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Problem area 

In this publication we report on our study of the performance of Deep 
Reinforcement Learning (DRL) agents in performing tasks that are illustrative for 
human Sensor Operators (SOs) in Remotely Piloted Aircraft Systems (RPASs). Our 
hypothesis is that the descriptive and predictive qualities of the agent's learning 
process potentially allow us to identify human task requirements, training needs, 
selection criteria and cut-off benchmarks. 

Description of work 

We (1) constructed tasks (games) that require some of the abilities of the SO, (2) 
devised DRL agents that have to learn these tasks and (3) performed initial learning 
tests with DRL agents on these tasks. In constructing the tasks, we took a two-
pronged approach. First we attempted with a state-of-the-art DRL algorithm to 
master a complex game, the Space Fortress (SF) game, designed by psychologists 
and previously used for e.g. training and selection in the aviation domain. Second, 
we constructed simple tasks (mini-games) that impose less demands on memory 
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capabilities, inferring unknown rules of the game and higher-order dynamical 

control. Three types of mini-games were constructed (navigation, shooting and 

tracking) each with a base-line task and three variations of increasing complexity. 

These address abilities of (1) visual tracking and spatial processing, (2) vigilance to 

multiple sources and divided attention and (3) discrimination respectively. 

Results and conclusions 

We present DRL results on tasks that cover different cognitive abilities required for 

an SO, using games as a method for learning. The full SF game could not be learned 

by our DRL agent using the A3C-LSTM algorithm. Learning proved to be mainly 

based on suppressing undesirable behavior, which in turn is the result of negative 

rewarding. Reward signals are not frequent enough to move the parameters of the 

DRL agent towards the correct gradient. Results on the SO mini-games showed that 

the base-line and the variation addressing visual tracking and spatial processing 

showed super- or par-human performance (within the limited world size used). The 

two more complex variations addressing divided attention and discrimination could 

not be mastered (though improved scores have been observed towards the end of 

the training). In a side experiment, positive transfer of training has been observed 

through progressive part-task training (up to 20% score increase in equal total 

training time).  

In conclusion, this work is a small step towards testing our initial hypothesis: to 

what extend can the descriptive and predictive qualities of a DRL agent’s learning 

process be fostered for human factor challenges such as identifying human task 

requirements, training needs, selection criteria or cut-off benchmarks. 

Applicability 

This work focuses on using DRL agents to learn complex tasks that are typical for 

aviation. Identifying similarities between the learning curves of humans and of DRL 

agents may allow NLR to use DRL agents to make predictions for its customers on 

the effectiveness and efficiency of selection, training and task environment for 

human operators.  

Follow-on trials will focus on comparison of the properties of human learning 

curves with those of DRL agents. These properties of the learning curve are, for 

example, initial performance level, slope of the learning curve and asymptotic 

performance level. In addition, similarities in transfer-of-training between DRL 

agents and humans will be investigated.  
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Abstract—In this paper we report on our study of the 
performance of Deep Reinforcement Learning (DRL) 
agents in performing tasks that are illustrative for human 
Sensor Operators (SOs) in Remotely Piloted Aircraft 
Systems (RPASs). Our hypothesis is that the descriptive 
and predictive qualities of the agent's learning process 
potentially allow us to identify human task requirements, 
training needs, selection criteria and cut-off benchmarks. 
We present DRL results on tasks that cover different 
cognitive abilities required for an SO, using games as a 
method for learning. 

I. INTRODUCTION  
Modelling human learning through neural processing 

has a long history, tracing back to Hebbian Learning in 
the forties of last century [1] . However, only recently, 
Deep Reinforcement Learning (DRL) agents became 
capable of learning and mastering a range of ‘vintage’ 
video games, based on merely a series of video 
images/frames, as the output of the agent’s own actions, 
which are either reinforced or weakened through reward 
signals (acquired game points) [2]. This inspired us to 
explore the potential of DRL networks to tackle “real-
life” tasks to investigate the learning process of aviators. 

