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Piecewise deterministic Markov processes (PDPs) are known as the largest class of Markov processes
virtually describing all continuous-time processes not involving diffusions. For PDPs, a substantial
amount of powerful analysis and control results are available. As such, PDPs are attractive for use in
modelling complex distributed systems. However, the specification of an appropriate PDP model for
complex distributed systems that exist in practice is far from trivial. This difficulty already applies for the
specification of a continuous-time Markov chain (CTMC). For a compositional specification of a CTMC
model, Petri Nets have proven to be extremely useful. In order to realise a similar situation for PDP, this
paper develops a novel type of Petri Net, named dynamically coloured Petri Net (DCPN), and proves that
there exist into-mappings between PDPs and DCPNs.†

Keywords: Piecewise deterministic Markov processes; High-level Petri Nets; Hybrid systems;
Modelling; Poisson process; Discrete event systems

AMS 1991 Classification: 60G07 (General theory of processes); 93E03 (Stochastic systems general)

1. Introduction

1.1 Aim of the paper

Mark Davis [1] has introduced piecewise deterministic Markov processes (PDPs) as a

general class of continuous-time Markov processes which include both discrete and

continuous processes, except diffusion. Suppose K is a countable set, d is a mapping of K in

the natural numbers, moreover Ek, with k [ K, is an open connected subset of RdðkÞ with

boundary ›Ek; whereas E ¼ {ðk; xÞ; k [ K; x [ Ek}: Then a PDP {jt} with jt assuming

values in E, consists of two components: a discrete valued component {ut}; ut [ K, and a

continuous valued component {xt}; xt [ Ek; see [1,2]. At discrete times, {ut} may jump from

one value to another value which is selected according to some probabilistic relation.

Between jumps, the continuous valued component is a solution of a ut-dependent

differential equation _xt ¼ gut
ðxtÞ: At discrete moments in time, {xt} may jump according
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to some probability measure Q, which makes it only piecewise continuous. The PDP state

is given by jt ¼ Col{ut; xt}; and is called a hybrid state. A jump in {xt} and/or {ut}

occurs either when a doubly stochastic Poisson process generates a point with rate

lðut; xtÞ or when {xt} hits the boundary ›Eu of a predefined area. PDPs are defined such

that their sample paths are right-continuous and have left-hand-side limits, often

abbreviated as càdlàg, which is an acronym for the French “continu à droite, limites à

gauche”, see e.g. [3]. PDPs form a powerful and useful class of processes that have strong

support in stochastic analysis and control. In addition to this, PDP’s relationship to hybrid

automata is well known [4].

Petri nets [5], and their many extensions, see e.g. [6] for a good overview, have proven to

be extremely useful in developing models for various complex practical applications. This

usefulness is especially due to their compositional specification power [5], which allows to

divide a complex operation into entities, to develop a submodel for each such entity, and next

to combine the submodels in a constructive way. The aim of the paper is to introduce a novel

class of hybrid Petri nets and to show that there exist into-mappings between this novel class

of hybrid Petri nets and the class of PDPs. The existence of such into-mappings allows

combining the compositional specification power of Petri nets with the stochastic analysis

and control power of PDPs.

The idea of establishing into-mappings between Petri nets and stochastic processes in

order to combine advantages of both classes is well developed for finite state processes.

In particular, Malhotra and Trivedi [7] and Muppala et al. [8] developed a hierarchy of

various dependability models based on their modelling power. At the top of this hierarchy are

continuous-time Markov chains (CTMC) on the one hand, and generalised stochastic Petri

Nets (GSPN) on the other hand. GSPN have already been well established for developing

CTMC for complex practical discrete-valued applications [7]. As shown by Davis [1],

CTMC form a particular subclass of PDPs. Hence, this paper extends the power hierarchy

with PDPs and with PDP-related Petri nets.

1.2 Basic Petri net

A Petri net graph is a directed bi-partite graph with two types of nodes: places and

transitions, coupled by arcs (arrows). The transitions (rectangles) generally model actions,

the places (circles) generally represent possible pre or post conditions for these actions.

A basic Petri net is a Petri net graph with one or more places containing one or more tokens

(dots). A token residing in a place models a pre condition being current. In general, multiple

tokens are allowed in a Petri net, even inside one place, such that compound pre conditions

can be modelled without explosion of the size of a Petri net graph. In its simplest form, the

execution of a Petri net is as follows: a transition is said to be enabled if each of its input

places contains a token. When this occurs, the transition fires: it removes the tokens from its

input places and produces tokens for its output places. In addition to an ordinary arc, in

literature it is common practice to also use in a basic Petri net an enabling arc from a place to

a transition (the working of the connected transition is similar as for ordinary arc, but upon its

firing, it does not remove the token from its input place) or an inhibitor arc from a place to a

transition (the connected transition becomes disabled when its input place contains a token).

See figure 1 for a very simple Petri net example with two places and two transitions. In this

figure, place P1 is current and transition T2 is enabled. After T2 has fired, place P2 is current.

M.H.C. Everdij and H.A.P. Blom2
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A basic Petri net as defined above can represent some of the elements of a PDP only:

If we draw a place Pu for each element u of K, and couple these places with transitions and

arcs, then the resulting Petri net gives the structure of discrete PDP states, where the

transitions model possible mode switches. However, an important modelling capability still

missing is to model the continuous-valued process component {xt} of a PDP and events

depending of this {xt}.

1.3 PDP-driven extensions of Petri nets

In order to represent PDP by means of Petri nets, we have to extend the basic Petri net

definition with novel elements until we can prove the existence of a one-to-one mapping

between PDP and the resulting Petri net extension. Necessary elements to be added are:

. Element to model a continuous-valued process component. We solve this by introducing a

colour function C which maps each place Pu into finite set S of Euclidean spaces, and

attach to each token in place Pu a colour process ct [ CðPuÞ: This specific extension of

a basic Petri net with Euclidean valued colour elements has been introduced in [9].

The term colour, referring to a value or an identification attached to a token, was

introduced in [10], who considered finite colour sets only.

. Element to change a colour dynamically with time. We solve this by coupling to each

place Pu the PDP function gu and let the process ct evolve according to _ct ¼ guðctÞ as long

as the token resides in place Pu. This specific extension over a basic Petri net has

originally been introduced both in [11] and [12].

. Element to model Boundary hitting process. We solve this by coupling a boundary to

some of the transitions, which we name Guard transitions. If an input place for such

Guard transition is Pu, then the transition is associated with a boundary ›Eu: If place Pu

has a token from time t onwards, with this token having a (dynamically evolving)

colour ct at time t . t, then the transition will be enabled (and remove the token from Pu)

at the time when the token colour ct hits ›Eu: This specific extension over a basic Petri

net has originally been introduced both in [11] and [12]. The concept of guards was

introduced by [10], for token colours that do not dynamically evolve while they reside in

their place.

. Element to model Poisson type of jumps. We solve this by coupling random delays to

some of the transitions, which we name delay transitions. If an input place for such delay

transition is Pu, then the transition is associated with the enabling rate l(u, ·). If place Pu

has a token from time t onwards, with this token having a (dynamically evolving) colour

Figure 1. A simple Petri net and its building stones. Place P1 is current and transition T2 is enabled.
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ct at time t . t; then the transition will be enabled (and remove the token from Pu) at the

time when a Poisson point process with enabling rate l(u, ct) generates a point. This type

of extension, but with Poisson-type of enabling rates that are not colour-dependent, is well

known, see e.g. [13]. The specific extension of colour-dependent enabling rates has

originally been introduced in [11].

. Element to model probability measure. We solve this by coupling a probability measure

to each transition, and naming this measure a firing measure. When the transition is

enabled (i.e. its delay has passed or its boundary has been hit by the colour of the input

token), then this firing measure determines the colour of the output token, based on the

colour of the input token. This specific extension over a basic Petri net has originally been

introduced both in [11] and [12].

The Petri net, extended with these elements, is named dynamically coloured Petri net

(DCPN), referring to the notion that its tokens have values (i.e. are coloured) that change

through time (i.e. dynamically).

In addition to defining DCPN, the key contribution of this paper is to prove the existence

of one-to-one mappings between DCPN and PDP. The mapping of a PDP into DCPN is

rather straightforward. The mapping of a DCPN into a PDP is however, more demanding.

The two main challenges of the latter mapping are: (a) in a DCPN, a sequence of immediate

transitions may fire at a single moment in time, while for PDP at each moment in time only

one jump may occur; (b) in a DCPN, there is a non-fixed number of tokens which evolve

individually, while a PDP is represented by a single hybrid state. For the mapping of DCPN

into PDP, problem (a) is overcome by defining a pathwise unique càdlàg stochastic process

that is generated by a DCPN. Problem (b) is overcome by constructing the reachability

graph of the DCPN considered, and using the resulting nodes as the basis for the discrete

set of PDP.

The development of this DCPN idea started in [11] and was continued in [14]. The current

paper realises a significant improvement over these earlier results.

1.4 Hybrid Petri nets in literature

This section discusses how other hybrid kinds of main Petri nets extensions from literature

relate to PDPs.

One interesting Petri Net extension is named hybrid Petri net [15], which is a

generalisation of continuous Petri net [16]. Besides places that may contain discrete tokens,

the hybrid Petri net has places that may contain a non-negative real-valued amount of tokens.

Transitions connected to these places consume continuous amounts of these tokens at certain

quantities per time unit and next produce these amounts for other continuous places. The

state of the hybrid Petri net at each time instant t is written as a vector giving for each place its

marking, i.e. the amount of tokens it contains. The marking of a place at a later time instant is

equal to the marking at time t, minus the amount of token consumed by output transitions of

the place, plus the amount produced by input transitions of the place. Since a change of

marking for one place automatically incorporates a change of marking for another place, and

since all amounts of tokens should be non-negative, into-mappings between PDPs and hybrid

Petri nets are far from obvious.

