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ABSTRACT

In some key database applications, a sequence of interdependent queries
may be posed simultaneously to the DBMS. The optimization of such
sequences is called multi-query optimization, and it attempts to exploit
these dependencies in the derivation of a query evaluation plan (gep).
Although it has been observed and demonstrated by several researchers
that exploitation of dependencies speed up the query processing, limited
research has been reported how to benefit from multi-query optimization,
taking the capabilities of existing query optimizers into account. This

is exactly the topic of this paper. Since existing optimizers are able to
optimize queries in which a restricted number of basic operations
appears, e.g., number of joins is limited to ten, and the optimization of

a query is relatively expensive, we attempt to profit from multi query
optimization under the condition that queries are passed only once and
separately to the optimizer. We propose a two-step optimization
procedure. In the first step, we determine, on the basis of the N
dependencies between queries, in which order they should be specified and
what results should be stored. In the second step, each query is passed
separately to an optimizer.
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Summary

In some key database applications, a sequence of interdependent queries may be posed simul-
taneously to the DBMS. The optimization of such sequences is calldti-query optimization

and it attempts to exploit these dependencies in the derivation of a query evaluation plan (gep).
Although it has been observed and demonstrated by several researchers that exploitation of de-
pendencies speed up the query processing, limited research has been reported how to benefit from
multi-query optimization, taking the capabilities of existing query optimizers into account. This

is exactly the topic of this paper. Since existing optimizers are able to optimize queries in which

a restricted number of basic operations appears, e.g., number of joins is limited to ten, and the
optimization of a query is relatively expensive, we attempt to profit from multi query optimization
under the condition that queries are passed only once and separately to the optimizer. We propose
a two-step optimization procedure. In the first step, we determine, on the basis of the dependencies
between queries, in which order they should be specified and what results should be stored. In the
second step, each query is passed separately to an optimizer.

Keywords: data management, multi-query optimization, architectures, exploiting interdependen-
cies between queries.
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1 Introduction

Query optimization has been recognized as an important area in the field of database technology
[Ref 18], especially since the introduction of relational systems. Relational systems offer the user
to access data via high-level query languages, and it is the responsibility of the system to select
efficient plans to process queries, called query evaluation plans (geps). A gep describes in which
order basic operations, such as selections, projections, joins, etc., should be evaluated to obtain
the query answer. Much research has been devoted to select automatically efficient geps [Ref 7].
Since the first and most important database applications were produced in administrative areas,
research on query optimization was primarily focussed to meet their performance requirements.
An assumption often implicitly made is that these applications give mainly rise to independent
queries with a limited number of basic operations. This makes it possible to select efficient geps
by a complete enumeration or by applying a few effective heuristics. For example, the number of
joins involved is generally less than ten for those applications.

As the variety of database applications grows rapidly, its impact on the performance requirements
and the pattern of queries passed to the optimizer poses new research challenges. In database
applications, such as data mining and decision support systems, a sequence of interdependent
queries are passed simultaneously for processing [Ref 3]. Often, complex queries are split into a
number of simpler queries whose results are used by the application to derive the desired result.
The simpler queries are passed simultaneously to the DBMS for processing. Optimizing such
interdependent queries separately leads to performance that is far from optimal. This has led to
several approaches to exploit the dependencies between queries such as illustrated by [Refs 1, 8,
9,10, 12, 13, 16].