The basic idea of this study is that if DRL agents can 
be used to construct a representative model for human 
learning, this model can then be applied for the purpose 
of personnel training, personnel selection and task 
design. A practical example would be to predict usability 
and trainability in case of changes to the working 
environment. Also, these agents could be deployed to 
determine optimal transfer-of-training between different 
training environments, as will be tentatively examined in 
this study. In terms of selection, DRL agents could be 
used as a reference for performance on selection tasks. 
Furthermore, DRL agents can be deployed to support 
humans in their working environment. To realize such 
potential applications, still much research is required 
regarding human learning models, the potential use of 
machine learning to simulate learning, as well as 
technological advancements of DRL algorithms. This 
study is a small step on this road exploring the potential 
of current DLR algorithms to successfully play serious 
games designed for human learning. 

In this paper we describe how machine learning has 
been applied to explore learning models of (sub) tasks 
relevant for Sensor Operators (SOs) in Remotely Piloted 

Aircraft Systems (RPAS). Serious games are used as a 
vehicle to assess DRL on its capability of learning 
certain cognitive abilities that are required for an SO in 
executing its tasks. In performing this assessment our 
aim is to gain insight into the potential applicability of 
current (and future) DRL algorithms in supporting 
human factor challenges in training and selection. 

The paper is structured as follows. Section II 
provides background literature on job analysis of SOs, 
gaming and machine learning. A connection between 
these three fields is proposed in section III.  In section IV 
we describe our approach of applying DRL on 
illustrative SO tasks using games. Section V outlines 
performed experiments and results after which we 
conclude in section VI. 

II. LITERATURE 

A. Human Factors in RPAS Operations 
Remotely Piloted Aircraft System (RPAS) have 

become increasingly valuable military assets, and 
reliance upon RPAS operations will continue to increase 
[3]. Operating RPAS systems require crews to fulfill 
new roles and tasks [4]. For example, the pilot remotely 
operates and navigates the aircraft during the en-route, 
mission, and return phase of flight. The sensor operator 
(SO) operates the on-board electro optical and infrared 
sensors from the ground control station.  

A variety of human factor challenges has been 
associated with RPAS operations and human operator 
roles. For instance, both pilots and SOs are prone to 
experience sensory isolation and reduced attention. 
Addressing such challenges is crucial to improve job 
performance and safety. Solutions include the design of 
suitable selection- and training methods and an improved 
working environment.  

B. Job Requirements for a Sensor Operator 
Two major approaches exist in job analysis, being 

task-oriented and worker-oriented [5]. The task-oriented 
approach focuses on the actual activities and tasks 
involved in performing the work [6]. Examples of SO 
tasks include monitoring sensors, selecting and providing 
data to analysts, detecting, identifying and tracking targets 
[7] [8] [9]. The worker-oriented approach focuses on 
abilities needed to perform a job successfully [6] [10]. 
Examples of abilities associated with SOs include 
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multitasking, spatial processing, and memory [4]. These 
abilities refer to intellectual mental functions and 
information processing abilities essential to SO job 
accomplishment [11]. 0 provides an overview of six core 
cognitive abilities related to SO job performance. These 
include cognitive proficiency, visual perception, attention, 
spatial processing, memory, and reasoning [4] [11]. SOs 
who  fall short on these abilities are prone to experience 
degrade job performance. Reference [12] found that 
working memory and logical reasoning are relatively 
strong predictors with respect to training progression and 
task performance of SOs.  

