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SOUND DIFFRACTION BY THE SPLITTER OF A TURBOFAN ENGINE
R.J. Nijboer and P. Sijtsma

National Aerospace Laboratory NLR, P.O. Box 153, 8300 AD Emmeloord,

The Netherlands

ABSTRACT

The diffraction of noise by a splitter that separates the bypass flow from the flow into

the core engine of a turbofan engine is analysed. By using the Wiener-Hopf technique a

closed form solution is found. This solution is then analysed numerically and results on

single modes are discussed. It is demonstrated that acoustic modes of high radial order

undergo more effect of diffraction than low order radial modes. Also the low order

radial modes originating from the inner stator row (Engine Section Stator; ESS) seem to

be more affected by diffraction than those coming from the outer stator row (Outlet

Guide Vanes; OGV). Due to diffraction a small part of the noise is reflected or deflected

from ESS to OGV (or from OGV to ESS). However, the largest part of the noise

propagates towards the fan. The major effect of diffraction is a redistribution of the

noise over radial acoustic modes.

INTRODUCTION

The duct of a turbofan engine downstream of the fan splits into a bypass duct and an

engine duct, see figure 1. Since the fan is driven, swirl is added to the airflow in the

ducts. In order to take this swirl out of the airflow and recover the energy from the

swirl, stators are placed in the engine duct and in the bypass duct. Rotor wakes interact

with the stator vanes and thus generate sound. Part of this rotor/stator interaction noise

travels back towards the fan, which partly reflects it and partly transmits it.

Sound generated by the interaction between the rotor and the bypass stator row

(Outlet Guide Vanes; OGV) and radiating towards the fan is usually modelled with

neglect of the splitter. If sound generated at the inner stator row (Engine Section Stators;

ESS) is considered, the splitter can hardly be ignored. For that purpose, a model for

sound diffraction at the splitter is needed. The theory of diffraction by the splitter is

reported here. With such a theory, better input can be generated for rotor blockage

calculations (Ref. 1) and liner optimisation.



-4-
NLR-TP-99133

inlet

by-pass duct

engine duct

spinner

fan

hub

stator

interstage region

splitter

Fig. 1 Schematic view of part of a turbofan engine

In the analysis a number of assumptions is made. First of all, a duct with

constant, circular cross-section is assumed. Furthermore, the background flow is

uniform, subsonic and does not contain swirl or boundary layers. Finally, the splitter is

assumed to be infinitely thin. The analysis is restricted to the interstage region of the

engine. This region is divided into three sub-regions, for each of which the radial

eigenfunctions are calculated. The diffraction problem in the interstage region is

discussed, after which the problem is solved using the Wiener-Hopf technique (Ref. 2).

The most crucial part of this technique is the splitting of the so-called kernel function.

When this is done appropriately, the solution to the diffraction problem is found in

closed form. The solution is then analysed numerically for single modes.

EIGENSOLUTIONS

In the analysis to follow, the physical quantities are made dimensionless using the air

density, the speed of sound and the tip radius of the fan. The interstage region of a

turbofan engine (Fig. 1) is modelled by a cylindrical pipe. The region directly
downstream of the fan ranges from hub to outer radius ( 1≤≤ rh ; region I). The duct is

split into a region from hub to splitter ( srh ≤≤ ; region II), and a region from splitter

to outer radius ( 1≤≤ rs ; region III), see figure 2. The airflow is assumed to contain no

swirl, which is a simplification of the physical problem. The flow velocity, which is

assumed to point in the x direction, is characterised by the Mach number M, which is

assumed to be constant, positive, and less than 1. The splitter is assumed to be infinitely

thin and semi-infinite in positive x-direction, starting at x=0.
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Fig. 2 Geometry

Under the restrictions mentioned above, and assuming small disturbances, the

behaviour of the acoustic velocity potential disturbance φ is governed by the convected

wave equation. Using cylindrical co-ordinates, allows separation of variables and,

hence, we can consider single mode behaviour:

.)(),,,( xiimiktertrx αθφθφ −+= (1)

The values for k and m are fixed, which leaves the value of α to be found as an

eigenvalue. In order to ensure the causality of the solution, the value of k is considered

to be complex, ,0 δikk −= where 0k and δ are real and .10 <<<δ In the final solution

we let .0↓δ
The radial behaviour of the acoustic velocity potential disturbance is then given

by Bessel functions:

