown SIDs.

In the example of table 1, the aircraft will be
sequenced five minutes apart, because the
acceptance rate to the next control section is set
to five minutes leaving only four aircraft to be
scheduled within the available time interval.
Increasing the number of aircraft to five implies
that one of the aircraft will not be included in the
solution. As mentioned, one of the aircraft will
now be considered “not plannable”, but the
planner still provides a solution for the other
aircraft.

#ac #points
in

search
space

#complete
solutions

Best
solution

(s)

Total
search

(s)

1 16 16 0.02 0.1
2 256 132 0.04 1.4
3 4096 624 0.06 10.8
4 65536 16 0.11 36.5
5 1048576 0 0.17* 170*

Table 1. Results of scheduling 1.. 5 aircraft.
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* One of the aircraft is considered “not
plannable”. There is no complete solution
possible where all aircraft are scheduled
within the available time interval. The
algorithm now will schedule four out of the
available five aircraft.

Increasing the number of available SIDs implies
an increase of complexity. The aircraft can be
sequenced taking into account the distribution of
TMA exit points. Table 2 shows the results of
scheduling the aircraft over two available SIDs
to different TMA exit points. The same
separation parameters as in the previous example
were used.

#ac #SIDs #exit
points

Best
Solution

(s)

Total
Search

(s)
1 2 2 0.04 0.13
2 2 2 0.03 1.56
3 2 2 0.06 9.42
4 2 2 0.07 60.43
5 2 2 0.07 349.06
6 2 2 0.11 1177.45
7 2 2 0.15 >2000

Table 2.  Scheduling multiple SIDs.

We see from both tables that with increasing the
size of the problem with more aircraft, the search
space increases exponentially, but the search
time for finding the best solution and for
exploring all solutions does not scale with the
same order. In table 1 for exploring the total
search space, between test 1, 2, and 3, we find a
factor 10 increase in the search time, but
between tests 3, 4 and 5, the search time is only
increased by about a factor 4. The rationale for
this is, that the constraints eliminate more
combinations when more aircraft are to be
planned resulting in only a limited number of
complete solutions. The same effect can be seen
in table 2.

Table 2 shows that adding multiple SIDs does
not increase the search time for the best solution
and only increases the total search by a factor
that appears to reduce with each step.

4.3 Operational evaluation
MADS has been evaluated by tower controllers
at Paris Orly and Rome Fiumicino airports. This
evaluation has been an off-line activity, where

complex scenarios have been created on
forehand and controllers were asked to provide
their best solution on paper. Then, the tool was
run and the results compared.

During the evaluations, it appeared that the
solution presented by MADS sometimes differed
from the one that was proposed by the controller.
In a number of occasions, controllers indicated
that the solution found by MADS was also a
good option. In other occasions, the controllers
wanted a different optimisation function. Once
this function was changed, MADS found similar
solutions as controllers did.

As can be seen in tables 1 and 2, if the tool has
to examine all possible sequences, the search can
last quite long. Two aspects must be mentioned
in relation to this.

Firstly, the first solution is always found very
quickly. During the evaluations we also found
that for complex scenarios the search only took a
few seconds. Implementation of a good heuristic
function is necessary so that the optimum
solution is found within acceptable search time.
We implemented an interrupt, which stopped the
planner after twenty seconds. Always, a solution
acceptable to the controller was found within
this time period.

Secondly, during operational use, the planner
will not have to plan 20 aircraft at once, but will
be given aircraft one by one so that the problem
complexity only increases slowly. We have
implemented a incremental planner, which
includes new aircraft in already found solutions
instead of starting the search all over again.

Both these aspects should prevent the planner
from running too long, before an acceptable
solution is found. However, one of the items we
will be examining in the future is how to
increase performance of the algorithm.

5 Conclusions and Further Work

MADS allows co-operation with other
controllers and other tools (like surface
movement planning and plan conformance
monitoring). As a consequence runway capacity
will effectively be enhanced, without any
physical changes to the airport infrastructure.
The major advantage of using MADS is that all
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safety regulations are checked automatically, not
only after the departure sequence has been
created, but also during planning where they are
used to optimise runway usage.

In order to improve the performance of the
algorithms we can mention several aspects.
Firstly, it is important that good heuristics are
used. Further, literature already provides several
solutions for performance optimisation of
constraint satisfaction solvers. Possibilities are
the use of branch-and-bound and/or hill-
climbing techniques to remove search paths,
which on forehand can be estimated as “too
expensive”.

A knowledge based approach, like constraint
satisfaction, is favourable for solving the
departure sequencing problem. Knowledge is
separated from the inference algorithm, in such a
way that constraints, the optimisation function,
and the heuristics are separated from the search
algorithm. We found that airports operate under
different constraints and controllers at different
airports have different optimisation functions. In
a co-operative environment with airport
operators and airline planners, who have
different interests, again we will find other
optimisation functions.

Now that we know that controllers agree on the
solutions that are proposed by MADS, we have
planned validations with controllers in a real-
time simulation environment. Controllers will
then validate the tool in its environment and will
be able to judge its use in terms of workload
reduction and airport capacity increase.

We expect that the acceptance of the tool will be
high because controllers will remain involved in
the planning process. They will be able to make
any modification they like to the proposed plan
and thus let the planner only find solutions that
match their idea of a ‘good’ solution.
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