Related to hybrid Petri net is fluid stochastic Petri net [17], which also moves fluid tokens

between continuous places and discrete tokens between discrete places. The transition times

M.H.C. Everdij and H.A.P. Blom4
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for the discrete tokens are exponentially distributed (possibly depending on the fluid level)

such that the discrete Petri net part gives rise to a continuous time Markov process. The

discrete token marking influences the continuous flow rate between the continuous places.

In the continuous net, conservation of token mass is to be preserved. Hence, into-mappings

between PDPs and fluid stochastic Petri nets are generally not feasible.

In extended coloured Petri net (ECPN), as introduced in [9], the token colours are real-

valued vectors that may follow the solution path of a difference equation. The token colour is

updated in an external loop around its residence place by an additional updating transition.

The state of the ECPN is given by the current colours of all tokens and the places they reside

in. PDPs might be represented by ECPN but only in an approximate way: the mode values

might be mapped to the places and the drift process might be mapped to the colours of the

tokens; however, the continuous-time drift process component has to be approximated by

means of a discrete-time difference equation. This makes that a boundary hitting can never be

exactly timed. Moreover, the necessary presence of updating transitions may result in a very

large Petri net graph when modelling a complex process.

High-level hybrid Petri net (HLHPN) has been introduced in [18] as a further elaboration

of hybrid Petri net. In an HLHPN there are two kinds of places: the usual places for discrete

tokens and a new type of places storing real-valued tokens which follow the solution path of a

differential equation. A token switch between discrete places may generate a jump in the

value of the real valued vector. Advantage of this extension with respect to hybrid Petri net is

that continuous valued processes can be modelled that do not need to have a positive value.

Advantage with respect to ECPN is the avoidance of the time discretisation. Similarly as with

ECPN, HLHPNs use updating transitions which still may result in a very large Petri net graph

when modelling a complex process.

Related to HLHPN are differential Petri nets [19], which have discrete places (having a

non-negative integer marking), differential places (having a real valued marking, which can

also be negative), discrete transitions and differential transitions. A differential transition is

enabled if its discrete input places contain a number of tokens that is larger than or equal to

the weight of the corresponding arcs. An enabled differential transition that fires yields a

change of marking equal to the speed of the transition, times the weight of the corresponding

arc. This speed may be a constant, a linear combination, or a non-linear function of the

markings connected to the transition (the speed may also be negative). The facts that time is

discretised and that the markings are one-dimensional, may result in a very large Petri net

graph when modelling a complex process. Moreover, mode switches are enabled by integer

bounds only.

Differential predicate transition Petri nets (DPT Petri Nets) [12] associate variables to each

token, associate a differential equation to each place and associate an enabling function and a

junction function to each transition. The token-associated variables follow the solution of the

place-associated differential equation, and the transition-associated enabling function

triggers the firing of the transition according to the value of the input tokens of these

transitions. The transition-associated junction function defines the value of the output tokens

of the transition at the firing. DPT Petri nets do not support transitions which represent the

Poisson type of jumps of PDP.

This overview leads to the conclusion that there are many valuable Petri net extensions

available in literature that are related to PDPs; however, for none of them into-mappings with

PDPs are known, and difficulties are foreseen trying to develop such into-mappings.

PDPs and Petri nets 5
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1.5 Organisation of the paper

The organisation of the paper is as follows. Section 2 briefly describes PDPs. Section 3

defines DCPNs. Section 4 shows that each PDP can be represented by a DCPN process.

Section 5 shows that each DCPN process can be represented by a PDP. Section 6 presents a

DCPN model for a simple aircraft evolution example and its mapping to a PDP. Section 7

draws conclusions.

2. Piecewise deterministic Markov processes

2.1 PDP brief explanation

A piecewise deterministic Markov process {jt}, with jt ¼ ðut; xtÞ; is defined as follows

(see Davis [2]): For each u in its countable domain K, let Eu be an open connected subset† of

RdðuÞ; and d is a function that maps K into N. For each u [ K, consider the ordinary

differential equation _xt ¼ guðxtÞ; where gu : RdðuÞ ! RdðuÞ is a locally Lipschitz continuous

function. Given an initial value x [ Eu, this differential equation has a unique solution given

by the flow fu;x: This means that if at some time instant t the PDP state assumes value

jt ¼ ðut; xtÞ; then, as long as no jumps occur, the PDP state at t $ t is given by jt ¼

ðut; xtÞ ¼ ðut;fut;xt ðt 2 tÞÞ: At some moment in time, however, the PDP state value may

jump. Such moment is generated by either one of the following events, depending on which

event occurs first:

1. A Poisson point process with jump rate lðut; xtÞ; t . t generates a point.

2. The piecewise continuous process xt is about to hit the boundary ›Eut of Eut ; t . t:

At the moment when either of these events occurs, the PDP state makes a jump. The value

of the PDP state right after the jump is generated by using a transition measure Q, which is

the probability measure of the PDP state after the jump, given the value of the PDP state

immediately before the jump. After this, the PDP state jt evolves in a similar way from the

new value onwards.

2.2 PDP execution

The PDP process is generated through time as follows: Suppose at time t0 Q 0 the PDP initial

state is j0 ¼ (u0, x0), then, if no jumps occur, the process state at t $ t0 is given by

jt ¼ ðut; xtÞ ¼ ðu0;fu0;x0
ðt 2 t0ÞÞ: The complementary distribution function for the time of

the first jump (i.e. the probability that the first jump occurs at least t 2 t0 time units after t0),

also named the survivor function of the first jump, is then given by:

Gj0
ðt 2 t0Þ Q Iðt2t0,t*ðu0;x0ÞÞ · exp 2

ðt

t0

lðu0;fu0;x0
ðs 2 t0ÞÞds

� �
; ð1Þ

where I is an indicator function and t*(u0, x0) denotes the time until the first boundary hit after

t ¼ t0; which is given by t*ðu0; x0ÞQ inf{t 2 t0 . 0jfu0;x0
ðt 2 t0Þ [ ›Eu0

}: The first factor

†Note that [2] extends Eu to E 0
u ¼ Eu < ›1Eu; with Eu an open subset of Rd(u) and ›1Eu those points on the

boundary of Eu from which Eu can be reached by the flow f, but which cannot be reached from the interior of Eu

M.H.C. Everdij and H.A.P. Blom6
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in Expression (1) is explained by the boundary hitting process: after the process state has hit

the boundary, which is when t 2 t0 ¼ t*ðu0; x0Þ; this first factor ensures that the survivor

function evaluates to zero. The second factor in Expression (1) comes from the Poisson

process: this second factor ensures that a jump is generated after an exponentially distributed

time with a rate l that is dependent on the PDP state.

The time t1 until the first jump after t0 is generated by drawing a sample from Gj0
ð·Þ:

In practice, a sample from a general distribution is generated by first drawing a sample from a

uniform distribution on [0,1], and then using a transformation (based on the inverse of this

general distribution). More formally (see Section 23 of [2]), the Hilbert cube V ¼
Q1

i¼1Yi;

with Yi a copy of Y ¼ ½0; 1�; provides the canonical space for a countable sequence of

independent random variables U1, U2,. . ., each having uniform [0,1] distribution, defined by

UiðvÞ ¼ vi for elements v ¼ ðv1;v2; . . .Þ [ V: Now, define

c1ðu; j0Þ ¼
inf{t : Gj0

ðt 2 t0Þ # u}

þ1 if the above set is empty

(

and define s1ðvÞ ¼ t1ðvÞ ¼ c1ðU1ðvÞ; j0Þ; then t1 is the time until the first jump.

The value of the hybrid process state to which the jump is made is generated by using the

transition measure Q, which is the probability measure of the hybrid state after the jump,

given the value of the hybrid state immediately before the jump. The Hilbert cube from

above is again used: Let c2 : ½0; 1� £ ðE < G*Þ! E; with E ¼ <uEu and G* the reachable

boundary of E, be a measurable function such that l{u : c2ðu; jÞ [ B} ¼ QðB; jÞ for B Borel

measurable. Then jt1
¼ c2ðU2ðvÞ; jÞ is a sample from Qð·; jÞ:

With this, the algorithm to determine a sample path for the hybrid state process jt, t $ 0,

from the initial state j0 ¼ (u0, x0) on, is in two iterative steps; define t0 Q 0 and let for k ¼ 0;

jtk
¼ ðutk

; xtk
Þ be the initial state, then for k ¼ 1; 2; . . . :

Step 1: Draw a sample sk from survivor function Gjtk21
ð·Þ; i.e. sk ¼ c1ðU2k21ðvÞ; jtk21

Þ:

Then the time tk of the kth jump is tk ¼ tk21 þ sk: The sample path up to the kth

jump is given by

jt ¼ ðutk21
;futk21

;xtk21
ðt 2 tk21ÞÞ; tk21 # t , tk and tk # 1:

Step 2: Draw a multi-dimensional sample zk from transition measure Qð·; j 0tk
Þ; where

j 0tk
¼ ðutk21

;futk21
;xtk21

ðtk 2 tk21ÞÞ; i.e. zk ¼ c2ðU2kðvÞ; j
0
tk
Þ: Then, if tk , 1;

the process state at the time tk of the kth jump is given by

jtk
¼ zk:

2.3 PDP conditions

Following Section 24.8 of [2], the PDP conditions are:

C1 gu is a locally Lipschitz continuous function, which, for each initial state (u, x),

determines a flow fu;xð·Þ: If t1ðu; xÞ denotes the explosion time of the flow fu;xð·Þ; i.e.

jfu;xðtÞj!1 as t " t1ðu; xÞ; then it is assumed that t1ðu; xÞ ¼ 1 whenever t*ðu; xÞ ¼

1: In other words, explosions are ruled out.

C2 With E ¼ <uEu; l : E ! Rþ is a measurable function such that for all j [ E, there is

eðjÞ . 0 such that t ! lðu;fu;xðtÞÞ is integrable on ½0; eðjÞ½:

PDPs and Petri nets 7
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C3 With E as above and G* the reachable boundary of E, Q maps E < G* into the set of

probability measures on (E, 1), with 1 the Borel-measurable subsets of E, while for

each fixed A [ 1; the map j ! Q(A; j) is measurable and Qð{j}; jÞ ¼ 0:

C4 If Nt ¼
P

kIðt$tkÞ; then it is assumed that for every starting point j and for all t [ Rþ;

ENt , 1: This means, there will be a finite number of jumps in finite time.

