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ABSTRACT
In some key database applications, a sequence of interdependent queries
may be posed simultaneously to the DBMS. The optimization of such
sequences is called multi-query optimization, and it attempts to exploit
these dependencies in the derivation of a query evaluation plan (qep).
Although it has been observed and demonstrated by several researchers
that exploitation of dependencies speed up the query processing, limited
research has been reported how to benefit from multi-query optimization,
taking the capabilities of existing query optimizers into account. This
is exactly the topic of this paper. Since existing optimizers are able to
optimize queries in which a restricted number of basic operations
appears, e.g., number of joins is limited to ten, and the optimization of
a query is relatively expensive, we attempt to profit from multi query
optimization under the condition that queries are passed only once and
separately to the optimizer. We propose a two-step optimization
procedure. In the first step, we determine, on the basis of the
dependencies between queries, in which order they should be specified and
what results should be stored. In the second step, each query is passed
separately to an optimizer.
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Summary

In some key database applications, a sequence of interdependent queries may be posed simul-

taneously to the DBMS. The optimization of such sequences is calledmulti-query optimization,

and it attempts to exploit these dependencies in the derivation of a query evaluation plan (qep).

Although it has been observed and demonstrated by several researchers that exploitation of de-

pendencies speed up the query processing, limited research has been reported how to benefit from

multi-query optimization, taking the capabilities of existing query optimizers into account. This

is exactly the topic of this paper. Since existing optimizers are able to optimize queries in which

a restricted number of basic operations appears, e.g., number of joins is limited to ten, and the

optimization of a query is relatively expensive, we attempt to profit from multi query optimization

under the condition that queries are passed only once and separately to the optimizer. We propose

a two-step optimization procedure. In the first step, we determine, on the basis of the dependencies

between queries, in which order they should be specified and what results should be stored. In the

second step, each query is passed separately to an optimizer.

Keywords: data management, multi-query optimization, architectures, exploiting interdependen-

cies between queries.
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1 Introduction

Query optimization has been recognized as an important area in the field of database technology

[Ref 18], especially since the introduction of relational systems. Relational systems offer the user

to access data via high-level query languages, and it is the responsibility of the system to select

efficient plans to process queries, called query evaluation plans (qeps). A qep describes in which

order basic operations, such as selections, projections, joins, etc., should be evaluated to obtain

the query answer. Much research has been devoted to select automatically efficient qeps [Ref 7].

Since the first and most important database applications were produced in administrative areas,

research on query optimization was primarily focussed to meet their performance requirements.

An assumption often implicitly made is that these applications give mainly rise to independent

queries with a limited number of basic operations. This makes it possible to select efficient qeps

by a complete enumeration or by applying a few effective heuristics. For example, the number of

joins involved is generally less than ten for those applications.

As the variety of database applications grows rapidly, its impact on the performance requirements

and the pattern of queries passed to the optimizer poses new research challenges. In database

applications, such as data mining and decision support systems, a sequence of interdependent

queries are passed simultaneously for processing [Ref 3]. Often, complex queries are split into a

number of simpler queries whose results are used by the application to derive the desired result.

The simpler queries are passed simultaneously to the DBMS for processing. Optimizing such

interdependent queries separately leads to performance that is far from optimal. This has led to

several approaches to exploit the dependencies between queries such as illustrated by [Refs 1, 8,

9, 10, 12, 13, 16].

In [Ref 8], the author describes how common subexpressions can be detected, and used according

to their type (e.g., joins, selections, etc.,). In [Ref 10], necessary and sufficient conditions are dis-

cussed to compute query results from previously executed queries. In [Refs 12, 13], a framework

is provided to derive a common query graph from individual query graphs belonging to individual

views, in an attempt to speed up view processing. In the common query graph, different ways are

presented to produce the result of a view. Then, the effect of indices on the common query graph

is studied, and a set of indices is selected. In [Ref 9], a two-step optimization is proposed. In the

first step, an analysis of database and query characteristics is performed, and a grouping of queries

for simultaneous processing is determined. In the second step, each group of queries is processed

in the order determined at the first step and intermediate results are stored on disk. In [Ref 16],

two algorithms are described for multi-query processing. In the first algorithm, an optimal access
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plan is generated for each query. Then, a global access plan is obtained by merging the optimal

access plans of each query, taking common subexpressions into account. In the second algorithm,

a number of access plans for each query is considered. Then, on the basis of heuristics an access

plan is chosen for each query such that all common subexpressions found among the queries are

used effectively. In [Ref 1], it has been demonstrated that rewriting a set of related expressions in

the context of each other, such that no resulting common subexpression is weaker than any of the

related expressions, is superior than rewriting techniques that induce common subexpressions that

are weaker than the set of related expressions.

In this paper, we address the following problem:how to restructure a sequence of queries such

that it can efficiently be processed using the optimizing techniques available in the query optimizer

of existing DBMSs.The idea of our approach is to determine an order in which a sequence of

(sub)queries should be processed, such that we may profit from the dependencies between queries

in processing them. Then, each query is passed separately to the optimizer, and the optimizer

selects an efficient query evaluation plan. Although we consider a restricted class of conjuctive

queries, i.e., queries whose WHERE clause consists of a conjunction of selections and equi-joins,

this class contains the most common type of queries. Furthermore, this type of queries is also sig-

nificant for complex queries, since complex queries are often split into a set of simple queries be-

fore processing [Ref 1]. Since disk accesses are still the main cost factor for the above-mentioned

type of queries [Refs 2, 4, 14], disk accesses will be taken as processing unit.