TABLE1           COGNITIVE ABILITIES OF A SO 

Cognitive Proficiency General cognitive ability 
Speed & accuracy of information processing 

Visual Perception Visual acuity, scanning & discrimination 
Visual recognition, tracking & analysis 

Attention 

Vigilance to multiple sources of visual & 
auditory information (situational awareness) 
Sustained & divided attention to visual & 
auditory information 

Spatial Processing 

Spatial analysis & orientation 
Spatial reasoning & construction (manipulation 
of 2-dimensional information into 4-
dimensional mental imagery 

Memory 

Visual & auditory memory (working, 
immediate & delayed) 
Spatial memory (working, short-term & 
delayed) 

Reasoning 

“Real-time” general and deductive reasoning 
(problem solving) 
Quickly assess risk, likely outcomes & 
potential repercussions (forward thinking) 
Quickly perceives the next steps and multitasks 
high level of information & procedures (task 
prioritization & management) 

 

The abilities illustrated above are referenced in the 
remainder of this paper when relating cognitive abilities 
to gaming and deep reinforcement learning. 

C. Gaming 
The use of games in selection and training of aviators 

has been studied for decades. When considering the 
domain of RPASs, the control environment bears large 
similarity with a video game environment. Gaming 
experience has been found to transfer the performance of 
RPAS pilots with respect to flight tasks [13] [14].  

A prime example is the game of Space Fortress (SF) 
[15]. This arcade-style game from the 80’s was developed 
by psychologists to study complex skill acquisition and 
has shown positive transfer of training to actual flight 
performance [16]. A screenshot of SF is illustrated in Fig. 
1. The goal of the game is to destroy a fortress while 
evading and destroying mines. An identify friend or foe 
(IFF) procedure has to be performed in order to be able to 
destroy the foe mines: based on alphanumeric characters 
that were briefly displayed at the start of the game, the 
player has to switch to the appropriate type of weapon for 
foe mine destruction. The game addresses a complex task 
that is representative of real-life tasks and is sufficiently 
difficult and challenging to keep the task interesting for 
human subjects during extended practice [15]. It can take 
up to 20 hours of training for humans to reach expert level. 

Not only is the game demanding in terms of perceptual, 
cognitive and motor skills required, it also requires 
knowledge of the rules and game strategy.  

 
D. Machine Learning 

Machine learning is a subfield of artificial intelligence 
that focuses on providing computers with the ability to 
learn a task without being explicitly programmed. 
Learning takes place supervised, unsupervised or 
reinforced through interactions with an environment [17]. 
In this work we focus on the last method which is known 
as reinforcement learning. More specifically we consider 
deep reinforcement learning (DRL) applied to game 
environments, a field which has shown considerable 
progress in recent years. In [2], Mnih et al. introduced a 
Deep Q-Network (DQN) that allowed DRL agents to play 
a diverse collection of Atari 2600 Games with, sometimes, 
super human performance. Agents merely used the screen 
pixels as input and learned how to play the game by 
performing actions and adapting the network based on the 
scoring progress of the game. This work has sparked much 
follow-up research addressing shortcomings such as 
dealing with exploration issues [18], sparse rewards [19] 
or partial observability [20], hereby increasing the 
performance of DRL agents in a wider variety of games 
and tasks.  

III. CONNECTING ABILITIES, GAMING AND MACHINE 
LEARNING 

In this study we analyze the performance of DRL 
agents in mastering certain cognitive abilities through 
gaming. This requires two aspects to be addressed: (1) the 
design of a suitable game that addresses the respective 
cognitive abilities and (2) the extent to which DRL would 
be able to learn those abilities through gaming. 

Addressing the former, instead of designing a new 
game, we limit ourselves to the Space Fortress (SF) game 
introduced in the previous section. SF is treated as a 
suitable candidate for this study since it has shown positive 
transfer of training [16] and has been linked to many of the 
cognitive abilities required for an SO as described in Table 
I. For instance: visual acuity, scanning & discrimination 
[21], vigilance to multiple sources of visual & auditory 
information [22] or spatial memory [23].  

Addressing the latter, an assessment has been made on the 
characteristics of DRL algorithms, focusing on their 
capability of demonstrating behavior that could be 

 
Fig. 1.   Screenshot of Space Fortress 
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associated with the cognitive abilities required for an SO 
while playing computer games. 0displays a summary of 
this assessment. 

TABLE II         ASSESSMENT OF DRL CAPABILITIES. 