3. Dynamically coloured Petri net (DCPN)

This section presents a definition of DCPN. As much as possible, the notation introduced by

Jensen [10] for coloured Petri net is used.

Definition. A DCPN is an 11-tuple DCPN ¼ ðP; T ;A;N ;S; C;V;G;D;F ; I Þ; together

with some rules R0–R4. Below, first the structure of the elements in the tuple is given, next

the DCPN evolution through time is explained, finally, the DCPN generated process is

outlined.

3.1 DCPN elements

The DCPN elements are defined as follows:

1. P is a finite set of places. In a graphical notation, places are denoted by circles:

Place:

2. T is a finite set of transitions, such that T > P ¼ Y: The set T consists of (1) a set T G

of guard transitions, (2) a set T D of delay transitions and (3) a set T I of immediate

transitions, with T ¼ T G < T D < T I ; and T G > T D ¼ T D > T I ¼ T I > T G ¼ Y:
Notations are:

Guard transition: Delay transition: Immediate transition:

3. A is a finite set of arcs such that A> P ¼ A> T ¼ Y: The set A consists of (1) a set

AO of ordinary arcs, (2) a set AE of enabling arcs and (3) a set AI of inhibitor

arcs, with A ¼ AO <AE <AI ; and AO >AE ¼ AE >AI ¼ AI >AO ¼ Y:
Notations are:

Ordinary arc: 
! Enabling arc: Inhibitor arc:

4. N : A! P £ T < T £ P is a node function which maps each arc A in A to a pair of

ordered nodes N ðAÞ: The place of N ðAÞ is denoted by P(A), the transition of N ðAÞ

is denoted by T(A), such that for all A [ AE <AI : N ðAÞ ¼ ðPðAÞ;TðAÞÞ and for all

A [ AO : either N ðAÞ ¼ ðPðAÞ; TðAÞÞ or N ðAÞ ¼ ðTðAÞ;PðAÞÞ: Further notation:

. AðTÞ ¼ {A [ AjTðAÞ ¼ T} denotes the set of arcs connected to transition T, with

AðTÞ ¼ AinðTÞ< AoutðTÞ; where

. AinðTÞ ¼ {A [ AðTÞjN ðAÞ ¼ ðPðAÞ; TÞ} is the set of input arcs of T and

. AoutðTÞ ¼ {A [ AðTÞjN ðAÞ ¼ ðT;PðAÞÞ} is the set of output arcs of T. Moreover,

. Ain;OðTÞ ¼ AinðTÞ>AO is the set of ordinary input arcs of T,

. Ain;OEðTÞ ¼ AinðTÞ> {AE <AO} is the set of input arcs of T that are either

ordinary or enabling, and

. P(A(T)) is the set of places connected to T by the set of arcs A(T).

Finally, {Ai [ AI j’A [ A;A – Ai : N ðAÞ ¼ N ðAiÞ} ¼ Y; i.e. if an inhibitor arc

points from a place P to a transition T, there is no other arc from P to T.

M.H.C. Everdij and H.A.P. Blom8
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5. S is a finite set of colour types. Each colour type is to be written in the form Rn; with n

a natural number and with R0 ¼ Y:
6. C : P ! S is a colour function which maps each place P [ P to a specific colour

type in S.

7. I : P ! CðPÞms is an initialisation function, where CðPÞms for P [ P denotes the

set of all multisets over CðPÞ: It defines the initial marking of the net, i.e. for each

place it specifies the number of tokens (possibly zero) initially in it, together with

the colours they have, and their ordering per place.

8. V is set of a token colour functions. For each place P [ P for which CðPÞ – R0; it

contains a locally Lipschitz continuous function VP : CðPÞ! CðPÞ:
9. G is a set of transition guards. For each T [ T G; it contains a transition guard GT :

CðPðAin;OEðTÞÞÞ! {True; False}: GT ðcÞ evaluates to True if c is in the boundary›GT of

an open subset GT in CðPðAin;OEðTÞÞÞ: Here, if PðAin;OEðTÞÞ contains more than one

place, e.g. PðAin;OEðTÞÞ ¼ {Pi; . . .;Pj}; then CðPðAin;OEðTÞÞÞ is defined by CðPiÞ £

. . . £ CðPjÞ: If CðPðAin;OEðTÞÞÞ ¼ R0 then ›GT ¼ Y and the guard will always evaluate

to False.

10. D is a set of transition enabling rate functions. For each T [ T D; it contains an

integrable transition enabling rate function dT : CðPðAin;OEðTÞÞÞ! Rþ
0 ; which, if T is

evaluated from stopping time t on, specifies a delay time equal to DT ðtÞ ¼

inf{tje
2
Ð t

t
dT ðcsÞds

# u}; where u is a random number drawn from U[0,1] at t. If

CðPðAin;OEðTÞÞÞ ¼ R0 then dT is a constant function.

11. F is a set of firing measures. For each T [ T it specifies a probability measure F T

which maps CðPðAin;OEðTÞÞÞ into the set of probability measures on {0; 1}jAoutðTÞj £

CðPðAoutðTÞÞÞ:

3.2 DCPN execution

The execution of a DCPN provides a series of increasing stopping times, t0 , ti , tiþ1, with

for t [ (ti, tiþ1) a fixed number of tokens per place and per token a colour which is the

solution of an ordinary differential equation. This number of tokens and the colours of these

tokens are generated as follows:

Each token residing in place P has a colour of type CðPÞ: If a token in place P has colour c

at time t, and if it remains in that place up to time t . t; then the colour ct at time t equals the

unique solution of the differential equation _ct ¼ VPðctÞ with initial condition ct ¼ c:

A transition T is pre-enabled if it has at least one token per incoming ordinary and enabling

arc in each of its input places and has no token in places to which it is connected by an

inhibitor arc; denote t
pre
1 ¼ inf{tjT is pre-enabled at time t}: Consider one token per

ordinary and enabling arc in the input places of T and write ct [ CðPðAin;OEðTÞÞÞ; t $ t
pre
1 ;

as the column vector containing the colours of these tokens; ct may change through

time according to its corresponding token colour functions. If this vector is not unique

(for example, one input place contains several tokens per arc), all possible such vectors are

executed in parallel.

A transition T is enabled if it is pre-enabled and a second requirement holds true. For

T [ T I ; the second requirement automatically holds true. For T [ T G; the second

requirement holds true when GT ðctÞ ¼ True. For T [ T D; the second requirement holds true

DT ðt
pre
1 Þ units after t

pre
1 : Guard or delay evaluation of a transition T stops when T is not pre-

enabled anymore, and is restarted when it is.
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For the evaluation of DT ðt
pre
1 Þ; use is made of a Hilbert cube V ¼

Q1
i¼1Yi; with Yi a copy

of Y ¼ ½0; 1�; which provides the canonical space for a countable sequence of independent

random variables U1, U2,. . ., each having a uniform [0,1] distribution, defined by UiðvÞ ¼

vi for elements v ¼ ðv1;v2; . . .Þ [ V: This Hilbert cube applies as follows: Suppose T is

a delay transition that is pre-enabled at time t and has vector of input colours ct at time

t $ t. Then transition T is enabled at random time inf{t : exp 2
Ð t

t
dT ðcsÞds

� 	
# Ui};

with inf{} ¼ þ1:

In case of competing enablings, the following rules apply:

R0 The firing of an immediate transition has priority over the firing of a guard or a delay

transition.

R1 If one transition becomes enabled by two or more disjoint sets of input tokens

at exactly the same time, then it will fire these sets of tokens independently, at the

same time.

R2 If one transition becomes enabled by two or more non-disjoint sets of input tokens at

exactly the same time, then the set that is fired is selected randomly.

R3 If two or more transitions become enabled at exactly the same time by disjoint sets of

input tokens, then they will fire at the same time.

R4 If two or more transitions become enabled at exactly the same time by non-

disjoint sets of input tokens, then the transition that will fire is selected randomly.

Here, two sets of input tokens are disjoint if they have no tokens in common that are

reserved by ordinary arcs, i.e. they may have tokens in common that are reserved by enabling

arcs.

If T is enabled, suppose this occurs at time t1, it removes one token per arc in Ain;OðTÞ from

each of its input places. At this time t1, T produces zero or one token along each output arc: If

ct1
is the vector of colours of tokens that enabled T and ð f ; at1

Þ is a sample from F T ð·; ct1
Þ;

then vector f specifies along which of the output arcs of T a token is produced ( f holds a one at

the corresponding vector components and a zero at the arcs along which no token is

produced) and at1
specifies the colours of the produced tokens. The colours of the new tokens

have sample paths that start at time t1.

For drawing the sample from F T ð·; ct1
Þ; again use is made of the Hilbert cube V: Let

cT
2 : ½0; 1� £ CðPðAin;OEðTÞÞÞ! {0; 1}jAoutðTÞj £ CðPðAoutðTÞÞÞ be a measurable function such

that l{u : cT
2 ðu; cÞ [ B} ¼ F T ðB; cÞ for B in the Borel set of {0; 1}jAoutðTÞj £ CðPðAoutðTÞÞÞ:

Then a sample from F T ð·; ct1
Þ is given by cT

2 ðU2ðvÞ; ct1
Þ; if ct1

is the vector of input colours

that enabled T.

In order to keep track of the identity of individual tokens, the tokens in a place are ordered

according to the time at which they entered the place, or, if several tokens are produced for

one place at the same time, according to the order within the set of arcs A ¼ {A1; . . .;AjAj}

along which these tokens were produced (the firing measure produces zero or one token

along each output arc).