What distinguishes our approach to optimization of interdependent queries from the before-mentioned

efforts is that we use an existing optimizer, and view to it as a ‘black-box’. This approach avoids

re-development of a complex query optimizer and is adaptive to emerging techniques for query

optimization. However, one should be aware of the following limitations of using an existing

optimizer. First, as noted already, optimizers are able to handle queries efficiently with a lim-

ited number of basic operations only. Approaches based on the integration of queries into a single

query graph, such as in [Refs 1, 8, 12, 13], are not suitable when using existing optimizers. Passing

large query graphs would burden an optimizer with an infeasible task. Second, the optimization

of a query is a time consuming task [Refs 2, 6]. Approaches based on many invocations of an

optimizer for a single query, such as in [Ref 16], will considerably slow down the optimization

process.

The remainder of this paper is organized as follows. In Section 2, we discuss four possible ar-

chitectures to integrate techniques that exploit dependencies between queries and conventional

optimizers. In Section 3, we discuss a model how to reuse existing output of queries in processing
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new queries. In Section 4, we elaborate our approach, and, in Section 5, we introduce an algorithm

based on this approach. The effectiveness of our approach is shown by a realistic case study in

Section 6. Finally, Section 7 concludes the paper.



- 8 -
NLR-TP-97563

2 Architectures for multi-query optimization

In this section, we discuss a number of architectures to integrate techniques that exploit dependen-

cies between queries and conventional optimizing techniques. For each architecture, we point out

the strong points and flaws. In Figure 1, we have depicted four possible architectures. We note

that variants of architectures 1(a) and 1(b) have been introduced in [Ref 16].

query

qep

global evaluation plan

Order 
Manager

part of a qep

multi-set of queries

reuse
information

order

part of a qep

(a)                                                                                           (b)

multi-set of queries

qep

qepqep

(c)                                                                        (d)

qep’

Advanced 
Optimizer

multi-set of queries

Conventional
Optimizer

Conventional

Reuse
Manager

Conventional
Optimizer

Optimizer

Reuse
Manager

Reuse
Manager

Fig. 1 Architectures

In Figure 1(a), a multi-set of queries arrives at the optimizer. The optimizer selects an efficient

global evaluation plan, which contains the processing strategy for all queries. Then, the plan will

be executed. In this architecture, conventional optimization techniques and optimization tech-

niques based on dependencies between queries are strongly integrated. We note that the rule base

or cost model used by optimizer will become more complex, since the effects that dependencies

between queries will have on an evaluation plan should be modelled as well. Such an architecture

is suitable for the development of an optimizer from scratch.

In Figure 1(b), a conventional optimizer selects for each query an efficient qep. Then, all qeps

are passed to a reuse module, which attempts to profit from the common parts (caused by the

dependencies) by computing them only once and to reuse them in qeps. Consequently, query eval-
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uation plans are rewritten before being executed. Query evaluation plans are based on the available

storage structures and access structures in a database management system. A qep produced by a

Ingres optimizer may differ from a plan produced by Oracle optimizer. Since the reuse manager

attempts to optimize a number of plans by reusing the results of common parts, it is not interested

in all details provided by a specific optimizer, such as how a relation is accessed. So, it abstracts

from the details and focus on the information relevant for the reuse of earlier computed results, as

illustrated in [Ref 16]. Once the re-use parts are determined, the abstracted evaluation plan should

be augmented with the processing details, in order to be executed by the database system. In fact,

architecture 1(b) requires another interface between the optimizer and reuse manager for each kind

of database system. Another disadvantage of this architecture is that an optimal plan generated by

the conventional optimizer for a query may be killed by the re-use manager, making the effort of

the conventional optimizer wasteful. This may happen, e.g., when the output of a query is solely

derived from earlier computed results. In this case, a plan generated by an optimizer becomes

useless.

In Figure 1(c), a multi-set of queries arrives at the reuse manager. The reuse manager determines

in which order the queries are to be passed to the conventional optimizer and how to reuse earlier

computed results. In fact, the reuse manager determines a part of the qep. An advantage of this

architecture above architecture 1(b) is that in principle the same reuse manager can be used for

each kind of database system. Furthermore, since the reuse manager determines a part of the qep,

it relieves the task of a conventional optimizer.

In Figure 1(d), the order manager receives a multi-set of queries and chooses an order of execution.

Then, it passes the queries to a reuse module to determine the best way to reuse earlier computed

results given this order. After receiving the requested information, it passes each query with the

information on how to reuse earlier computed results to the optimizer. The optimizer passes on its

turn a query evaluation plan to the order module. On the basis of the evaluation plans, the order

module may choose another order and the whole procedure may be repeated. This architecture

is comparable with architecture 1(c). The difference with architecture 1(c) is that the task of

determining an order in which queries should be executed and what and how to reuse earlier

computed results are made explicitly in this architecture.

In the remainder of this paper, we will elaborate and implement architecture 1(c) for the following

reasons. Commercial database management systems can efficiently handle queries in which a

limited number of basic operations appears, e.g., no more than 10 joins [Ref 17]. For example,

the optimization algorithm used in System R [Ref 15] becomes infeasible if the number of joins
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is larger than 10 [Ref 17]. Since we attempt to use existing optimizers in the optimization of

interdependent queries, we avoid large query graphs. Therefore, we reject architecture 1(a). Since

query optimization is a time consuming process, we attempt to limit the number of invocations of

an optimizer. Consequently, architecture 1(d) is rejected as well. Finally, we choose architecture

1(c) above 1(b) for the reasons discussed above, namely, the same reuse manager can be used for

each kind of database system and it relieves the task of a conventional optimizer.
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3 Query processing

This section is devoted to a model to store output of queries and how to use them in query pro-

cessing. Before presenting this model, we briefly outline some preliminaries in Section 3.1.