),()()( 21 rYcrJcr mm εεφ += (2)

with

( ) ,22 ααε −−= Mk (3)

and where mJ and mY designate, respectively, the mth-order Bessel functions of the

first and the second kind. It is assumed that the boundaries are hard and, hence, that the
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normal component of the velocity vanishes on these boundaries. This yields the

following eigenvalue equation for ε :

,0)()()()( =′′−′′ bJaYbYaJ mmmm εεεε (4)

where the prime denotes differentiation with respect to the argument and where (a,b) =

(h,1) for region I, (a,b) = (h,s) for region II, and (a,b) = (s,1) for region III. Equation (4)
is an eigenvalue equation with solutions �,3,2,1, == µεε µm Note that in the three

different regions this yields three different sets { } .3,2,1, =jjmµε The values of ε

correspond to values of α via the dispersion relation (3), which yields two values of

µα jm for each value of µε jm .

The total solution in each region, for fixed values of m and k, is a sum over all

radial eigensolutions:

{ }∑
∞
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−−−+ −+

+=
1

),(),(
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xi
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jmjm (5)

where µjmU are normalised radial eigenfunctions:
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(6)

and µjmN are constants that normalise the eigenfunctions appropriately.

DIFFRACTION PROBLEM

After the preliminary work we can use the Wiener-Hopf technique (Ref. 2) to solve the

diffraction problem in the interstage region. Using the eigensolutions in the different

regions of the interstage, we can write down the incoming sound waves onto the splitter.

From the fan a right running wave approaches the end of the splitter:

∑
∞

=

−+ +

=
1

11 ,)(),( 1

µ

α
µµ

µ xi
mm

merUBrxR (7)

and from the stators 'left running' waves approach the end of the splitter:
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Writing the total potential field as

),,(),(),(),( rxLrxRrxrx ++=ψφ (9)

and applying a Fourier transform in the x direction gives an expression for the Fourier
transformed potential ψ̂ . Applying hard wall boundary conditions and continuity of the

pressure at ,0, <= xsr yields an equation in the complex u plane:

( ) ( ) ),(ˆ)()(ˆ)()( uLuPuRuFuKMuki −++− −=−−− (10)

where u is the Fourier co-ordinate. The functions ,ˆ, +RK and −L̂ are known, and the

functions −F and +P are unknown. K is determined by the radial eigenfunctions in the

three different regions, and +R̂ and −L̂ are integrals over the radial derivative of the

right running wave and the Doppler shifted left running wave, respectively. −F is an

integral over the radial derivative of ψ and +P an integral over the Doppler shifted ψ.

The latter two functions determine the solution for ψ. We now come to the actual

application of the Wiener-Hopf technique. We define three regions in the complex u
plane. Since ,0 δikk −= and 10 <<<δ , there exists a 00 >δ such that Im( +

µα jm )<− 0δ
and Im( −

µα jm )> 0δ , for j = 1,2,3 and µ = 1,2,3… and k ≠ Mu for |Im(u)|< 0δ . We define

the regions:
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(11)

for which the function +R̂ is regular in +S , the function −L̂ is regular in −S , and the
region S is non-empty. Since M>0, k−Mu is regular and non-zero in +S . Due to

causality of the solution the function +P is regular in +S , and, likewise, the function −F

is regular in −S . The diffraction problem is solved when the kernel function K is split,

),()()( uKuKuK −+= (12)
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Fig. 3 (a) The first and (b) the fifth radial mode coming from the Engine Section

Stators (ESS) for m=10, k=80, and M=0.5.

such that +K is regular and non-zero in +S and −K is regular and non-zero in −S . +K

and −K can be found by integrating the kernel function along an appropriate path in the

complex plane (Ref. 2). When the kernel function is split, equation (10) can be rewritten
into an equation that has a left-hand-side that is regular in −S and a right-hand-side that

is regular in +S . Since −S and +S overlap, this left-hand-side and this right-hand-side

define a function that is regular in S. This function can then be extended to a regular

function in the entire complex plane. From the behaviour of this function at infinity and

Liouville's theorem (Ref. 2) it follows that this function is identically zero. Hence, the

aforementioned left-hand-side and right-hand-side are identically zero and from this

result we can derive the solution to the diffraction problem. As an example we give the

solution in region II (x>0, h<r<s):
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For regions I and III similar expressions are found.
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Fig 4 (a) The first and (b) the tenth radial mode coming from the Outlet Guide Vanes

(OGV) for m=10, k=80, and M=0.5.