3.3 DCPN stochastic process

The DCPN generates a stochastic process which is uniquely defined as follows: The process

state at time t is defined by the number of tokens in each place, and the colours of these

tokens. Provided there is a unique ordering of DCPN places, and a unique ordering of tokens
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within a place, this characterisation is unique, except at time instants when one or more

transitions fire. To make this characterisation of DCPN process state unique, it is defined as

follows:

. At time t when no transition fires, the number of tokens in each place is uniquely

characterised by the vector ðv1;t; . . .; vjPj;tÞ of length jPj; where vi;t denotes the number of

tokens in place Pi at time t and {1; . . .; jPj} refers to a unique ordering of places adopted

for DCPN. At time instants when one or more transitions fire, uniqueness of

ðv1;t; . . .; vjPj;tÞ is assured as follows: Suppose that t is such time instant at which one

transition or a sequence of transitions fires. Next, assume without loss of generality, that

this sequence of transitions is {T1, T2, . . .,Tm} and that time is running again after Tm (note

that T1 must be a guard or a delay transition, and T2 through Tm must be immediate

transitions). Then the number of tokens in each place at time t is defined as that vector

ðv1;t; . . .; vjPj;tÞ that occurs after Tm has fired. This construction also ensures that the

process ðv1;t; . . .; vjPj;tÞ has limits from the left and is continuous from the right, i.e. it

satisfies the càdlàg property.

. If ðv1;t; . . .; vjPj;tÞ is the distribution of the tokens among the places of the DCPN at time

t, which is uniquely defined above, then the associated colours of these tokens are

uniquely gathered in a vector as follows: This vector first contains all colours of tokens

in place P1, next all colours of tokens in place P2, etc, until place PjPj; where

{1; . . .; jPj} refers to a unique ordering of places adopted for DCPN. Within a place the

colours of the tokens are ordered according to the unique ordering of tokens within their

place defined for DCPN (see under DCPN execution above). Since ðv1;t; . . .; vjPj;tÞ

satisfies the càdlàg property, the corresponding vector of token colours does too. An

additional case occurs, however, when ðv1;t; . . .; vjPj;tÞ jumps to the same value again, so

that only the process associated with the vector of token colours makes a jump at time t.

In that case, let the process associated with the vector of token colours be defined

according to the timing construction as described for ðv1;t; . . .; vjPj;tÞ above (i.e. at time

t, the process associated with the vector of token colours is defined as that vector of

token colours that occurs after the last transition has fired in the sequence of transitions

that fire at time t).

With this, the DCPN definition is complete.

4. Piecewise deterministic Markov processes into dynamically coloured Petri nets

This section shows that each piecewise deterministic Markov process can be represented by a

DCPN, by providing a pathwise equivalent into-mapping from PDP into the set of DCPN

processes.

Theorem 1. For any arbitrary PDP with a finite domain K there exists P-almost surely a

pathwise equivalent process generated by a DCPN ðP; T ;A;N ;S; C; I ;V;G;D;F Þ

satisfying R0 through R4.

Proof. Consider an arbitrary PDP {ut, xt} described by the PDP elements {K, d(u), x0, u0,

›Eu; gu, l, Q}.
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First, we construct a DCPN, the elements {P; T ;A;N ;S; C; I ;V;G;D;F} and the rules

R0–R4 of which are characterised in terms of the PDP elements {K, d(u), x0, u0, ›Eu; gu, l, Q}

as follows:

. P ¼ {Pu; u [ K}: Hence, for each u [ K there is one place Pu.

. T ¼ T G < T D < T I ; with T I ¼ Y; T G ¼ {TG
u ; u [ K}; T D ¼ {TD

u ; u [ K}: Hence, for

each place Pu there is one guard transition TG
u and one delay transition TD

u :

. A ¼ AO <AE <AI ; with jAIj ¼ 0; jAEj ¼ 0; and jAOj ¼ 2jKj þ 2jKj
2
:

. N: The node function maps each arc in A ¼ AO to a pair of nodes. These connected

pairs of nodes are: {ðPu; TG
u Þ; u [ K} < {ðPu; TD

u Þ; u [ K} < {ðTG
u ;PqÞ; u;q [ K} <

ðTD
u ;PqÞ; u;q [ K}: Hence, each place Pu has two outgoing arcs: one to guard

transition TG
u and one to delay transition TD

u : Each transition has jKj outgoing arcs: one

arc to each place in P.

. S ¼ {RdðuÞ; u [ K}:

. C: For all u [ K; CðPuÞ ¼ RdðuÞ:

. I: Place Pu0
contains one token with colour x0. All other places initially contain zero

tokens.

. V: For all u [ K;VPu
ð·Þ ¼ guð·Þ:

. G: For all u [ K; ›GTG
u
¼ ›Eu:

. D: For all u [ K; dTD
u
ð·Þ ¼ lðu; ·Þ: Moreover, for the evaluation of the DCPN survivor

functions, the same Hilbert cube applies as the one applied by the PDP.

. F: If x denotes the colour of the token removed from place Pu; ðu [ KÞ; at the transition

firing, then for all q 0 [ K; x 0 [ Eq 0 : F TG
u
ðe 0; x0; xÞ ¼ Qðq 0; x 0; u; xÞ; where e0 is the vector

of length jKj containing a one at the component corresponding with arc ðTG
u ;Pq 0 Þ and zeros

elsewhere. For all u [ K;F TD
u
¼ F TG

u
: Moreover, for the evaluation of the DCPN firing,

the same Hilbert cube applies as the one applied by the PDP.

. R0–R4: Since there are no immediate transitions in the constructed DCPN instantiation,

rule R0 holds true. Since there is only one token in the constructed DCPN instantiation,

R1–R3 also holds true. Rule R4 is in effect when for particular u, transitions TG
u and TD

u

become enabled at exactly the same time. Since l is integrable, the probability that this

occurs is zero, yielding that R4 holds with probability one. However, if this event

should occur, then due to the fact that the firing measures for the guard transition and

the delay transition are equal, the application of rule R4 has no effect on the path of the

DCPN process.

This shows that for any PDP we are able to construct a DCPN instantiation. Next, we have

to show that the DCPN execution delivers the “same” cadlag stochastic process as the PDP

process.

In the DCPN instantiation constructed, initially there is one token in place Pu0
:

Because each transition firing removes one token and produces one token, the number of

tokens does not change for t . 0. Hence, for t . 0 there is one token and the possible

places for this single token are {Pq;q [ K}: Figure 2 shows the situation at some time

tk21; when the PDP is given by ðutk21
; xtk21

Þ: The token resides in place Pqi
; which

models that utk21
¼ qi: This token has colour xtk21

: The colour of the token up to and
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at the time of the next jump is evaluated according to two steps that are similar to

those of PDP:

Step 1: While the token is residing in place Pqi
; its colour xt changes according to

the flow fqi;xtk21
; i.e. xt ¼ fqi;xtk21

ðt 2 tk21Þ: Transitions TG
qi

and TD
qi

are both

pre-enabled and compete for this token which resides in their common input

place Pqi
: Transition TG

qi
models the boundary hitting generating a mode

switch, while transition TD
qi

models the Poisson process generating a mode

switch. For this, use is made of a random sample from the Hilbert cube. The

transition that is enabled first, determines the kind of switch occurring. The

time at which this happens is denoted by tk.

Step 2: With one, or more (has probability zero), of the transitions enabled at time

tk, its firing measure is evaluated. For this, use is made of a random sample

from the Hilbert cube. The firing measure is such, that if a sample zk from

transition measure Qð·;qi;fqi;xtk21
ðtk 2 tk21ÞÞ; would appear to be zk ¼

ðqj; xÞ; then the enabled transition would produce one token with colour

xtk
¼ x for place Pqj

: The other places get no token.

After this, the above two steps are repeated in the same way from the new state on. The

pathwise equivalence of the PDP and DCPN processes can be shown from the first

stopping time to the next stopping time, and so on. From stopping time to stopping time

both processes use the same independent realisations of the random variables U1, U2,. . .,

each having uniform [0,1] distribution, defined by UiðvÞ ¼ vi for elements v ¼

ðv1;v2; . . .Þ of the Hilbert cube V ¼
Q1

i¼1Yi; with Yi a copy of Y ¼ ½0; 1�; to generate all

random variables in both the PDP process and the DCPN process. Hence, from stopping

time to stopping time, the PDP and the associated DCPN process have equivalent paths and

equivalent stopping times. A

Remark. The DCPN instantiation defined above has many places, and only one token. An

interesting problem would be to find another into-mapping, in which the DCPN instantiation

has fewer places and more tokens. Addressing this problem falls outside the scope of

this paper.

Figure 2. Part of a DCPN representing a PDP.
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5. Dynamically coloured Petri nets into piecewise deterministic Markov processes

Under some conditions, each DCPN can be represented by a piecewise deterministic Markov

process. In this section this is shown by providing an into-mapping from DCPN into the set

of PDPs.

Theorem 2. For each stochastic process generated by a DCPN ðP; T ;A;N ;

S; C; I ;V;G;D;F Þ satisfying R0 through R4 there exists a unique probabilistically equivalent

PDP if the following conditions are satisfied:

D1 There are no explosions, i.e. the time at which a token colour equals þ1 or 21

approaches infinity whenever the time until the first guard transition enabling moment

approaches infinity.

D2 After a transition firing (or after a sequence of firings that occur at the same time

instant) at least one place must contain a different number of tokens, or the colour of at

least one token must have jumped.

D3 In a finite time interval, each transition is expected to fire a finite number of times, and

for t ! 1 the number of tokens remains finite.

D4 The initial marking is such, that no immediate transition is initially enabled.