3.1 Preliminaries & assumptions

We deal with relational databases. Each relationR is defined over some attributes, such as,

�1; �2; :::; �n, and is a subset of the Cartesian productdom(�1) � dom(�2) � ::: � dom(�n),

in which dom(�j) is the set of values assumed by�j . A restricted class of conjunctive queries,

i.e., a conjunction of selections and equi-joins in a WHERE clause, is considered. A selection

is a predicate of the formR:�i op constant, in which op2 f=; 6=; <;�; >;�g. An equi-join is

a predicate of the formR1:�i = R2:�j . We do not consider projections to simplify our anal-

ysis without invalidation of the obtained results. Incorporation of projections into our approach

is straightforward. Observe that a disjunction of predicates in a WHERE clause of a query can

be replaced by a number of queries, for which the WHERE clause consists of a conjunction of

predicates. Although we restrict ourselves to a special class of queries, this class contains the most

common types of queries. This class of queries is also significant for complex queries, since a

complex query is often split into a number of queries of the above-mentioned types [Ref 1]. Fur-

thermore, we assume that a database resides on disk. For the above-mentioned class of queries, the

processing cost depends on the number of disk accesses and CPU costs. However, the dominant

cost factor is still disk accesses [Refs 2, 4]. Therefore, we take disk accesses as cost unit. Finally,

we assume that a relation is stored as a heap, and no indices are allocated to attributes. We note

that a data warehouse, which generally maintains historical information, is a typical application

that is implemented in this way.

3.2 Model

Our approach for multi-query optimization exploits the dependencies between the queries in a

sequence. To speed-up query processing, (intermediate) results of queries are temporarily stored

and reused. Although our approach can be targeted to different models that store intermediate

results, we describe a model to store and reuse intermediate results for illustrative purposes.

We assume that each tuple in a relation has a unique tuple identifier (tid). Instead of storing tuples

that qualify as intermediate results, we store its tid in main memory. For reasons of simplicity, we

assume that a main memory is large enough to store all tids that qualify as intermediate results1.

1If this assumption appears to be false, several strategies can be used to control the main memory by discarding

results. One strategy might be to discard the results that will be not used in future.
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So, an intermediate result can be regarded as a relationT , called tid-relation, in which attribute

�i assumes tid values of relationRi. For example, storage of intermediate results due to a join

between two relationsRi andRj leads to the storage of a tid-relationTi;j having two attributes�i

and�j, in which�i and�j assume tid values ofRi andRj respectively. A consequence of this

storage model for intermediate results is that whenever one needs a tuple, this should be retrieved

from disk. Before illustrating how to use tid-relations in query processing, we present a definition

for the intersection of two tid-relations that resides in main memory.

Definition 3.1: LetTR1;R2;R3:::;Rn = (�1; �2; �3; :::; �n) andTS1;S2;S3;:::;Sm = (�1; �2; �3; :::; �m)

be relations, in whichdom(�i), i � n, anddom(�j), j � m, are the set of tid values that

appears in relationRi andSj, respectively. Letu:� represents the value of an attribute� in

a tupleu. Then, the intersection ofTR1;R2;R3:::;Rn andTS1;S2;S3;:::;Sm is

\(TR1;R2;R3:::;Rn; TS1;S2;S3;:::;Sm) = fuvju 2 TR1;R2;R3:::;Rn; v 2 TS1;S2;S3;:::;Sm;

8�i; �j : dom(�i) = dom(�j) ) u:�i = v:�jg 2

We note that the intersection of two tid relations results into a relation in which attributes that

are defined on the same domain have the same value. Consider the two relationsR andS below.

Assuming that�2 and�1, and�3 and�2 are defined on the same domain, the result of the inter-

section is a relation with one tuple as given below.
β β

203    302
200    304
204    300

 1  2S:α1 α2 α3R:
intersected relation

103   209     304

100    200    301

102   203     302

β β 1  2
α2 α3α1

102    203    302 203    302

Let us continue by illustrating how to use tid-relations in query processing by means of an ex-

ample.

Example 3.1: Consider the relational schema and queries defined in Figure 2 with the follow-

ing content.

tid dept-name num-of-emps

402

404

407

Dept

45

15K

623 Pincho 31

624 Oeroeg 20K

Emp

AP 8

...             ....            ...            ...               ...

601 14

32

9K

IS

AA

AA

AP

AP

AP

AA

AA
IS

30K

nametid  age salary dept-name

Tutiram

8K

610 Titaram 26

621 Jansen 40

22

30 60K

603     Tataram

609 Totaram

40K34

The queriesq1; q2, andq3 will be processed according to the following plan. First, queryq1 is

resolved. Then, the following intermediate query,qint, is resolved. The tids of tuples that satisfy
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Relations:

Emp(name, age, salary, dept-name)

Dept(dept-name, num-of-emps)

Queries:

q1: SELECT * FROMEmp, Dept

WHERE Emp.dept-name= Dept.dept-name

AND Emp.age� 40

AND Dept.num-of-emps� 20

q2: SELECT * FROMEmp, Dept

WHERE Emp.dept-name= Dept.dept-name

AND Emp.age� 50

AND Dept.num-of-emps� 10

q3: SELECT * FROMEmp, Dept

WHERE Emp.dept-name= Dept.dept-name

AND Emp.age� 40

AND Dept.num-of-emps� 15

AND Emp.salary� 10:000

Fig. 2 Relational schema and queries defined on schema

to these queries will be stored in main memory.

qint: SELECT * FROMEmp, Dept

WHERE Emp.dept-name= Dept.dept-name

AND Emp.age� 50

AND Dept.num-of-emps� 15

Finally, q3 is resolved by using the results of the intermediate queryqint andq1, andq2 by using

qint.

