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Summary 

Rotor-stator interaction noise is one of the main noise sources in modern turbofan engines. 
Propagation of sound waves in the rotor-stator gap is affected by the mean swirling flow and by 
diffraction by the splitter. In a previous study on uniform flow propagation it was shown that the 
effect of diffraction is to redistribute the sound energy over the radial modes. A mean swirling 
flow alters the axial wave number and the mode shape of the radial modes. The combined 
effects of diffraction and mean swirling flow can be calculated by means of a generalized 
matching technique. This technique and some results for a relevant turbofan configuration are 
presented. 
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List of symbols 

 A modal coëfficient 
h hub-to-tip ratio 
m circumferential harmonic 
N1, N2, N3 number of modes in region I, II, and III, respectively 
p pressure (perturbation) 
r, θ, x cylindrical co-ordinates 
s radial splitter position 
t time co-ordinate 
ur , uθ , ux perturbed velocity components 
Vθ , Vx mean velocity components 
vv  velocity vector 
 
α axial wave number 
γ specific heat ratio (= 1.4) 
ρ density (perturbation) 
Ω rotational shaft speed 
ω frequency 
 
subscript: 
0 mean flow property 
j = 1, 2, 3 in region I, II, or III 
μ = 1, 2, 3, … radial mode number 
 
superscript: 
+ downstream propagating 
- upstream propagating 
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Abstract 

Rotor-stator interaction noise is one of the main noise sources for modern turbofan engines. 
Propagation of sound waves in the rotor-stator gap is affected by the mean swirling flow and by 
diffraction by the splitter. In a previous study on uniform flow propagation it was shown that the 
effect of diffraction is to redistribute the sound energy over the radial modes. A mean swirling 
flow alters the axial wave number and the mode shape of the radial modes. The combined effect 
of diffraction and mean swirling flow can be calculated by means of a generalized matching 
technique. This technique and some results for a relevant turbofan configuration are presented. 
 

INTRODUCTION 
 
For an adequate analysis of the environmental problem of aircraft noise, a physical model for 
each of the noise components is needed. One of the main noise sources for modern turbofan 
engines is rotor-stator interaction noise. Downstream of the fan the duct of a turbofan engine 
splits into a by-pass duct and an engine duct. Since the fan rotates, swirl is added to the airflow 
in the ducts. In order to take this swirl out of the airflow and recover its energy, stators are 
placed in the engine duct and in the by-pass duct. Rotor wakes interact with the stator vanes and 
thus generate sound. 
 In order to calculate the radiated rotor-stator interaction noise, viscous wakes coming from 
the fan blades can be modelled analytically (Ref. 1). Interaction of the wakes with the stator 
vanes and interaction of generated sound waves with blade rows can be calculated by means of 
the NLR lifting surface model (Refs. 2, 3). Up to now, the propagation of sound waves between 
rotor and stator, including diffraction by the splitter, was based on a uniform flow assumption 
(Ref. 4). In this paper a method is described that also includes the effect of a non-uniform, 
swirling flow on the propagation of sound. With this method more accurate input can be 
generated for rotor blockage calculations (Ref. 3) and liner optimisation studies (Ref. 5). 
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 The diffraction of acoustic waves by the splitter in a turbofan rotor-stator gap is investigated 
using a generalized mode matching technique. The traditional mode matching technique is well 
known in the electromagnetic theory of waveguides (Ref. 6) and it is also applied in acoustics 
(Ref. 7). Results of our generalized matching technique are validated against an analytical 
Wiener-Hopf solution for uniform flows that was obtained by Nijboer & Sijtsma (Ref. 4). 
 

GEOMETRY AND FLOW CONDITIONS 
 
Geometry 
 
The diffraction problem is considered in an infinitely long, straight, cylindrical duct having a 
constant hub radius. All length scales are made dimensionless by the (constant) duct radius. The 
hub position is given by the hub to tip ratio h. For x > 0 the duct is split by an infinitely thin 
splitter. The (constant) radial position of the splitter is given by s. Hence, the geometry can be 
considered to be three half-infinite ducts: x < 0, h ≤ r ≤ 1 (region I), x > 0, h ≤ r ≤ s (region II), 
and x > 0, s ≤ r ≤ 1 (region III), as shown in figure 1. 
 