Proof. For an arbitrary DCPN that satisfies conditions D1 –D4, we first construct a PDP that is

probabilistically equivalent to the DCPN process. As a preparatory step, the given DCPN is

enlarged as follows: for each guard transition and each place from which that guard transition

may be enabled, copy the corresponding places and transitions, including guards and firing

measures, and revise the firing measures of the input transitions to these places, such that the

new firings ensure that the corresponding guard transitions may be reached from one side

only. This step is illustrated with an example in figure 3, where on the left transition T1

(which may be of any type) may fire tokens to place P1, while transition T2 is a guard

transition that uses these tokens as input. In this example, assume that CðP1Þ ¼ R and that

›GT2
¼ 3: This means, transition T2 is enabled if the colour of the token in place P1 reaches

value 3. This value may be reached from above or from below, depending on whether the

initial colour of the token in P1 is larger or smaller than 3, respectively. Infigure 3 on the

right, place P1 and transition T2 have been copied. Transitions T2a and T2b get the same guard

Figure 3. Example transformation to model DCPN enlargement. The original is on the left and the enlarged is on
the right.
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as T2, but transition T1
0 gets a new firing measure with respect to T1: it is similar to the one of

T1, but it delivers a token to place P1a if the colour of this new token is smaller than 3, and it

delivers a token to place P1b if its colour is larger than 3. This way, the guard of transition T2a

is always reached from below, i.e. its input colours are smaller than 3. The guard of transition

T2b is always reached from above, i.e. its input colours are larger than 3. The second output

transition T3 of place P1 also needs to be copied, but the output place of these copies can

remain the same as before.

Proof continued: Let the enlarged DCPN be described by the tuple

ðP; T ;A;N ;S; C; I ;V;G;D;F Þ and satisfy the rules R0–R4, and assume that the conditions

D1–D4 are satisfied. In order to represent this DCPN by a PDP, all PDP elements

K; dðuÞ; j0; gu; ›Eu; l;Q and the PDP conditions C1–C4 are characterised in terms of this

DCPN:

. K: The domain K for the mode process {ut} can be found from the reachability graph

(RG) of the DCPN graph. The nodes in the RG are vectors V ¼ ðv1; . . .; vjPjÞ; where vi

equals the number of tokens in place Pi; i ¼ 1; . . .; jPj; where these places are uniquely

ordered. The RG is constructed from DCPN components P; T ;A;N and I : The first node

V0 is found from I ; which provides the numbers of tokens initially in each of the places†.

From then on, the RG is constructed as follows: if it is possible to move in one jump from

token distribution V0 to, say, either one of distributions V 1; . . .;V k notequal to V0, then

arrows are drawn from V0 to (new) nodes V 1; . . .;V k: Each of V 1; . . .;V k is treated in the

same way. Each arrow is labelled by the (set of) transition(s) fired at the jump. If a node V j

can be directly reached from V i by different (sets of) transitions firing, then multiple

arrows are drawn from V i to V j, each labelled by another (set) of transition(s). Multiple

arrows are also drawn if V j can be directly reached from V i by firing of one transition,

but by different sets of tokens, for example in case this transition has multiple input tokens

per incoming arc in its input places. In this case, the multiple arrows each get this

transition as label.

The nodes in the resulting RG, exclusive the nodes from which an immediate transition is

enabled, form the discrete domain K of the PDP. To emphasise these nodes from which an

†Note that K has to be constructed for all I by following the proposed procedure such that is applies for each
possible instantiation of the initial token distribution

Figure 4. Example DCPN to explain reachability graph.
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immediate transition is enabled in the RG picture, they are given in italics. Since the number

of places in the DCPN is finite and the number of tokens per place and the number of nodes in

the RG are countable, K is a countable set, which satisfies the PDP conditions.

As an example, consider the following DCPN graph (figure 4), which is first enlarged as

explained above (figure 5). The reachability graph (RG) for this example is given in figure 6.

The enlarged graph initially has two tokens in place P1a and one in P3, and the unique

ordering of places is (P1a, P1b, P2, P3, P4) such that V0 ¼ ð2; 0; 0; 1; 0Þ: This vector forms the

first node of the RG.

Both T1a and T2a are pre-enabled. They both have two tokens per incoming arc in their input

place, hence for both the transitions, two vectors of input colours are evaluated in parallel. If

T1a becomes enabled for one of these input tokens, it removes the corresponding token from

P1a and produces a token for P2 (we assume that all firing measures are such, that each

transition will fire a token when enabled, i.e. F T ð0; ·; ·Þ ¼ 0Þ; so the new token distribution is

(1,0,1,1,0). Therefore, in the RG two arcs labelled by T1a are drawn from (2,0,0,1,0) to the

new node (1,0,1,1,0); this duplication of arcs characterises that T1a has evaluated two vectors

of input tokens in parallel. The same reasoning holds for transition T2a: two arcs are drawn

from (2,0,0,1,0) to (1,0,1,1,0). It may also happen that from (2,0,0,1,0), the guard transition

T1a is enabled by its two input tokens at exactly the same time. Due to Rule R1 it then fires

these two tokens at exactly the same time, resulting in node (0,0,2,1,0). Therefore, an

additional arc labelled T1a þ T1a is drawn from (2,0,0,1,0) to (0,0,2,1,0). Unlike the case for

T1a, there is no arc drawn from (2,0,0,1,0) labelled by T2a þ T2a, since T2a is a delay

transition, hence the probability that it is enabled by both its input tokens at the same time is

zero. Now consider node (0,0,2,1,0). From this token distribution the immediate transition T4

is enabled; its firing leads to (1,0,1,0,1). Since node (1,0,1,1,0) enables an immediate

transition it is drawn in italics and is excluded from K. The resulting RG for this example is

given in figure 6. So, for this example, K ¼ {ð2; 0; 0; 1; 0Þ; ð0; 0; 2; 0; 1Þ; ð1; 0; 1; 0; 1Þ;

ð0; 1; 1; 0; 1Þ; ð1; 1; 0; 1; 0Þ; ð0; 2; 0; 1; 0Þ}:

Figure 5. Enlarged DCPN of example in figure 4 .
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Continuation of proof:

. d(u): The colour of a token in a place P is an element of CðPÞ ¼ RnðPÞ; therefore,

dðuÞ ¼
PjPj

i¼1ui £ nðPiÞ; with u ¼ ðu1; . . .; ujPjÞ [ K; with {1; . . .; jPj} referring to the

unique ordering of places adopted for the DCPN.

. gu : For x ¼ Col{x1; . . .; x jPj}; with x i [ Rui£nðPiÞ; and with {1; . . .; jPj} referring to the

unique ordering of places adopted for the DCPN, gu is defined by guðxÞ ¼

Col{g1
uðx

1Þ; . . .; gjPj
u ðx jPjÞ}; where for x i ¼ Col{x i1; . . .; x iui }; with x ij [ RnðPiÞ for all

j [ {1; . . .; ui} : gi
uðx

iÞ ¼ Col{VPi
ðx i1Þ; . . .;VPi

ðx iuiÞ}: Here, j [ {1; . . .; ui} refers to the

unique ordering of tokens within their place defined for DCPN (see Section 3). Since, for

all Pi;VPi
is locally Lipschitz continuous, gu is also locally Lipschitz continuous.

. ›Eu : For each token distribution u, the boundary ›Eu of subset Eu is determined from the

transition guards corresponding with the set of transitions in T G that, under token

distribution u, are pre-enabled (this set is uniquely determined). Without loss of

generality, suppose this set of transitions is T1,. . .,Tm (note that this set may contain one

transition multiple times, if multiple tokens are evaluated in parallel). Suppose

{Pi1; . . .;Piri } are the input places of Ti that are connected to Ti by means of ordinary or

enabling arcs. Define di ¼
Pri

j¼1nðPijÞ; then ›Eu ¼ ›G 0
T1

< . . .< ›G 0
Tm
; where G0

Ti
¼

½GTi
£ RdðuÞ2di� [ RdðuÞ: Here [·] denotes a special ordering of all vector elements: Vector

elements corresponding with tokens in place Pa are ordered before vector elements

corresponding with tokens in place Pb if b . a; according to the unique ordering of places

adopted for the DCPN; vector elements corresponding with tokens within one place are

ordered according to the unique ordering of tokens within their place defined for DCPN

(see Section 3). If the set of pre-enabled guard transitions is empty, then ›Eu ¼ Y:
. l: For each token distribution u, the jump rate l(u, ·) is determined from the transition

delays corresponding with the set of transitions in T D that, under token distribution u, are

Figure 6. Reachability graph for the DCPN in figure 5.
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pre-enabled (this set is uniquely determined). Without loss of generality, suppose this set

of transitions is T1,. . .,Tm. Then lðu; ·Þ ¼
Pm

i¼1dTi
ð·Þ: This equality is due to the fact that

the combined arrival process of individual Poisson processes is again Poisson, with an

arrival rate equal to the sum of all individual arrival rates. Since dT is integrable for all

T [ T D; l is also integrable. If the set of pre-enabled delay transitions is empty, then

lðu; ·Þ ¼ 0:

. Q: For each u [ K; x [ Eu; u
0 [ K and x0 [ Eu 0 ;Qðu 0; x 0; u; xÞ is characterised by the

RG, the sets D;G and F and the rules R0–R4. The RG is used to determine which

transitions are pre-enabled in token distribution u; the sets D and G and the rules R0–R4 are

used to determine which pre-enabled transitions will actually fire from state (u, x); and

finally, set F is used to determine the probability of ðu 0; x 0Þ being the state after the jump,

given state (u, x) before the jump and the set of transitions that will fire in the jump.

Because of its complexity, the characterisation of Q is given in the Appendix, an outline of

which is given next:

Main challenge in the characterisation of Q is the following: in some situations one does

not know for certain which transitions will fire in a jump, even if one knows the state (u,x)

before the jump and knows that a jump will occur from (u,x) to ðu 0; x 0Þ: In these situations it

is not trivial which firings measures one should combine in order to construct Qðu0; x0; u; xÞ

from DCPN elements. However, one does know the following: Given u, one knows which

transitions are pre-enabled; this can be read off the RG (i.e. gather the labels of all arrows

leaving node u). Given that u [ K; no immediate transitions are enabled in u. The

probability that a guard transition and a delay transition are enabled at exactly the same

time is zero. The probability that two delay transitions are enabled at exactly the same time

is zero. There is a possibility that two or more guard transitions are enabled at exactly the

same time. It may even occur (due to rule R1) that one single guard transition fires twice at

the same time.