The following relations will be stored in main memory due to the results ofq1 andqint.

402

D.tidE.tid

407623

402603 402

)res(

624

623

402

407

601

603

402

)res( intq1q 

601

D.tidE.tid

Using the result ofqint that is stored in main memory,q2 may be processed as follows. For each

tuplet in qint, tupleu in relationDept, whose tid corresponds to the D.tid value oft, is retrieved. If
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this tuple satisfies to the restriction onnum-of-emps(� 10), tuplev in Emp, whose tid corresponds

to the E.tid value oft, is retrieved. Then, tuplesu andv are concatenated.

Query q3 is processed as follows. The intersection betweenres(q1) and res(qint) is computed,

which results intores(q1). So, this means thatres(q1) contains all tids of tuples that satisfies toq3,

except for the restriction onEmp.salary. To output the result that satisfies also to this restriction,

a similar procedure can be used as in the processing ofq2. 2

From the example it should be clear that the cost entailed by using tid relations in processing

queries depends on the different number of tuples that should be retrieved from disk from each

relation. Once, this is known the cost involved in retrievingt tuples fromm pages containing

n(> m) tuples can be estimate by the well-known formula presented in [Ref 19]. For rough esti-

mation of the number of tuples that satisfies to a selection or join, we refer to [Ref 18]. Given the

formulae for these estimations, the derivation of a rough cost model for above-mentioned query

processing technique is straightforward.
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4 Exploiting interdependencies between queries

In this section, we study how to re-structure a sequence of queries such that it can be efficiently

processed by an optimizer. Re-structuring a sequence of queries means that a new sequence of

queries is determined and the order in which these queries should be passed to the optimizer is

established. A query in the new sequence is either a query coming from the original sequence or is

an intermediate query, which is derived to speed-up a number of queries in the original sequence.

Such an intermediate query is called acommon subquery. In Section 4.1, we precisely define what

is meant by a common subquery. Then, in Section 4.2, we exploit common subqueries in our

approach.

4.1 Common subquery

Our approach is based on the exploitation of results of common subqueries between two queries.

The result of a common subquery (csq) of two queriesqi andqj is a set of tuples that contains the

result of bothqi andqj. For example, a common subquery for queriesq2 andq3 in Figure 2 is the

queryqint in Example 3.1. In the following, we formalize the notion of common subquery.

q2 q3

q1 Emp.dept-name= Dept.dept-name q1

Emp.age� 50

Dept.num-of-emps� 20

q2 - Emp.dept-name= Dept.dept-name

Emp.age� 50

Dept.num-of-emps� 15

Fig. 3 csq matrix corresponding to Figure 2

Definition 4.1: A selectionsi subsumes a selectionsj , si ) sj , if si andsj are defined over

the same relational schema and the set of tuples satisfyingsi is a subset of those tuples

satisfyingsj . Selectionssi andsj are equal,si = sj , iff si ) sj andsj ) si. 2

Definition 4.2: Let Si represent the set of selections andEi the set of equi-joins in the WHERE

clause of a queryqi. A query qi;j is a common subquery of queriesqi andqj, in which

i 6= j, if Si;j contains all selectionssi;j for which holds: 9si 2 Si;9sj 2 Sj ; (si )

si;j ^ sj = si;j) _ (si = si;j ^ sj ) si;j) andEi;j contains all equi-joinsei;j for which

holds:ei;j 2 Ei ^ ei;j 2 Ej 2

The detection of common subqueries is beyond the scope of this paper. Several algorithms have

been proposed to detect common subqueries [Refs 5, 11]. For parsing and analysing queries,

which are necessary to detect common subqueries, we rely on existing DBMSs, which are able to
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handle these tasks well. In the remainder of this paper, we assume that a common subquery can

be generated.

4.2 Approach

Before presenting our approach, we introduce the notion of a common subquery matrix, abbrevi-

ated as csq-matrix. A csq-matrix for a sequence ofn queries has size of(n � 1) by (n � 1). An

elementei;j; i < j, represents the WHERE clause of the common subquery of queriesqi andqj.

Since elementsei;j andej;i, i 6= j concern the same WHERE clause, we omit the clause forej;i.

Furthermore, the value of an elementei;i is not defined, since a common subquery with regard to

a single query is not defined. So,n(n�1)2 elements in a csq-matrix are relevant. An example of

a csq-matrix, which regard to the relational schema and queries of Figure 2, is given in Figure 3.

The first elemente1;2 contains the WHERE clause of the subquery with regard to the queriesq1

andq2. We note that if the common subquery of two queriesqi andqj is qi, then we denote, for

convenience’s sake,qi in a csq-matrix and not its WHERE clause. For example, from Figure 3,

we see thatq1 andq3 haveq1 as common subquery.

Our approach to optimize a sequence of interdependent queries consists of two phases. In the first

phase, we derive from the csq-matrix the set of common subqueries that may be used in computing

the output of a queryq. We apply some rules to limit the elements in this set. Then, we build up a

graph that establishes the relationships between the output of all remaining (common sub)queries.