Cognitive 
Proficiency 

For highly limited contexts with very specific tasks, 
DRL suggests a general cognitive ability (such as when 
playing Atari 2600 games). In relation to Atari style 
games, DRL is only applied for processing visual 
information. DRL seems capable of rapid and accurate 
visual information processing and in specific cases 
displaying super human performance, as demonstrated 
in gameplay on various Atari games. In some other 
instances, the performance of DRL is clearly below 
human performance. 

Visual 
Perception 

Visual acuity can be related to a neuroscientific basis 
for convolutional networks, as indicated in [24]. Where 
the human eye has a limited area of the field of view in 
high resolution, the network convolutes the complete 
screen in one single resolution. Discrimination is done 
implicitly and likely to depend on the extent to which a 
visual object is influential for maximizing the score. 
DRL can learn to recognize objects that are relevant for 
selecting the actions that maximize the score. Tracking 
does not take place explicitly, but DRL may be able to 
“predict” movement through Recurrent Neural Network 
(RNN) components (e.g. LSTM), and adapt its behavior 
accordingly. 

Attention In successfully learned games, DRL seems capable of 
handling multiple sources requiring attention at the 
same time, and behaves so to maximize a reward 
function. Combining multiple sources also seems 
possible; an example of a network simultaneously 
comparing multiple images as input is a Siamese 
network [25]. In successful DRL gameplay, the network 
does seem to display sustained and divided attention, as 
e.g. illustrated by t-SNE “saliency maps” in e.g. [2] . 
However, the relevance and hierarchy of the different 
types of attention can be very difficult to learn. This is 
an area of research on structuring of attention, e.g. with 
a hierarchy of tasks in feudal networks [26]. 

Spatial 
Processing 

The initial layers of the visual oriented DRL networks 
convolve the visual input in time, and thus relate to 
spatial analysis, orientation and movement and map 
spatial characteristics to actions. Seemingly dependent 
on the complexity of the physics, DRL can learn how to 
play the game. If the physics are more complex (e.g. 
acceleration based movement), the learning appears to 
become significantly more difficult. If the environment 
is not fully observable, spatial reasoning is expected to 
be unlikely as there is no built in model in the networks 
to reason with. 

Memory  The recurrent neural layer of a network could be 
regarded as immediate visual memory. The transitions 
stored in RNN components could be considered as the 
spatial context of the agent, but there is no explicit 
model. Delayed memory is not present, and working 
memory is an area of research [27]. 

Reasoning It seems possible to successfully combine deep neural 
networks with general and deductive reasoning 
techniques (e.g. tree search), to make use of Monte-
Carlo simulations and historic game play, as has been 
displayed with AlphaGo [28]. The problem of task 
prioritization and management exploration is central in 
reinforcement learning. There is much research in this 
field, e.g. in Hierarchical DQN [19] and feudal 
networks [26] 

 

Although the above assessment suggests that DRL 
networks would be capable to display certain abilities, still 
it is seen that its performance can highly depend on the 

complexity of the tasks, the action-space of the agent and 
the state-space of the environment within the game. 
Considering the game of SF, preliminary analysis suggests 
it may be too challenging to reach human-level 
performance. For instance, when considering the DQN 
algorithm described in [2], it was reported that the game 
Asteroids, a game which has similar game play elements to 
SF, only achieves 7% of human-level performance. 
However, several improved algorithms have been 
proposed in recent times that may achieve better results.  