Based on the above, we propose the following steps to construct Qðu 0; x 0; u; xÞ; for any

ðu 0; x0; u; xÞ:

1. Determine (using the RG) which transitions are pre-enabled in u.

2. Consider the guard transitions in this set of pre-enabled transitions and determine

which of these are enabled. For a transition T, this is done by considering its vector of

input colours (which is part of x) and checking whether this vector has entered the

boundary ›GT : If this set of enabled guard transitions is empty, then one pre-enabled

delay transition must be enabled. Use D to determine for each pre-enabled delay

transition the probability with which it will actually fire. If the set of enabled guard

transitions is not empty, then rules R1–R4 determine the probability which of these

transitions will actually fire.

3. Determine which transition firings can actually lead to discrete process state u 0 in one

jump. This set can be found by identifying in the RG all arrows directly from node u to

u 0 and all directed paths from node u to u0 that pass only nodes that enable immediate

transitions (i.e. that pass only nodes in italics).

4. Finally, Qðu 0; x 0; u; xÞ is constructed from the firing measures, by conditioning on

these arrows and paths from u to u 0:

. j0 ¼ ðu0; x0} : this can be constructed from I ; the DCPN initial marking, which

provides the places the tokens are initially in and the colours these tokens have. Hence,

u0 ¼ ðv1;0; . . .; vjPj;0Þ; where vi,0 denotes the initial number of tokens in place Pi, with
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the places ordered according to the unique ordering adopted for DCPN, and x0 [ Rdðu0Þ

is a vector containing the colours of these tokens. Within a place the colours of the

tokens are ordered according to the specification in I : With this, and due to condition

D4 (which prevents different token distributions to be applicable at the initial time), the

constructed j0 is uniquely defined.

. C1: this condition (no explosions) follows from assumption D1.

. C2: this condition (l is integrable) follows from the fact that dT is integrable for all

T [ T D:

. C3: this condition (Q measurable and Qð{j}; jÞ ¼ 0Þ follows from the assumption that

F is continuous and from assumption D2.

. C4: this condition ðENt , 1Þ follows from assumption D3.

This shows that for any DCPN satisfying conditions D1–D4, we are able to construct

unique PDP elements, and thus a unique PDP.

Finally, we show that the PDP process {ut; xt} is probabilistically equivalent to the process

generated by the DCPN:

With the mapping from DCPN elements into PDP elements, it is easily shown that the PDP

process {ut; xt} is probabilistically equivalent to the process generated by the DCPN

characterised in Section 3: at each time t the process {ut} is probabilistically equivalent to the

process ðv1;t; . . .; vjPj;tÞ and the process {xt} is probabilistically equivalent to the process

associated with the vector of token colours. This is shown by observing that the initial PDP

state ðu0; x0Þ is probabilistically equivalent to the initial DCPN state through the mapping

constructed above. Moreover, also by the unique mapping of DCPN elements into PDP

elements, at each time instant after the initial time, the PDP state is probabilistically equivalent

to the DCPN state: At times t when no jump occurs, the PDP process evolves according to gu
and the DCPN process evolves according to V: Through the mapping between gu and V
developed above, these evolutions provide probabilistically equivalent processes. At times

when a jump occurs, the PDP process makes a jump generated by Q, while the DCPN process

makes a jump generated byF :Through the mapping between Q andF developed above, these

jumps provide probabilistically equivalent processes. A

6. Example DCPN and mapping to PDP

This section gives a simple example DCPN model and its mapping to PDP of the evolution of

an aircraft. First, Subsection 6.1 explains how a DCPN that models a complex operation

is generally constructed in three steps. In order to illustrate these steps, Subsection 6.2 presents

a simple example of the evolution of one aircraft. Subsection 6.3 gives a DCPN that

models this aircraft evolution and Subsection 6.4 explains the mapping of this DCPN example

in a PDP.

6.1 DCPN construction and verification process

A DCPN modelling a particular operation can be constructed, for example, by first

identifying the discrete state space, represented by the places, the transitions and arcs, and

next adding the continuous-time-based elements one by one, similar as what one would
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expect when modelling a PDP for such operation. However, in case of a very complex

operation, with many entities that interact such as occur in air traffic, it is generally more

desirable and constructive to do the DCPN modelling in several iterations, for example in a

three-phased approach:

1. In the first phase, each operation entity or agent (for example, a pilot, a navigation

system, an aircraft) is modelled separately by one local DCPN which contains a

fixed number of tokens. Each such entity model is named a local Petri net (LPN).

2. In the second phase, the interactions between these entities are modelled, connecting the

LPNs, such that these interactions do not change the number of tokens per LPN.

3. In the third phase, one verifies whether the conditions D1–D4 under which a mapping to

PDP is guaranteed to exist have been fulfilled. Because of the modularity and fixed

number of tokens per LPN, these conditions can easily be verified per LPN, and

subsequently per interaction between LPNs.

The additional advantage of this phased approach is that the total DCPN can be verified

simultaneously by multiple domain experts. For example, a LPN model for a navigation

system can be verified by a navigational system expert; a LPN model for a pilot can be

verified by a human factors expert; interactions can be verified by a pilot.

6.2 Aircraft evolution example

This subsection presents a simple aircraft evolution example. The next subsections present a

DCPN model and a mapping to PDP for this example.

Assume the deviation of this aircraft from its intended path depends on the operationality of

two of its aircraft systems: the engine system, and the navigation system. Each of these aircraft

systems can be in one of two modes: working (functioning properly) or not working (operating

in some failure mode). Both systems switch between their modes independently and on

exponentially distributed times, with rates d3 (engine repaired), d4 (engine fails), d5

(navigation repaired) and d6 (navigation fails), respectively. The operationality of these

systems has the following effect on the aircraft path: if both systems are working, the aircraft

evolves in nominal mode and the rate of change of the position and velocity of the aircraft is

given by functionV1 (i.e. if zt is a vector containing this position and velocity then _zt ¼ V1ðztÞÞ:

If either one, or both, of the systems is not working, the aircraft evolves in non-nominal mode

and the rate of change of the position and velocity of the aircraft is given by V2: Initially, the

aircraft has a particular position x0 and velocity v0, while both its systems are working. The

evaluation of this process may be stopped when the aircraft position has landed, i.e. its vertical

position and velocity is equal to zero. Once landed, the aircraft is assumed not to depart

anymore, hence the rate of change of its position and velocity equals zero. In order to model

this aircraft evolution example mathematically, one could define three discrete valued

processes {k1
t }; {k2

t }; {k3
t }; and an R6-valued process {xt}:

. {k1
t } represents the aircraft evolution mode assuming values in {nominal, non-

nominal, landed};

. {k2
t } represents the navigation mode assuming values in {working, not-working};

. {k3
t } represents the engine mode assuming values in {working, not-working};

. {xt} represents the 3D position and velocity of the aircraft
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Unfortunately, the process {kt; xt}; with kt ¼ Col{k1
t ; k

2
t ; k

3
t }; is not a PDP, since some kt

combinations lead to immediate jumps, which is not allowed for PDP. This simple aircraft

evolution example illustrates the kind of difficulty encountered when one wants to model a

realistic problem directly as a PDP.

6.3 DCPN model for the aircraft evolution example

This subsection gives a DCPN instantiation that models the aircraft evolution example of the

previous subsection. In order to illustrate the three-phased approach of Subsection 6.1,

we first give the LPN graphs that have been identified in the first phase of the modelling.

The entities identified are: aircraft evolution, navigation system, and engine system. This

gives us three LPNs. The resulting graphs are given in figure 7.

The interactions between the Engine and Navigation LPN and the Evolution LPN are

modelled by coupling the LPNs by additional arcs (and, if necessary, additional places or

transitions). Here, removal of a token from one LPN by a transition of another LPN is

prevented by using enabling arcs instead of ordinary arcs for the interactions. The resulting

graph is presented in figure 8. Notice that transition T1 has to be replaced by two transitions

T1a and T1b in order to allow both the engine and the navigation LPNs to influence transition

T1 separately from each other.

The graph in figure 8 completely defines DCPN elements P; T ;A and N ; where T G ¼

{T7; T8}; T D ¼ {T3; T4; T5; T6} and T I ¼ {T1a; T1b; T2}: The other DCPN elements are

specified below.

. S: Two colour types are defined; S ¼ {R0;R6}:

. C : CðP1Þ ¼ CðP2Þ ¼ CðP7Þ ¼ R6; hence nðP1Þ ¼ nðP2Þ ¼ nðP7Þ ¼ 6: The first three

colour components model the longitudinal, lateral and vertical position of the aircraft, the

last three components model the corresponding velocities. For places P3 through P6,

CðPiÞ ¼ R0 ¼ Y hence nðPiÞ ¼ 0:

. I : Place P1 initially has a token with colour z0 ¼ ðx0; v0Þ
0; with x0 [ R2 £ ð0;1Þ and

v0 [ R3\Col{0; 0; 0}: Places P4 and P6 initially each have a token without colour.

. V: The token colour functions for places P1, P2 and P7 are defined by VP1
¼ V1; VP2

¼ V2

and VP7
¼ 0: For places P3–P6 there is no token colour function.

. G: Transitions T7 and T8 have a guard that is defined by ›GT7
¼ ›GT8

¼

R2 £ {0} £ R2 £ {0}:

. D: The enabling rates for transitions T3, T4, T5 and T6 are dT3
ð·Þ ¼ d3; dT4

ð·Þ ¼ d4; dT5
ð·Þ ¼

d5 and dT6
ð·Þ ¼ d6; respectively.

Figure 7. LPNs for the aircraft operations example. Place P1 models Evolution Nominal, P2 models evolution Non-
nominal, P3 models Engine system Not working, P4 models Engine system Working, P5 models Navigation system
Not working, P6 models Navigation system Working. P7 models aircraft has landed.
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. F : Each transition has a unique output place, to which it fires a token with a colour (if

applicable) equal to the colour of the token removed, i.e. for all T, F T ð1; ·; ·Þ ¼ 1:

6.4 Mapping to PDP

In this subsection, the DCPN aircraft evolution example is mapped to a PDP, following the

construction in the proof of Theorem 2. Since the boundaries of the guard transitions T7 and

T8 (i.e. ›GT7
¼ ›GT8

¼ R2 £ {0} £ R2 £ {0}Þ are always reached from one side only, there

is no need to first enlarge the DCPN for these guard transitions (see Section 5).