The graph corresponding to the queries of Figure 2 and its csq-matrix is given in Figure 4. An

edge from a nodeni to a nodenj means that the output of the query corresponding toni contains

the output of the query corresponding tonj. Therefore, the output ofni can be used in computing

the query corresponding tonj .

q
2

3
e 1,2q 1

e
2,3

q

Fig. 4 Relationship graph corresponding to Figure 2

In the second phase, we analyse the nodes that correspond to a query that does not belong to the

initial sequence of queries, calledintermediatenodes. In Figure 4,e1;2 ande2;3 are intermediate

nodes.
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If the output of a query corresponding to anintermediatenode can be obtained by an intersection

of the (available) output of other nodes, this intermediate node is kept into the graph. The reason

is that there is no need to retrieve tuples from base relations in this case and intersections can

be cheaply performed. Whenever it happens that the output of such a query will not be used

in the computation of other queries, the loss of efficiency is limited1. In all other cases, we

estimate the investments in computing queries corresponding to intermediate nodes and the return

on investments. On the basis of these estimations, it is decided whether an intermediate node will

be discarded or not. For example, in Figure 4, nodee1;2 will be deleted if we expect that the sum

of the cost to computeq1 andq2 without usinge1;2 is less than usinge1;2. Similarly, e2;3 will be

deleted if the sum of the cost to computeq2 andq3 without usinge2;3 is less than usinge2;3. Of

course, the cost to compute the output of a query corresponding to an intermediate node should

be taken into account in the decision whether a node should be discarded or not. We note that the

cost to compute the query corresponding toe2;3 depends on whethere1;2 is discarded or not.

In two consecutive subsections, we discuss the phases of our approach, and the rationales behind

them in more detail.

4.2.1 Phase 1

From a csq-matrix we can derive all common subqueries to evaluate a queryqi (and at least one

other query) from a sequence of queries. Consider a csq-matrix with regard to a sequence of

queries,S = q1; q2; q3; :::; qn. Let Q<
j = [i<jei;j andQ>

j = [j<i�nej;i, in which ei;j is an

element of the csq-matrix andei;j 6= qj. Then,Qj = Q<
j [ Q

>
j contains all the queries whose

output can be used in processing queryqj. For example, queryq1; q2 andq3 in Figure 2 can be

evaluated using a subset ofQ1 = fe1;2g, Q2 = fe1;2; e2;3g, andQ3 = fq1; e2;3g, respectively, in

which ei;j is the i-jth element of the csq-matrix of Figure 3. To limit the number of elements of

Qj , we present the following two rules.

Rule 1: Let qi andqj belong to a sequence of queriesS, andQj contains the set of common

subqueries whose output can be used to process queryqj. If qi andqk are elements ofQj

and the output ofqi is a subset of the output ofqk, thusoutput(qi) � output(qk), thenqk can

be deleted fromQj . 2.

The rationale behind this rule is based on the following. Since queryqi belongs to sequenceS,

it should be computed. The computation of the output ofqj from a smaller amount of tuples is

cheaper than from a larger amount, and, therefore, it is better to useqi instead ofqk. We note that,

although this argument holds even ifqi does not belong toS, Rule 1 is hard to defend in this case,

1Of course, if it is known in advance that an intermediate node will not be used, it can be deleted.
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because we will suffer from information loss. Ifqi does not belong toS, it is not certain thatqi

will be evaluated; this depends on the gain that we expect from using the output ofqi in evaluating

other queries. Suppose it is not profitable to evaluateqi and we have discardedqk from Qj, then

we have lost the information thatqk can be used for the evaluationqk.

The second rule to reduce the size of a graph looks as follows.

Rule 2: Let qi; qk; qk+1; :::; qm 2 Qj , andqj; qk; qk+1; :::; qm belong to a sequenceS, while qi

does not belong toS. If output(qi) = output(qk) \ output(qk+1) \ ::: \ output(qm), thenqi

can be discarded fromQj 2.

The rationale behind this rule is as follows. Let it be possible that the output of a common subquery

qs that does not belong toS can be obtained by the intersection of output of queries belonging to

S. Then, such a query does not require retrievals from base relations. Since queries belonging to

S should be computed anyway, the output ofqs can be obtained for some CPU cost. Therefore,

there is no need to considerqs for further analysis. We note that, in general, computingqs from

scratch will be more expensive than computing it from available output of queries.

In Section 6, we demonstrate the effectiveness of above-mentioned rules by means of a case study.

4.2.2 Phase 2

Phase 2 takes as input a graph produced in phase 1. To minimize the processing cost of a sequence

S, we analyse whether the output of the corresponding query of a node contributes to this goal or

not. We divide the nodes of a graph into two groups.

1. The first group contains nodes that correspond to queries that appear inS.

2. The second group contains all other nodes, i.e., nodes that correspond to queries that do not

appear inS and require joins with base relations or selections on base relations to compute

their output.

In phase 2, we focus on the analyse of queries corresponding to nodes of group 2, i.e., we estimate

the investment to compute the output of a node and the return on investment. Since the output of

the queries of group 1 should be computed anyway, they are not analysed.