Mean Flow 
 
The mean flow is assumed to satisfy the Euler equations. All variables are scaled by the mean 
density at the duct outer radius (r = 1), and the speed of sound at the duct outer radius. The 
mean density, ρ, the mean velocity, νv , and the mean pressure p take the form 
 

1 2
0

0 0
1( ), ( ) ( ) , ( ) dx x

r

V
r v V r e V r e p p r r

r
θ

θ θ
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%
%
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Here γ denotes the specific heat ratio and is taken to be 1.4. The radial profile for the mean 
density and for the mean velocity components is free to choose. Note that the mean flow profile 
(1) is valid in all three regions. 
 
 
Perturbations 
 
In order to describe disturbances superimposed on the mean flow, the Euler equations are 
linearised. We assume that the disturbances have an exponential dependence like 
 

( , , , ) ( ) exp( )f x r t f r i x im i tθ α θ ω= + + . (2) 

 
 In each of the regions I, II, and III the linearised Euler equations reduce to a set of 
eigenvalue equations for the eigenvalue α. With each eigenvalue α corresponds a vector of 
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eigenfunctions { }( ), ( ), ( ), ( ), ( )r xr u r u r u r p rθρ . In uniform flow the eigenvalues and 
eigenfunctions can be determined analytically in each of the three regions. In a non-uniform 
flow they can be calculated by means of the SWIFDA code (SWIrling Flow Duct Acoustics) 
that is described by Nijboer (Ref. 8). 
 The equations admit a solution having a square root singularity at the leading edge of the 
splitter. This type of singularity is well known for uniform flows (Ref. 9). When an axial flow is 
present, all variables except the circumferential velocity exhibit a square root singularity. The 
only effect of the mean swirl on the singularity is to change the local speed of sound. 
 
Values For Example Calculations 
 
For the examples presented in this paper a realistic turbofan cutback flight condition is chosen. 
 The turbofan rotor-stator gap is described by a hub to tip ratio h = 0.6 and a splitter position s 
= 0.752. Both for the uniform flow and swirling flow cases 
 

0 ( ) 1, ( ) 0.45.xr V rρ = =  (3) 

 
In the uniform flow case there is no swirl. In the swirling flow case a realistic profile for the 
swirl is 
 

( ) 0.225 / 0.1 .V r r rθ = +  (4) 

 
Consider an engine having 26 rotor blades and 65 stator vanes. The fan has a rotational shaft 
speed Ω = 1.15. For this situation 2 times Blade Passing Frequency corresponds to m = 13 and 
ω = 60. 
 

EFFECT OF MEAN SWIRLING FLOW 
 
In the rotor-stator gap there can be acoustic perturbations propagating both upstream and 
downstream and vorticity and entropy perturbations that propagate downstream. Due to the non-
uniformity of the mean flow the acoustic type disturbances and the vorticity and entropy type 
disturbances can not be treated as uncoupled. The acoustic perturbations are pressure 
dominated, but, due to non-uniformity of the mean flow, have small vorticity component. The 
vorticity and entropy perturbations have a small pressure component due to the non-uniformity 
of the mean flow. Also, the acoustic type eigenfunctions do not form a complete orthogonal set 
for the pressure disturbance anymore. 
 Due to a mean swirling flow the axial wave numbers and the corresponding eigenfunctions 
change for all modes. Compared to uniform flow, the number of cut-on modes can be different 
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in a swirling flow. For example, in region I, for the discussed values for mean flow and 
perturbations, in uniform flow 9 upstream and 9 downstream modes are cut-on, whereas in 
swirling flow 10 upstream and 10 downstream modes are cut-on. In region II 4 upstream and 
downstream modes are cut-on, both for uniform and swirling flow. In region III this number is 
6, again both for uniform and swirling flow. 
 The effect of swirl on the eigenfunctions is most profound for the lowest order radial modes. 
For non-axisymmetric (m ≠ 0) perturbations in a uniform flow these modes are localized near 
the highest radial position. For certain swirl profiles and circumferential mode numbers, 
however, this may change towards localization near the lowest radial position. It is anticipated 
that for these modes the effect of swirl on diffraction will be large. 
 