The DCPN of figure 8 has seven places hence the RG has elements that are vectors of

length 7. Since there is always one token in the set of places {P1, P2, P7}, one token in {P3,

P4} and one token in {P5, P6}, the RG has 3 £ 2 £ 2 ¼ 12 nodes, see figure 9. However, four

Figure 8. LPNs of figure 7 integrated into one DCPN.

Figure 9. Reachability graph for the DCPN of Figure 8.
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nodes are excluded from K: nodes (1,0,1,0,0,1,0), (0,1,0,1,0,1,0) and (1,0,0,1,1,0,0) enable

immediate transitions, and node (1,0,1,0,1,0,0) cannot be reached since it requires the

enabling of a delay transition that is competing with an immediate transition, while due to

DCPN rule R0, an immediate transition always gets priority. Therefore, K consists of the

remaining 8 nodes {m1, m2, m3, m4, m5, m6, m7, m8}, which are specified in table 1.

Following Section 5, for each u ¼ ðu1; . . .; u7Þ [ K; the value of d(u) equals dðuÞ ¼PjPj
i¼1 ui £ nðPiÞ: Since there is always one token in the set of places {P1, P2, P7}, hence

u1 þ u2 þ u7 ¼ 1; and since nðP1Þ ¼ nðP2Þ ¼ nðP7Þ ¼ 6 and nðP3Þ ¼ nðP4Þ ¼ nðP5Þ ¼

nðP6Þ ¼ 0; we find for all u that dðuÞ ¼ 6:

Since initially there is a token in places P1, P4 and P6, the initial mode u0 equals

u0 ¼ m1 ¼ ð1; 0; 0; 1; 0; 1; 0Þ: The PDP initial continuous state value equals the vector

containing the initial colours of all initial tokens. Since the initial colour of the token in place

P1 equals z0, and the tokens in places P4 and P6 have no colour, the PDP initial continuous

state value equals z0.

Following Section 5, with u ¼ ðu1; . . .; u7Þ [ K; for x ¼ Col{x1; . . .; x7}; with x i [

Rui£nðPiÞ; the function gu is defined by guðxÞ ¼ Col{g1
uðx

1Þ; . . .; g7
uðx

7Þ}; where for x i ¼

Col{x i1; . . .; x iui }; with x ij [ RnðPiÞ for all j [ {1; . . .; ui} : gi
uðx

iÞ satisfies gi
uðx

iÞ ¼

Col{VPi
ðx i1Þ; . . .;VPi

ðx iuiÞ}: Since there is at most one token in each place, ui is either

zero or one, hence either x i ¼ Y or x i ¼ x i1: Since there is no token colour function for places

{P3;P4;P5;P6} and there is only one token in {P1;P2;P7}; guðxÞ ¼ V1 for u ¼ m1; guðxÞ ¼

V2 for u [ {m2;m3;m4}; and guðxÞ ¼ 0 otherwise, see table 2.

The boundary ›Eu is determined from the transitions guards that, under token distribution

u, are enabled. This yields: for u ¼ m1; ›Eu ¼ ›GT7
¼ R2 £ {0} £ R2 £ {0}; for u [

{m2;m3;m4}; Eu ¼ ›GT8
¼ R2 £ {0} £ R2 £ {0}; for u [ {m5;m6;m7;m8}; ›Eu ¼ Y:

Table 2. Example PDP components gu(·) and l as a function of u [ K.

u gu(·) l

m1 V1ð·Þ d4 þ d6

m2 V2ð·Þ d3 þ d6

m3 V2ð·Þ d3 þ d5

m4 V2ð·Þ d4 þ d5

m5 0 d4 þ d6

m6 0 d3 þ d6

m7 0 d3 þ d5

m8 0 d4 þ d5

Table 1. Discrete modes in K.

Node Engine Navigation Evolution

m1 ¼ ð1; 0; 0; 1; 0; 1; 0Þ Working Working Nominal
m2 ¼ ð0; 1; 1; 0; 0; 1; 0Þ Not working Working Non-nominal
m3 ¼ ð0; 1; 1; 0; 1; 0; 0Þ Not working Not working Non-nominal
m4 ¼ ð0; 1; 0; 1; 1; 0; 0Þ Working Not working Non-nominal
m5 ¼ ð0; 0; 0; 1; 0; 1; 1Þ Working Working Landed
m6 ¼ ð0; 0; 1; 0; 0; 1; 1Þ Not Working Working Landed
m7 ¼ ð0; 0; 1; 0; 1; 0; 1Þ Not working Not working Landed
m8 ¼ ð0; 0; 0; 1; 1; 0; 1Þ Working Not working Landed
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The jump rate l(u, ·) is determined from the enabling rates corresponding with the set of

delay transitions in TD that, under token distribution u, are pre-enabled. At each time, always

two delay transitions are pre-enabled: either T3 or T4 and either T5 or T6. Hence lðu; ·Þ ¼P
i¼j;kdTi

ð·Þ if Tj and Tk are pre-enabled. See table 2 for the resulting l’s.

The probability measure Q is determined by the RG, the sets D, G and F and the rules

R0–R4. In table 3, Qðz; jÞ ¼ p denotes that if j is the value of the PDP before the hybrid

jump, then, with probability p, z is the value of the PDP immediately after the jump.

From a mathematical perspective, the PDP model has clear advantages. However, the PDP

model does not show the compositional structure of the DCPN. Because of this, the DCPN

model of Subsection 6.3 is simpler to comprehend and to verify against the aircraft evolution

example description of Subsection 6.2. These complementary advantages from both

perspectives tend to increase with the complexity of the operation considered.

7. Conclusions

Piecewise deterministic Markov processes (PDPs) can be used to describe virtually all

complex continuous-time stochastic processes not involving diffusions. However, for complex

practical problems it is often difficult to develop a PDP model, and have it verified both by

mathematical and by multiple operational domain experts. This paper has introduced a novel

Petri net, which is named dynamically coloured Petri net (DCPN) and has shown that under

some mild conditions, any DCPN generated process can be mapped into a probabilistically

equivalent PDP. Moreover, it is shown that any PDP with a finite discrete state domain can be

mapped into a pathwise equivalent process which is generated by a DCPN. A consequence of

both results is that there exist into-mappings between PDPs and DCPN processes. The

development of a DCPN model for complex practical problems has similar compositional and

modular specification advantages as basic Petri nets have over automata [5].

The key result of this paper is that this is the first time that proof of the existence of into-

mappings between PDPs and Petri nets has been established. This significantly extends the

modelling power hierarchy of [7,8] in terms of Petri nets and Markov processes. For other

hybrid Petri nets [9,12,15–19] such into-mappings are not known and difficulties are foreseen

in developing them. Due to the existence of these into-mappings, PDP theoretical results like

stochastic analysis, stability and control theory, also apply to DCPN stochastic processes. The

mapping of DCPN into PDP implies that any specific DCPN stochastic process can be

Table 3. Example PDP component Q.

For z � ›Em1
: Qðm2; z; m1; zÞ ¼ d4

d4þd6
; Qðm4; z; m1; zÞ ¼ d6

d4þd6
:

For z [ ›Em1
: Qðm5; z; m1; zÞ ¼ 1:

For z � ›Em2
: Qðm3; z; m2; zÞ ¼ d6

d3þd6
; Qðm1; z; m2; zÞ ¼ d3

d3þd6
:

For z [ ›Em2
: Qðm6; z; m2; zÞ ¼ 1:

For z � ›Em3
: Qðm4; z; m3; zÞ ¼ d3

d3þd5
; Qðm2; z; m3; zÞ ¼ d5

d3þd5

For z [ ›Em3
: Qðm7; z; m3; zÞ ¼ 1:

For z � ›Em4
: Qðm3; z; m4; zÞ ¼ d4

d4þd5
; Qðm1; z; m4; zÞ ¼ d5

d4þd5

For z [ ›Em4
: Qðm8; z; m4; zÞ ¼ 1:

For all z; Qðm6; z; m5; zÞ ¼ d4

d4þd6
; Qðm8; z; m5; zÞ ¼ d6

d4þd6

For all z; Qðm7; z; m6; zÞ ¼ d6

d3þd6
; Qðm5; z; m6; zÞ ¼ d3

d3þd6

For all z; Qðm8; z; m7; zÞ ¼ d3

d3þd5
; Qðm6; z; m7; zÞ ¼ d5

d3þd5

For all z; Qðm7; z; m8; zÞ ¼ d4

d4þd5
; Qðm5; z; m8; zÞ ¼ d5

d4þd5
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analysed as if it is a PDP, often without the need to first apply the transformation into a PDP as

we did for the aircraft evolution example in Section 6. Because of this, for accident risk

modelling in air traffic management, in [20] DCPNs are adopted for their compositional

specification power and for their PDP inherited stochastic analysis power.
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Appendix: Characterisation of Q in terms of DCPN

In this appendix, Q is characterised in terms of DCPN, as part of the characterisation in

Section 5 of PDP in terms of DCPN.
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For each u [ K, x [ Eu, u
0 [ K and A , Eu 0 ; the value of Qðu 0;A; u; xÞ is a measure for

the probability that if a jump occurs, and if the value of the PDP just prior to the jump is

ðu; xÞ; then the value of the PDP just after the jump is in ðu 0;AÞ: Measure Qðu 0;A; u; xÞ is

characterised in terms of the DCPN by the RG (see Section 5), elements D, G and Rules

R0–R4 and the set F ; as below. This is done in four steps:

1. Determine which transitions are pre-enabled in (u, x).

2. Determine for each pre-enabled transition the probability with which it is enabled in (u, x).

3. Determine for each pre-enabled transition whether its firing can possibly lead to discrete

state u 0:

4. Use the results of the previous two steps and the set of firing measures to characterise Q.

Step 1: Determine which transitions are pre-enabled in (u,x)

Consider all arrows in the RG leaving node u. These arrows are labelled by names of

transitions which are pre-enabled in u, for example T1 (if T1 is pre-enabled in u), T1 þ T2

(if T1 and T2 are both pre-enabled and there is a non-zero probability that they fire at exactly

the same time), etc. Therefore, the arrows leaving u may be characterised by these labels.