The analysis of queries of group 2 will be done on the basis of cost estimations. Before introducing

our analysing technique, we introduce the notion of logical query plan (lqp). A logical query plan

is a sequence of operations on a number of sets of tuples. The operations in a lqp are selection

(�) on relations2 , join (./) between relations, and the intersection (\) of tid-relations. A lqp of

a queryq represents how the output ofq may be computed by making use of available output of

2We note that the output of a query is a derived relation.
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queries and base relations. To generate lqps, we use the following intuitively appealing heuristics

[Ref 18]. We perform first the intersection on tuple identifiers of relations that are stored in main

memory, then selections, and finally joins. Furthermore, all output of queries in main memory

that can be used, and are available, will be used. Figure 5 represents a logical query plan for the

queries corresponding to the nodese1;2, q1, q2, andq3 of the graph in Figure 4.

lqp(e1;2) = ./dept-name = dept-name((�age�50(Emp)); (�num-of-emps�20(Dept)))

lqp(q1) = �age�40(output(e1;2))

lqp(q2) = �num-of-emps�20(output(e2;3))

lqp(q3) = �salary�10:000(\(output(e2;3);output(q1)))

Fig. 5 Examples of logical query plans

In order to analyse a query corresponding to an intermediate node, let sayek;l, in which joins are

involved, we distinguish two sets of queries. The first set,SQ1k;l, consists of queries that appear

in the initial sequenceS and which may be computed by a selection on the output of the query

corresponding toek;l or by a selection on a subset of the output of the query corresponding toek;l.

In the following formal descriptions of the sets, we mean by a nodeek;l its corresponding query.

SQ1k;l = fqjq 2 S ^ ((lqp(q) = �� op constant(output(ek;l))) [ (lqp(q)=

�� op constant(output(ep;q)) ^ ep;q =2 S ^ ek;l is the csq ofek;l andep;q))g

The first part of our rule to evaluate nodes in phase 2 is based onSQ1k;l. Let Cost(SQ1k;l) be the

sum of the processing cost of the queries ofSQ1 k;l using the output of the query corresponding

to ek;l, while Cost(SQ1) represents the cost not using this output. Then, Rule 3a looks as follows:

Rule 3a: Let G be a graph andek;l a node. IfCost(SQ1k;l) + Cost(ek;l) < Cost(SQ1), thenek;l

remains inG.

The values forCost(.)may be obtained by passing each query to the optimizer and asking for an

estimate, or they can be estimated on the basis of a rough cost model.

For the second part of Rule 3, we introduce the setSQ2k;l. This set considers queries with the

following two features. First, the output ofek;l is involved in the lqp of a query, but is not simply a

selection on the output ofek;l. Second, the removal of the output ofek;l will lead to a lqp in which

more joins will be involved than in the initial lqp. Besides the queries inSQ1k;l, this set of queries

are the candidates that may benefit from the presence ofek;l for the following reason. Since a join
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is the most expensive database operation, a reasonable strategy is to limit the number of joins in

processing queries. Rule 3b evaluates whether the presence ofek;l is indeed beneficial.

Let Jlqp represents the number of joins involved in a logical query plan lqp, and let the operation

remove(lqp, output(ek;l)) returns a logical query plan lqp0, such that lqp0 does not contain the

output ofek;l. ThenSQ2k;l is defined as

SQ2k;l = fqjq 2 S ^ q =2 SQ1^ output(ek;l)involved in lqp(q) ^

remove(lqp,output(ek;l)) ) Jlqp0 ^ Jlqp0 > Jlqpg

This set will be used in Rule 3b. We note that this rule is applied on nodes for which no statement

could be made by Rule 3a.

Let Cost(SQ2k;l) be the sum of the processing cost of the queries of in setSQ2 k;l using the output

of the query corresponding toek;l, while Cost(SQ2) represents the cost not using this output.

Then, Rule 3b looks as follows:

Rule 3b: LetG be a graph,ek;l a node, andCost(SQ1k;l)+Cost(ek;l) � Cost(SQ1). If Cost(SQ1k;l)+

Cost(SQ2k;l) + Cost(ek;l) < Cost(SQ1) + Cost(SQ2) thenek;l remains inG, elseek;l is

discarded.

In the next section, we present an algorithm to implement the approach discussed so far.



- 21 -
NLR-TP-97563

5 An algorithm

The algorithm takes as input a sequence of interdependent queries,S, and produces a list of

queries,L. The number of queries inL is larger or equal to the number of queries inS. It

should be clear that additional queries toL are added to speed up the evaluations of other queries.

The body of the algorithm consists of the following four steps. We discuss each of these steps.

1. In the first step a csq-matrix is build with regard to the queries ofS. For each common

subqueryq 6S , we check whetherq 6S is equal to a queryqS that belong to the sequenceS. If

this is the caseq 6S is replaced byqS. Finally, we derive for each query,q, the set containing

all queries whose output can be used in computingq,Q, as discussed in Section 4.2.1.

2. Rules 1 and 2 are successively applied on eachQi.

3. Steps 1 and 2 are repeated for common subqueries that do not belong to the initial sequence

S. This step establishes the relationships between these common subqueries and between

these common subqueries and queries belonging toS. Then, a graph is built up on the basis

of the obtained results so far.

4. Each intermediate node is evaluated according to Rule 3a and Rule 3b.

In the literature, algorithms are described to perform parts of above-mentioned steps. It is not our

intention to describe similar algorithms for these parts. In the following, we discuss the imple-

mentation of the parts of each step that is not straightforward and for which no algorithms are

described in literature.

The core of step 1 is to build a csq matrix with regard to the queries ofS. We have already noticed

that a csq matrix can be generated by using algorithms described in [Refs 5, 11]. In Section 4.2.1,

we have described how to obtain for each queryq its corresponding setQ from the csq matrix.