IV. REINFORCEMENT LEARNING APPLIED TO SO TASKS 
In the previous section, a qualitative assessment was 
performed on the capabilities of DRL with respect to the 
cognitive abilities of an SO. To investigate these 
capabilities in a game setting, experiments are conducted 
following two approaches. In the first approach we attempt 
to apply DRL to the full game of SF using state-of-the-art 
algorithms. This approach can be seen as whole-task 
learning in which DRL is confronted with learning 
multiple abilities at once required to play the game 
Experimental results of this approach are described in the 
next section. In the second approach we break down the 
problem domain into so-called mini-games to investigate 
the performance of DRL. The mini-games are designed to 
address one or more selected cognitive abilities that would 
be required to master such games. Further, game elements 
are incorporated that are illustrative for sub-tasks of an 
SO. At a later stage, separate tasks can be combined to 
represent more complex cognitive tasks. This cumulative 
approach towards learning tasks is also seen in humans 
and is known as part-task training. For instance, in [29], 
the SF game was decomposed into separate sub-tasks, 
trained human subjects on the tasks and then verified the 
performance of the subjects on the overall game. 
Experimental results indicated that training on the sub-
games made the subjects perform better on the overall 
game. 

Fig. 2 provides an overview of the mini-games that 
have been proposed in order to investigate the 
performance of DRL on illustrative SO tasks and 
associated cognitive abilities. They can be categorized 
across two dimensions, namely task-oriented and worker-
oriented. 

 

 
Fig. 2. Overview of the Sensor Operator mini-games 
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1) Task-oriented: In Fig. 2, different rows represent 
different task-oriented game elements, consisting of a 
navigation task, a shooting task and a tracking task. In the 
navigation task the player’s goal is to intercept and avoid 
enemies and friendlies respectively. In the shooting task the 
goal is to shoot enemies (and prevent friendly fire). In the 
tracking task the goal is to track targets with a sensor beam. 
These tasks can roughly be related to different tasks of an 
SO: operating the camera to navigate and orient; to aim and 
operate weapon systems; and to acquire targets, track 
targets and perform FFI-identification (friend or foe). 

2) Worker-oriented: In Fig. 2, different columns 
represent worker-oriented game elements. These are 
variations to the task-oriented games and increase or 
decrease the cognitive proficiency that is required. The 
variations are (1) dynamics (differentiating between static 
and moving targets); (2) quantity (varying the number of 
targets); and (3) discrimination (differentiating between 
enemies and friendlies). These variations can be related to 
the cognitive abilities that have been identified in 0. For 
instance, the inclusion of moving targets affects visual 
perception (visual acuity) and spatial processing; 
increasing the amount of targets affects attention 
(vigilance to multiple sources and divided attention); and 
differentiating between enemies and friendlies affects 
visual discrimination. Further, all three variations relate to 
cognitive abilities such as speed and accuracy of 
information processing. Note that each variation builds 
upon the previous variation, thus adapting task 
complexity in an incremental manner. The specific 
ordering of the variations that was chosen could also have 
been different. 

V. EXPERIMENTS AND RESULTS 
In this section we describe the experiments that have 

been performed and their results on applying DRL on the 
SF game (top-down approach) and SO-mini games 
(bottom-up approach) respectively. 

A. Space Fortress 
The game of SF was introduced in section II.C. This 

arcade style game displays similarities with the Atari 2600 
games that were used in DRL research [2]. Applying DRL 
to the SF game, initially the open-source library of 
SimpleDQN was employed [30]. This library was 
developed with the goal to replicate DeepMind’s results 
from [2]. An OpenAI Gym environment [31] was created 
to connect the Deep Q-learning Agent and the game 
framework. Subsequently GoogleDQN [32] was used for 
learning to play SF. The networks for both DQN methods 
did not learn to play the game and did not show significant 
progress during training. As a consequence, sub-tasks of 
the game were identified and trained separately, namely an 
aiming task and a navigation task. Learning progress was 
seen but still clearly far below human performance. 

As a next effort a more recent DRL algorithm was 
tried, namely A3C+LSTM [18].This algorithm is said to 
improve in situations where extensive spatio-temporal 
planning is required (as is the case in SF). After training 
for an extensive period, the results were very limited. 

Within SF, the tasks that achieve positive rewards are 
extremely sparse. An example of the complexity of getting 
rewards lies in the unique method for destroying the 
fortress: only when firing ten times with an interval of at 
least 250 msec. and then a consecutive 11th time within 
250 msec. leads to significant reward. Note that for 
humans playing the game, such a game rule is known 
beforehand.  