Denote the multi-set of arrows, characterised by these labels, by Bu: This set is a multi-set

since there may exist several arrows with the same label (e.g. if one transition is pre-enabled

by different sets of input tokens). We use notation B [ Bu for an element B of Bu (e.g.

B ¼ T1 represents an arrow with T1 as label), and notation T [ B for a transition T in label B

(e.g. as in B ¼ T þ T1).

Step 2: Determine for each pre-enabled transition the probability with which it is enabled

in (u, x)

Given that a jump occurs in (u, x), the set of transitions that will actually fire in (u, x) is not

empty, and is given by one of the labels in Bu: In the following, we determine, for all B [ Bu;

the probability pBðu; xÞ that all transitions in label B will fire.

. Denote the vector of input colours of transition T in a particular label by cx
T : For a

transition in a label this vector is unique since we consider transitions with multiple

vectors of input colours separately in the multi-set Bu:

. Consider the multi-set BG
u ¼ {B [ Buj;T [ B : T [G and cx

T [ ›GT }:

. If BG
u – Y then this set contains all transitions that are enabled in (u, x). Rules R1–R4 are

used (R0 is not applicable) to determine for each B [ BG
u the probability with which the

transitions in label B will actually fire:

– Rules R1 and R3 are used as follows: if B is such that there exists B 0 [ BG
u such

that the transitions in B form a real subset of the set of transitions in B 0; then

pBðu; xÞ ¼ 0: The set of thus eliminated labels B is denoted by BR1;3

u :

– Rules R2 and R4 are used as follows: If the multi-set BG
u 2 BR1;3

u contains m

elements, then each of these labels gets a probability pBðu; xÞ ¼ 1=m:

. If BG
u ¼ Y then only Delay transitions can be enabled in (u, x). Consider the multi-set

BD
u ¼ {B [ Buj;T [ B : T [ T D}: Each B [ BD

u consists of one delay transition, with

pBðu; xÞ ¼
dBðc

x
BÞP

T[BD
u

dT ðc
x
T
Þ
:
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Step 3: Determine for each pre-enabled transition whether its firing can possibly lead to

discrete state u 0

In the RG, consider nodes u and u 0 and delete all other nodes that are elements of K,

including the arrows attached to them. Also, delete all nodes and arrows that are not part of a

directed path from u to u 0: The residue is named RGuu 0 : Then, if u and u0 are not connected in

RGuu 0 by at least one path, a jump from (u, x) to a state in ðu 0;AÞ is not possible.

Step 4: Use the results of the previous two steps and the set of firing measures to

characterise Q

From the previous step we have

. Qðu 0;A; u; xÞ ¼ 0 if u and u 0 are not connected in RGuu 0 by at least one path.

If u and u 0 are connected then in RGuu 0 one or more paths from u to u 0 can be identified.

Each such path may consist of only one arrow, or of sequences of directed arrows that pass

nodes that enable immediate transitions. All arrows are labelled by names of transitions,

therefore the paths between u and u 0 may be characterised by the labels on these arrows, i.e.

by the transitions that consecutively fire in the jump from u to u 0: Denote the multi-set of

paths, characterised by these labels, by Luu 0 : Examples of elements of Luu 0 are T1 (if T1 is pre-

enabled in u and its firing leads to u 0), T1 þ T2 (if there is a non-zero probability that T1 and

T2 will fire at exactly the same time, and their combined firing leads to u 0), T4 + T3 (if T3 is

pre-enabled in u, its firing leads to the immediate transition T4 being enabled, and the firing of

T4 leads to u 0), etc.

Next, we factorise Q by conditioning on the path L [ Luu 0 along which the jump is made.

Under the condition that a jump occurs:

Qðu 0;A; u; xÞ ¼
X

L[Luu 0

pu 0;x 0 ju;x;Lðu
0;Aju; x; LÞ £ pLju;xðLju; xÞ;

where pu 0;x 0 ju;x;Lðu
0;Aju; x; LÞ denotes the conditional probability that the DCPN state

immediately after the jump is in ðu 0;AÞ; given that the DCPN state just prior to the jump

equals (u, x), given that the set of transitions L fires to establish the jump. Moreover,

pLju;xðLju; xÞ denotes the conditional probability that the set of transitions L fires, given that

the DCPN state immediately prior to the jump equals (u, x).

In the remainder of this appendix, first pLju;xðLju; xÞ is characterised for each L [ Luu 0 :

Next, pu 0;x 0ju;x;Lðu
0;Aju; x; LÞ is characterised for each L [ Luu 0 :

Characterisation of pLju;xðLju; xÞ for each L [ Luu 0

First, assume that Luu 0 does not contain immediate transitions. This yields: each L [ Luu 0

either contains one or more guard transitions, or one delay transition (other combinations

occur with zero probability). In particular, Luu 0 is a subset of Bu defined earlier. Then

pLju;xðLju; xÞ is determined by pLju;xðLju; xÞ ¼ pLðu; xÞ=
P

B[Luu 0
pBðu; xÞ; with pBðu; xÞ defined

earlier.

Next, consider the situations where RGuu 0 may also contain nodes that enable

immediate transitions. If L is of the form L ¼ Tj + Tk; with Tj an immediate transition,
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then pLju;xðLju; xÞ ¼ pTkju;xðTkju; xÞ; with the right-hand-side constructed as above for the

case without immediate transitions. The same value pTkju;xðTkju; xÞ follows for cases like

L ¼ Tm + Tj + Tk; with Tj and Tm immediate transitions. However, if the firing of Tk enables

more than one immediate transition, then the value of pTkju;xðTkju; xÞ is equally divided

among the corresponding paths. This means, for example, that if there are L1 ¼ Tj + Tk

and L2 ¼ Tm + Tk then pL1ju;xðL1ju; xÞ ¼ pL2ju;xðL2ju; xÞ ¼ ð1=2ÞpTkju;xðTkju; xÞ:

With this, pLju;xðLju; xÞ is uniquely characterised.

Characterisation of pu 0;x 0 ju;x;Lðu
0;Aju; x;LÞ for each L [ Luu 0

For probability pu 0;x 0 ju;x;Lðu
0;Aju; x; LÞ; first notice that both (u, x) and ðu 0; x0Þ represent states

of the complete DCPN, while the firing of L changes the DCPN only locally. This yields that

in general, several tokens stay where they are when the DCPN jumps from u to u 0 while the

set L of transitions fires.

. pu 0;x 0 ju;x;Lðu
0;Aju; x; LÞ ¼ 0 if for all x0 [ A; the components of x and x 0 that correspond

with tokens not moving to another place when transitions L fire, are unequal.

In all other cases:

. Assume L consists of one transition T that, given u and x, is enabled and will fire. Define

again cx
T as the vector containing the colours of the input tokens of T; cx

T may not be

unique. For each cx
T that can be identified, a sample from F T ð·; ·; cx

T Þ provides a vector e 0

that holds a one for each output arc along which a token is produced and a zero for each

output arc along which no token is produced, and it provides a vector c 0 containing the

colours of the tokens produced. These elements together define the size of the jump of the

DCPN state. This gives:

pu 0;x 0 ju;x;Lðu
0;Aju; x; LÞ ¼

X
cx

T

ð
ðe 0;c 0Þ

F T ðe
0; c0; cx

T Þ £ Iðu 0;A;e 0;c 0;cx
T
Þ;

where Iðu 0;A;e 0;c 0;cx
T
Þ is the indicator function for the event that if tokens corresponding with

cx
T are removed by T and tokens corresponding with ðe 0; c 0Þ are produced, then the

resulting DCPN state is in ðu 0;AÞ:

. If L consists of several transitions T1,. . ., Tm that, given u and x, will all fire at the same

time, then the firing measure F T in the equation above is replaced by a product of firing

measures for transitions T1,. . ., Tm:

pu 0;x 0 ju;x;Lðu
0;Aju; x; LÞ ¼

X
cx

T1
;...;cx

Tk

ð
ðe 0

1
;c 0

1
Þ;...;ðe 0

k
;c 0

k
Þ

F T1
ðe01; c 0

1; cx
T1
Þ £ · · · £ F Tk

ðe 0
k; c 0

k; cx
Tk
Þ

£ Iðu 0;A;e 0
1
;c 0

1
;cx

T1
;...;ek

0;ck
0;cx

Tk
Þ;

where Iðu 0;A;e1
0;c1

0;cx
T1
;...;ek

0;ck
0;cx

Tk
Þ denotes indicator function for the event that the combined

removal of cx
T1

through cx
Tk

by transitions T1 through Tk, respectively, and the combined

production of ðe1
0; c1

0Þ through ðek
0; ck

0Þ by transitions T1 through Tk, respectively, leads to

a DCPN state in ðu 0;AÞ:
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. If L is of the form L ¼ Tj + Tk; with Tj an immediate transition, then the result is:

pu 0;x 0ju;x;Lðu
0;Aju; x; LÞ ¼

X
cx

Tk

ð
ðe 0

j
;c 0

j
;cj;e

0
k
;c 0

k
Þ

F Tj
ðe 0

j; c 0
j; cjÞ £ F Tk

ðe 0
k; c 0

k; cx
Tk
Þ

£ Iðu 0;A;e 0
j
;c 0

j
;e 0

k
;c 0

k
;cx

T
Þ;

where Iðu 0;A;e 0
j
;c 0

j
;e 0

k
;c 0

k
;cx

T
Þ denotes indicator function for the event that the removal of cx

Tk
and

the production of ðe 0
k; c0kÞ by transition Tk leads to Tj having a vector of colours of input

tokens cj and the subsequent removal of cj and the production of ðe0j; c0jÞ by transition Tj

leads to a DCPN state in ðu 0;AÞ:

. In cases like L ¼ Tm + Tj + Tk; with Tj and Tm immediate transitions, the firing measures of

this sequence of transitions are multiplied in a similar way as above.

With this, probability measure Q of the constructed PDP is uniquely characterised in terms

of DCPN elements.
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