More effort is required for the application of rules 1 and 2 in step 2. Let us describe algorithms

to perform these rules. Rule 1 can be applied as follows. A queryqk 2 Qi, such thatqk 2 S,

is picked. Then, all elements that appear inQk can be deleted fromQi, since the output of each

query corresponding to an element inQk is a superset of the output ofqk. In Figure 6(a), the

pseudo-code is presented.

For the time being, we apply Rule 2 in a naive way. A setQi is split into two setsQS
i andQC

i .

SetQS
i contains the queries ofQi that also belong to the initial sequenceS, whileQC

i contains

all other queries ofQi. If QC
i 6= fg andQS

i contains at least two elements, we determine for each

subsetQsub� QS
i , the intersection of the queries ofQsub, calledintersectedquery. We note that

the output of an intersected query of a setQ is the greatest common set of tuples with regard to
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Rule 1(Q1;Q2; :::;Qn; var: Q1;Q2; :::;Qn)

FORi = 1 to n DO

FORqk 2 Qi DO

IF qk 2 S

THEN

FORqp 2 Qk DO

IF qp 2 Qi THEN delete(qp;Qi); FI;

OD;

FI;

OD;

OD;

(a)

Rule 2(Q1;Q2; :::;Qn; var: Q1;Q2; :::;Qn)

FORi = 1 to n DO

split(Qi;Q
S
i ;Q

C
i )

IF QC
i 6= fg AND jQS

i j � 2

THEN

FORQ � QS
i DO

q := intersectedquery(Q);

IF check(q;QC
i ) THEN delete(q;Qi); FI;

OD;

FI;

OD;

(b)

Fig. 6 Procedures for Rule 1 and Rule 2

the queries in this set. The WHERE clause of an intersected queryq of two queriesqj andqk can

be obtained by taking the union of the WHERE clauses ofqj andqk. We check for each query in

QC
i whether it can be replaced by an intersected query. In Figure 6b, the pseudo-code for Rule 2

is presented.

Since step 3 is a repetition of steps 1 and 2, the implementation of this step is similar to the

implementation of steps 1 and 2.

Finally, step 4 involves the application of Rule 3a and Rule 3b. As described in Section 4.2.2, the

application of these rules requires logical query plans. The generation of logical query plans, as

described in Section 4.2.2, from SQL is a well-understood subject, and, therefore, it is omitted

from this paper. Once logical query plans are available, Rule 3a and Rule 3b can be applied as

discussed in Section 4.2.2.
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6 A case study

In this section, we illustrate the effectiveness of the rules in our approach by means of a realistic

case that has been introduced in [Ref 5] and slightly modified and used in [Ref 16]. The case

consists of eight queries defined on three relations. We have adopted the modified version of this

case as presented in [Ref 16]. The queries and relations are presented in Figure 7.

In Figure 8(a), the csq matrix is presented with regard to the queries in Figure 7 and in Figure

8(b) the set of queries,Q, that can be used in processing a queryq. For aqi, Qi can be obtained

by taking the union of the cells corresponding to rowqi and columnqi in a csq-matrix. Thus,

from Figure 8(a) follows thatQ6 = foutput(q1);output(q2);output(B);output(q4);output(C)g [

foutput(q8)g

The application of Rule 1 results into the following sets:

Q1 = fg

Q2 = foutput(q1); output(A)g

Q3 = foutput(q1); output(B)g

Q4 = foutput(q1); output(A); output(B)g

Q5 = foutput(q3); output(C); output(D); output(q8)g

Q6 = foutput(C); output(q8)g

Q7 = foutput(q3); output(D); output(q8)g

Q8 = foutput(q2); output(q4)g

We note that the elements in a number of sets has been considerably decreased due to Rule 1. For

example, inQ6 four of the seven elements could be discarded. Sinceoutput(q8) is a subset of each

element ofQ8 andoutput(q8) can be used in processingq6, output(q1), output(q2), output(B), and

output(q4) could be deleted fromQ6.

Application of Rule 2 leads to the following results. SinceQ5 andQ7 are the only sets satisfying

to the condition of containing at least two queries that belong to the initial sequenceS and at least

one common subquery that do not belong toS, we investigate for these sets whether common

subqueries can be replaced by intersected queries or not. It appears that the intersected query of

q3 andq8 is equal to the query corresponding toD. Sinceq3 andq8 are elements ofQ5 as well as

of Q7,D can be discarded fromQ5 andQ7. So, after application of Rules 1 and 2 the sets look as

follows:

Q1 = fg

Q2 = foutput(q1); output(A)g
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Relations:

E(mployee)(name, empl(oyer), age, exp(erience), salary, educ(ation))

C(orporation)(cname, loc(ation),earnings, pres(ident), business)

S(chool)(sname, level)

Queries:

q1: SELECT * FROME WHEREE.exp� 10

q2: SELECT * FROME WHEREE.exp� 20 AND E.age� 65

q3: SELECT * FROME, CWHEREE.empl = C.cnameAND E.exp� 10

AND C.earnings> 500 AND C.loc 6= ‘Kansas’

q4: SELECT * FROME, CWHEREE.empl = C.cnameAND E.exp� 20

AND C.earnings> 300 AND C.loc 6= ‘Kansas’

q5: SELECT * FROME, CWHEREE.empl = C.cnameAND E.empl = C.pres

AND E.exp� 20 AND E.age� 65

AND C.earnings> 500 AND C.loc= ‘New York’

q6: SELECT * FROME, CWHEREE.empl = C.cnameAND E.empl = C.pres

AND E.exp� 30 AND E.age� 60

AND C.earnings> 300 AND C.loc= ‘New York’

q7: SELECT * FROME, C, SWHEREE.empl = C.cnameAND E.educ = S.sname

AND E.exp� 20 AND E.age� 65

AND C.earnings> 500 AND C.loc= ‘New York’