Analysis on the results suggest that the ‘punishments’ 
players receive for undesired behavior limits the network’s 
exploration in behavior that could lead to the (sparse) 
rewards. However, through negative reinforcement alone, 
the agent was still able to learn a few things. The agent 
was able to quickly suppress the firing behavior: when not 
suppressed, it resulted in many consecutive negative 
rewards when firing while empty. It also learned a moving 
pattern that is slightly better than random behavior in 
terms of total reward per game.  

In order to investigate learned flying behavior 
compared to random play, we removed any action output 
that includes firing from the random play test and 
observed the rewards. The flying behavior, as manifested 
by the total rewards per game, still seems to be noticeably 
better on average. An average score of -2350 was observed 
throughout learning, whereas random play, and random 
play with firing disabled achieved -11106 and -3026 
respectively. Successful exploration of a hierarchically 
complex reward space is a field of very active research. 
We believe that games such as SF will greatly benefit from 
this research in the coming years. 

B. Sensor Operator-mini games 
All twelve mini-games from Fig.2. have been 

implemented in a custom game framework. In all tasks 
(navigation, shooting and tracking), the basic variation 
includes one static enemy which becomes dynamic in the 
dynamics variation. Dynamic objects follow a predictable 
trajectory and do not exhibit AI themselves. In the quantity 
variation, two dynamic enemies are used whereas in the 
discrimination variation, a dynamic friendly is introduced. 
When the player reaches a goal (intercepts, shoots or 
tracks), the corresponding target is respawned in the world 
at a new random location. To give insight into the state 
space of these games, the world size is 7x7 units; the 
object size is one unit with a 0.1 units per step moving 
speed. Player rotation is done in 11.25 degrees per step. 
This relatively small state space is used since early 
experiments have shown that large state spaces require 
significantly longer training time for DRL algorithms. 

Similar to the top-down effort of SF, SimpleDQN 
was employed [30]. Agent observations were encoded as 
game frames of 48x48 pixels in gray-scale. Rewards for 
the agent during training directly relate to an increase or 
decrease of the game’s score (e.g. enemy hit results in 
+1, friendly hit results in -1). Training on each game was 
performed for at least 25 million training steps (frames) 
which corresponded to about 30 hours of training (faster 
than real-time) per mini-game on the computers used. 

0illustrates the results of the experiments for each 
task (navigation, shooting and tracking) and for each 
variation. Training results are compared to human scores 
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based on the average of five iterations of playing a game 
(consisting of 5000 steps). Agent scores are expressed as 
percentages compared to human scores. Training results 
are used from the best performing epoch (learning 
iteration). As a baseline, scorings of an agent performing 
random actions are included.  

TABLE III           SO MINI-GAMES RESULTS 

Navigation Task 
 Basic Dynamics Quantity Discrimination 
Agent score 109% 91% 66% 22% 

Random score 3% 18% 30% 13% 
Shooting Task 

 Basic Dynamics Quantity Discrimination 
Agent score 120% 101% 76% 71% 

Random score 6% 21% 25% 16% 
Tracking Task 

 Basic Dynamics Quantity Discrimination 
Agent score 102% 102% 96% 92% 

Random score 18% 15% 21% 13% 
 

Looking at the results, in the basic and dynamics 
variations the agent reaches super-human or (near) par-
human performance in all tasks. The only significant 
super-human performance is seen in the basic shooting 
task in which the agent excels in reaction time and 
accuracy. In the quantity and discrimination variations, 
the agent performs sub-human and performance starts to 
degrade in relation to the complexity of the task. 
However, agent performance still increases at the end of 
the training time which suggests opportunities for an 
agent to improve when trained longer.  

A difference in difficulty in learning a task is also 
clearly observed from the agent’s performance for each 
task. In the navigation task, the lowest performance is 
seen, followed by the shooting task, followed by the 
tracking task. We believe this difference is due to the 
difficulty for an agent to obtain a reward for a task. In 
the navigation task, random actions in the early training 
phases rarely lead to rewards. In the tracking task, 
rewards are immediate and much easier to obtain. 