DIFFRACTION BY MODE MATCHING 
 
For the diffraction of sound waves we assume that in the matching plane x = 0 there is no 
coupling between acoustic type waves and vorticity or entropy type waves. In uniform flows 
this is a valid assumption. In non-uniform flow this is at least a good approximation. In each of 
the three regions the solution will therefore be decomposed in an infinite series of acoustic type 
eigensolutions. 
 In order to calculate the effect of diffraction for non-uniform flow a generalized mode 
matching technique is developed. The idea behind the matching technique is quite simple: given 
a sound field that propagates towards x = 0 from the three regions, match waves that are 
outgoing from x = 0, such that the total field is continuous at x = 0. 
 In order to describe the sound propagation the duct modes in the three different regions are 
calculated. The traditional way for the matching technique (in uniform flow) is then to make use 
of the orthogonality properties of the pressure eigenfunctions and construct a scattering matrix 
(Refs. 6, 7). Due to the swirling flow, however, the eigensolutions are not orthogonal. 
Therefore, the mode matching technique has to be generalized by using a least-squares approach 
on pressure and velocity eigenfunctions. 
 In order to have a completely continuous solution infinitely many modes are required for the 
response field. However, it is only possible to include a finite number. At x = 0 this yields 
 

N1 N2

1 1 2 2 1 1 2 2
1 1 1 1

N1 N3
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1 1 1 1
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∑ ∑ ∑ ∑ >
 (5) 

 
where p±

jμ are the downstream (+) and upstream (−) propagating pressure eigensolutions. Here j 
= 1, 2, 3 corresponds to region I, II, and III and μ denotes radial order. The left-hand-side of 
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equation (5) consists of the unknown outgoing waves; the right-hand-side consists of known 
incoming waves. For the other variables similar equations hold. The numbers N1, N2, and N3 
must be chosen in such a way that the approximate solution converges towards the physical 
solution. For this 
 
(N1 1) (N2 1) (N3 1), (N2 1) /(N3 1) ( ) /(1 ) ,s h s− = − + − − − = − −  (6) 

 
should be used (Refs. 6, 7). For the examples presented below N1 = 201, N2 = 77, and N3 = 
125 were used. 
 The eigensolutions are calculated on a uniform grid and the matching is performed point 
wise on these grid points. This means that the number of equations used for the three regions 
has the same ratio as the number of modes used. For convenience the radial position of the 
splitter, s, is chosen to coincide with one of the grid points. 
 Due to the singular behavior of the solution at the leading edge of the splitter the 
convergence of this matching technique will be relatively slow and a lot of modes are needed. 
Not only choosing the pressure and the axial velocity as matching variables (as is done 
traditionally), but also the circumferential velocity can improve the performance of the 
matching technique. The latter variable does not exhibit singular behavior. In order to diminish 
the effect of the square-root singularity on the convergence even further a weight function is 
introduced. This weight function is applied to the pressure and axial velocity components and 
weighs the splitter position less severely than the other positions by canceling the square-root 
behavior. For the circumferential velocity a constant weight function is used. 
 In this way at every grid point three linear equations are obtained for the unknown 
amplitudes. This generates a large set of equations, which is solved for the unknown amplitudes 
in the least-squares sense. The results of this technique are presented below. 
 
Validation For A Uniform Flow 
 
The effect of diffraction in a uniform flow can be seen in figure 2 where the real part of the 
pressure is shown after diffraction. The axial domain is chosen to range from x = −0.2 to x = 0.1, 
which is typical for a turbofan rotor-stator gap, where the trailing edge of the rotor is at x = −0.2 
and the leading edge of the stator rows is at x = +0.1. The incoming field consisted of one radial 
harmonic (μ) with unit amplitude. 
 Results of the matching technique are compared to the analytical results of the Wiener-Hopf 
technique for uniform flows. Due to the singular behavior of the solution at the leading edge of 
the splitter, the solution in the plane x = 0 is less accurate when using the matching technique. 
However, the error is predominantly in the high order radial harmonics, which are cut-off. 
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Therefore, away from the x = 0 plane the accuracy of the matching solution is far better than in 
the plane x = 0. 
 In figure 3 the pressure solution at x = -0.2 and at x = 0.1 is shown. This is done for 
diffraction of the first radial harmonic coming from region III (figure 2a). In each plot two 
symbols are shown, one for the Wiener-Hopf solution (○) and one for the matching solution (+). 
Both symbols are on top of each other. Hence, the presented matching technique is an accurate 
technique for calculating diffraction problems. Moreover, it can be extended to non-uniform 
mean flows. 
 