AND S.level= ‘univ’

q8: SELECT * FROME, CWHEREE.empl = C.cnameAND E.exp� 20

AND E.age� 65 AND C.earnings> 300

AND C.loc= ‘New York’

Fig. 7 Relational schema and workload description

Q3 = foutput(q1); output(B)g
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Q1 = fg

Q2 = foutput(q1);output(A)g

Q3 = foutput(q1);output(B)g

Q4 = foutput(q1);output(A);output(B)g

Q5 = foutput(q1);output(q2);output(q3);output(q4);output(C);output(D);output(q8)g

Q6 = foutput(q1);output(q2);output(B);output(q4);output(C);output(q8)g

Q7 = foutput(q1);output(q2);output(q3);output(q4);output(D);output(q8)g

Q8 = foutput(q1);output(q2);output(B);output(q4)g

(b)

Fig. 8 (a) csq matrix corresponding to Figure 7 and (b) associated Q sets
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Q4 = foutput(q1); output(A); output(B)g

Q5 = foutput(q3); output(C); output(q8)g

Q6 = foutput(C); output(q8)g

Q7 = foutput(q3); output(q8)g

Q8 = foutput(q2); output(q4)g

Step 3 of the algorithm results into the following csq matrix forA;B; andC.

B C

A q1 A

B - B

From this csq-matrix, we deriveQA = fq1g, QB = fq1g, andQC = fA;Bg. Then, on the

basis of the derived relationships between the queries, we can derive the graph of Figure 9.

CB

A

4
q 

 2
q q

1

q
3

q 

q 5

7

8 q
6

q

Fig. 9 Relationship graph corresponding to Figure 7

To decide whether an intermediate node will remain in the eventual graph or not, we apply Rule

3(a) and Rule 3(b), which is the key activity of step 4. For nodeA holds thatSQ1A = fq2g,

because the output ofq2 can be obtained by a selection on the output ofA. For the other queries

whereA can be used, i.e.,q3; q4, andC, this is not the case. Let the cost to process the query

corresponding to nodeA be 1000 disk accesses1 and the processing cost to processq2 whether or

not using the output ofA is also 1000. Then, nodeA should be removed from the graph according

to Rule 3(a).

For nodeB holds: SQ1B = fq3; q4; q5; q6g andSQ2B = fg. Let the cost to process the query

corresponding toB be 1500 disk accesses, and the total cost to process queriesq3; q4; q5, andq6 by

using the output ofB be 800 disk accesses. The total cost to process the queriesq3; q4; q5, andq6

without using the output ofB is 3000 disk accesses Then,Cost(SQ1B)+Cost(B) = 1500+800 =

2300 < Cost(SQ1) = 3000. Thus,B will be remain in the graph.

Let us assume that for node C it is decided that it should be discarded from the graph. Then, the

1This cost depends, of course, on database characteristics and the physical schema of the database. However, for

illustrative purposes we have chosen some hypothetical cost values.
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Fig. 10 Reduced relationship graph

graph of Figure 9 is reduced to Figure 10. We note thatSQ1C = fq5; q6g.

From Figure 10, the following order can be derived to process the queries. First, queryq1 is

computed, and tids qualifying to this query are stored. Then, queryq2 and the query corresponding

to expressionB are computed using the result ofq1. In which order these queries are computed

is not relevant. Once these queries are computed and their results are stored, the result of query

q1 is discarded, since it follows from Figure 10 that the result ofq1 will be not used longer. Then,

from the result of expressionB queriesq3 andq4 are computed and stored. Then, the result of

expressionB is discarded. The result ofq3 is used to computeq7, and the results ofq2 andq4 are

used to computeq8. Since the result of queryq7 will not be used to compute other queries, there

is no need to store this result. Once the result ofq8 has been stored, the results ofq2 andq4 are

discarded. Finally, the result ofq8 is used to computeq6, and the results ofq3 andq8 are used to

computeq5.
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7 Conclusions & further research

As the variety of database applications grows rapidly, its impact on the performance requirements

and the pattern of queries passed to the DBMS poses new research challenges. In some key

database applications, such as data mining, a sequence of interdependent queries may be posed

simultaneously to the DBMS. Optimizing such interdependent queries, called multi-query opti-

mization, separately leads to performance that is far from optimal. This paper is devoted to the

exploitation of the interdependencies between queries without re-development of complex query

optimizers. We have presented an architecture for multi-query optimization that seamlessly fits

into traditional optimization frameworks and is adaptive to emerging techniques. Based on this ar-

chitecture, we have developed an algorithm that restructures a sequence of queries such that it can

efficiently be processed by existing query optimizers. Our approach is based on the exploitation of

common subqueries. In this paper, we have focussed on how to benefit from common subqueries

in an optimal way. We note that the detection of common subqueries was beyond the scope of this

paper. Several algorithms in literature are available to handle this task [Refs 5, 11]. Finally, we

have shown by means of a realistic case that our algorithm is promising in tackling the problem of

multi-query optimization.

In the near future, we will implement the algorithm and connect it to the ORACLE DBMS. A

thorough evaluation of this algorithm is another topic for the future. For the time-being, we have

considered a restricted class of conjunctive queries, which are generally disk bound. In future, we

will consider queries that are also CPU intensive.
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