In an attempt to decrease the training time for 
complex mini-games an additional experiment was 
performed. The goal of this experiment was to verify if 
training time of a complex variation could be reduced 
through progressive part-task training. Training results 
from a less complex variation were used as input for a 
more complex variation. Research has shown that such a 
strategy is beneficial for human learning [29]. We 
considered the navigation/discrimination task. Initial 
(non-part-task) training on this task reached 54% human 
performance after 75 million frames. Alternatively, this 
task was trained incrementally by first training the 
dynamics variation, followed by the quantity variation 
and concluding with the discrimination variation. 
Training time of part-tasks was divided equally (hereby 
reaching the same amount of training time). Results 
showed an increase of 20% of the score, resulting in 
65% human performance. This suggests positive transfer 

of training, such that less overall training time is required 
when tasks are learned incrementally. Fig. 3. shows the 
learning progress of the quantity and discrimination 
variations with and without pre-training. The influence 
the specific ordering of variations has with respect to 
incremental part-task training has not been investigated 
and is left for future work. 

 

VI. CONCLUSIONS AND FUTURE WORK 
This work is a small step towards testing our initial 

hypothesis: to what extend can the descriptive and 
predictive qualities of a DRL agent’s learning process be 
fostered for human factor challenges such as identifying 
human task requirements, training needs, selection criteria 
or cut-off benchmarks. As a first step, in this study we 
explored the potential of DRL agents in performing tasks 
which are illustrative for RPAS sensor operators. Gaming 
was used as a connection: on the one hand, games can be 
used by humans to enhance cognitive abilities that can be 
transferred to real-life tasks. On the other hand, recent 
developments in DRL algorithms have shown promising 
results in their application to games. We (1) constructed 
tasks (games) that require some of the abilities of the SO, 
(2) devised DRL agents that have to learn these tasks and 
(3) performed initial learning tests with DRL agents on 
these tasks. 

In constructing the tasks, we took a two-pronged 
approach. First we attempted with a state-of-the-art DRL 
algorithm to master a complex game, the Space Fortress 
(SF) game, designed by psychologists and previously used 
for e.g. training and selection in the aviation domain. 
Second, we constructed simple tasks (mini-games) that 
impose less demands on memory capabilities, inferring 
unknown rules of the game and higher-order dynamical 
control. Three types of mini-games were constructed 
(navigation, shooting and tracking) each with a base-line 
task and three variations of increasing complexity. These 
address abilities of (1) visual tracking and spatial 
processing, (2) vigilance to multiple sources and divided 
attention and (3) discrimination respectively. 

 
Fig. 3. Progressive part-task training results for the navigation 

task: comparing no pre-training (A,C) versus pre-training 
(B,D) 
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The full SF game could not be learned by our DRL 
agent using the A3C-LSTM algorithm. Learning proved to 
be mainly based on suppressing undesirable behavior, 
which in turn is the result of negative rewarding. Reward 
signals are not frequent enough to move the parameters of 
the DRL agent towards the correct gradient. Results on the 
SO mini-games showed that the base-line and the variation 
addressing visual tracking and spatial processing showed 
super- or par-human performance (within the limited 
world size used). The two more complex variations 
addressing divided attention and discrimination could not 
be mastered (though improved scores have been observed 
towards the end of the training). In a side experiment, 
positive transfer of training has been observed through 
progressive part-task training (up to 20% score increase in 
equal total training time). 

In conclusion, our DRL agents have been able to 
successfully learn abilities in different mini-games of 
very limited complexity. Higher efficiency in learning 
was seen when using progressive part-task training. In 
more complex task settings such as the Space Fortress 
game, current DRL algorithms fall short. In further 
research we plan to compare the properties of human 
learning curves (e.g. starting level, slope and asymptote) 
as well as the conditions for transfer learning (transfer-
of-training) with DRL agents and humans. 
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