Application To A Swirling Flow 
 
 In figure 4 the solution after diffraction is shown for a mean swirling flow. The same cases 
are presented as for the uniform flow case of figure 2. That is, the same radial order 
eigenfunctions are used as input, although the eigenfunction shape is different. The most 
dramatic effect is for the μ = 1 mode coming from region III (Fig. 2a vs. 4a). Due to the fact that 
the shape of the eigenfunction has changed from localization near the outer radius in uniform 
flow towards localization near the splitter in swirling flow, the splitter plate almost acts as a 
point source in the swirling flow case, whereas in uniform flow the wave propagates almost 
unchanged into region I. Also, in swirling flow the μ = 1 mode coming from region II 
propagates almost unchanged into region I (Fig. 2c vs. 4c). In uniform flow this wave is much 
more diffracted. This is again due to the change in eigenfunction shape. 
 For the μ = 6 mode coming from region III one can clearly see the change in axial wave 
number (Fig. 2b vs. 4b). Also the propagation of the μ = 10 mode in region I for the swirling 
flow case is visible, as opposed to the μ = 9 mode being the highest cut-on mode for uniform 
flow in this region.  The μ = 4 mode coming from region II also shows the change in axial 
wave number (Fig. 2d vs. 4d). Moreover, the amplitude of the solution in region I is lower in 
uniform flow than in swirling flow. 
 When comparing figure 2 with figure 4 it can be concluded that both diffraction and swirl 
have an important effect on the propagation of sound in the rotor-stator gap. 
 

CONCLUSIONS 
 
Propagation of sound in the rotor-stator gap of a turbofan engine can be significantly affected by 
diffraction by the splitter and by the mean swirling flow. In this paper a method is presented for 
the calculation of both effects. The method is based on matching unknown outgoing waves to 
known incoming waves by means of a least square fit technique. The waves themselves are 
obtained from the NLR SWIFDA code for the calculation of eigensolutions in a non-uniform 
swirling flow. 
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 The matching technique can be considered to be an extension of the traditional scattering 
matrix technique for uniform flows. The technique was validated against an analytical solution 
for uniform flows that was obtained by means of a Wiener-Hopf method. Results from both 
techniques were in perfect agreement. 
 Results for uniform flow show that the effect of diffraction can be quite large. Differences up 
to a couple of decibels per mode can arise in the sound pressure level that is transmitted through 
the rotor (Ref. 4). The reason being that due to diffraction the energy is redistributed over the 
radial modes and, hence, the rotor effectively blocks a different sound field. Swirl alters the 
axial wave numbers and the shape of the eigenfunctions. For some conditions this change can 
be quite large. Because of this, the energy of the incoming sound field and of the outgoing 
response field is distributed differently over the radial modes compared to a uniform flow. 
Using the matching technique this effect can be calculated and accurate input for rotor blockage 
calculations or liner optimization studies can be generated. 
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Figure 1 Geometry 
 
 

(a) (b) (c) (d)  
 

Figure 2 Real part of the pressure component after diffraction in uniform flow. Incoming waves 
from region III μ = 1 (a), μ = 6 (b), and from region II μ = 1 (c), μ = 4 (d). 
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Figure 3 Pressure solution at x = -0.2(a) and at x = 0.1 (b) for diffraction of the first radial mode 
(μ = 1) from region III. Solution by Wiener-Hopf technique (blue solid line) and Matching 
technique (red dashed line). 
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(a) (b) (c) (d)  
 

Figure 4 Real part of the pressure component after diffraction in swirling flow. Incoming waves 
from region III μ = 1 (a), μ = 6 (b), and from region II μ = 1 (c), μ = 4 (d). 
 
 

  