RESULTS

Consider an interstage region ranging from x = − 0.2 up to x = 0.1. The position of the

hub is chosen to be at r = 0.4 and the position of the splitter at r = 0.6. We consider an

upstream fan with 25 rotor blades and a downstream stator with 55 stator vanes. The

Mach number is taken to be M = 0.5. Using a tip-Mach number of 0.8 for the fan, we

consider a frequency k = 80 of four times the blade-passing frequency. For the

circumferential mode number we consider m = 10. This results in 18 propagating modes

just downstream of the fan (region I), 6 propagating modes from the ESS (region II) and

12 propagating modes from the OGV (region III). In figures 3 and 4 we show the first

and fifth radial mode coming from the ESS and the first and tenth radial mode coming

from the OGV. All input amplitudes are set equal to 1. Both figures show contour plots

of the total potential field φafter diffraction.

Figures 3 and 4 show that the first radial modes propagate more or less

undisturbed, while the higher order modes experience more effect of the diffraction by
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the end of the splitter. This effect is even stronger when the circumferential mode

number is increased, but this is not shown here. Figures 3 and 4 also show that a small

part of the sound is being deflected ('bends around the splitter'). In fact, also a very

small part is reflected. However, most of the power reaches the trailing edge of the fan.

This is shown in table 1, where the dimensionless power is shown for the original wave

(input), the part that reaches the trailing edge of the fan, the part that is reflected and the

part that is deflected.

Power input trailing edge reflected deflected

Fig. 3a 78.216 77.284 0.44269 0.48903

Fig. 3b 55.883 54.884 0.46936 0.52897

Fig. 4a 79.352 79.341 0.0057552 0.0052132

Fig. 4b 50.264 49.722 0.28815 0.25383

Table 1 Dimensionless power for the different duct parts corresponding with figures 3

and 4

From table 1 we see that the effect of diffraction is larger for higher order radial

modes (compare Figs. 3a and 4a with Figs. 3b and 4b). Also the effect is larger for noise

coming from the ESS than coming from the OGV (compare Fig. 3 with Fig. 4). This

may be explained by the fact that the radial eigenfunctions have smaller amplitude at a

lower radial position, which becomes more distinct at higher radial order.

Although almost all the power reaches the fan, the distribution of radial modes

has changed by the diffraction. This is especially true for the higher order radial modes.

Due to this different distribution, the blockage of the noise by the fan may be different,

hence, resulting in different noise levels ahead of the fan. To illustrate this effect we

performed some rotor blockage calculations (see Ref. 3), the results of which are shown

in table 2.

Power Fig. 3a Fig. 3b Fig. 4a Fig. 4b

no splitter 69.750 56.400 21.470 6.428

splitter 62.904 12.542 21.307 12.728

difference 0.446 dB 6.529 dB 0.033 dB -2.967 dB

Table 2 Dimensionless power after rotor blockage and difference between splitter and

no-splitter case expressed in dB

In table 2 the dimensionless power after rotor blockage is shown for situations

corresponding with figures 3 and 4. When no splitter is considered, the inner duct and
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the outer duct are treated as separate ducts, also ahead of the fan. For these calculations

we used the power input levels of table 1. When the splitter is taken into account, the

same input levels are used, but first the effect of diffraction is calculated. This means

that only the power that reaches the fan (see table 1) is used for the blockage

calculations. In this case the fan blocks the noise coming from the stators and has a

larger effect than reflection by the splitter. However, the redistribution of power over

the radial modes by the splitter makes that the power level after rotor blockage may

decrease or increase when comparing the splitter case with the no-splitter case. An

explanation for this may be the fact that the fan blocks the noise better at larger radial

positions than at lower radial positions. Although for general wave packages the effect

of the splitter on rotor blockage calculations is unpredictable, it is clear that the effect of

splitter diffraction is important for a realistic modelling of turbofan engine noise.

CONCLUSIONS

The diffraction model presented here leads to a better description of noise propagation

in the interstage region of a turbofan engine. For the solution of the diffraction problem

the Wiener-Hopf technique is used, which yields a closed form solution. For a given

geometry, modal structure, and input amplitudes, output amplitudes are generated. The

model was applied to realistic turbofan configurations.

It was found that the effect of diffraction is larger on higher order radial modes

than on lower order radial modes. Also diffraction effects are more important for noise

coming from the ESS than for noise coming from the OGV.

At the frequency considered, the level of noise being reflected at the edge of the

splitter and bending back from ESS to OGV (or from OGV to ESS) is small as

compared to the level of noise propagating forward. However, due to diffraction a

redistribution of noise over the radial modes takes place. This redistribution has major

implications for the effect of rotor blockage.
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