In [Ref 8], the author describes how common subexpressions can be detected, and used according
to their type (e.g., joins, selections, etc.,). In [Ref 10], necessary and sufficient conditions are dis-
cussed to compute query results from previously executed queries. In [Refs 12, 13], a framework
is provided to derive a common query graph from individual query graphs belonging to individual
views, in an attempt to speed up view processing. In the common query graph, different ways are
presented to produce the result of a view. Then, the effect of indices on the common query graph
is studied, and a set of indices is selected. In [Ref 9], a two-step optimization is proposed. In the
first step, an analysis of database and query characteristics is performed, and a grouping of queries
for simultaneous processing is determined. In the second step, each group of queries is processed
in the order determined at the first step and intermediate results are stored on disk. In [Ref 16],
two algorithms are described for multi-query processing. In the first algorithm, an optimal access
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plan is generated for each query. Then, a global access plan is obtained by merging the optimal
access plans of each query, taking common subexpressions into account. In the second algorithm,
a number of access plans for each query is considered. Then, on the basis of heuristics an access
plan is chosen for each query such that all common subexpressions found among the queries are
used effectively. In [Ref 1], it has been demonstrated that rewriting a set of related expressions in
the context of each other, such that no resulting common subexpression is weaker than any of the
related expressions, is superior than rewriting techniques that induce common subexpressions that
are weaker than the set of related expressions.

In this paper, we address the following problehow to restructure a sequence of queries such
that it can efficiently be processed using the optimizing techniques available in the query optimizer
of existing DBMSs.The idea of our approach is to determine an order in which a sequence of
(sub)queries should be processed, such that we may profit from the dependencies between queries
in processing them. Then, each query is passed separately to the optimizer, and the optimizer
selects an efficient query evaluation plan. Although we consider a restricted class of conjuctive
queries, i.e., queries whose WHERE clause consists of a conjunction of selections and equi-joins,
this class contains the most common type of queries. Furthermore, this type of queries is also sig-
nificant for complex queries, since complex queries are often split into a set of simple queries be-
fore processing [Ref 1]. Since disk accesses are still the main cost factor for the above-mentioned
type of queries [Refs 2, 4, 14], disk accesses will be taken as processing unit.

What distinguishes our approach to optimization of interdependent queries from the before-mentioned
efforts is that we use an existing optimizer, and view to it as a ‘black-box’. This approach avoids
re-development of a complex query optimizer and is adaptive to emerging techniques for query
optimization. However, one should be aware of the following limitations of using an existing
optimizer. First, as noted already, optimizers are able to handle queries efficiently with a lim-
ited number of basic operations only. Approaches based on the integration of queries into a single
query graph, such asin[Refs 1, 8, 12, 13], are not suitable when using existing optimizers. Passing
large query graphs would burden an optimizer with an infeasible task. Second, the optimization
of a query is a time consuming task [Refs 2, 6]. Approaches based on many invocations of an
optimizer for a single query, such as in [Ref 16], will considerably slow down the optimization
process.

The remainder of this paper is organized as follows. In Section 2, we discuss four possible ar-
chitectures to integrate techniques that exploit dependencies between queries and conventional
optimizers. In Section 3, we discuss a model how to reuse existing output of queries in processing
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new queries. In Section 4, we elaborate our approach, and, in Section 5, we introduce an algorithm
based on this approach. The effectiveness of our approach is shown by a realistic case study in
Section 6. Finally, Section 7 concludes the paper.
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2 Architectures for multi-query optimization

In this section, we discuss a number of architectures to integrate techniques that exploit dependen-
cies between queries and conventional optimizing technigues. For each architecture, we point out
the strong points and flaws. In Figure 1, we have depicted four possible architectures. We note
that variants of architectures 1(a) and 1(b) have been introduced in [Ref 16].

query

multi-set of queries l

Conventional
Optimizer
Advanced
Optimizer aep
l Reuse
Manager
global evaluation plan l
qep'
@ (b)
multi-set of queries multi-set of queries
reuse
Reuse Order information Reuse
Manager Manager Manager
order
part of agep part of agep qep
Conventional Conventional
Optimizer Optimizer
aep gep

(© (d)

Fig. 1 Architectures

In Figure 1(a), a multi-set of queries arrives at the optimizer. The optimizer selects an efficient
global evaluation plan, which contains the processing strategy for all queries. Then, the plan will

be executed. In this architecture, conventional optimization techniques and optimization tech-
niques based on dependencies between queries are strongly integrated. We note that the rule base
or cost model used by optimizer will become more complex, since the effects that dependencies
between queries will have on an evaluation plan should be modelled as well. Such an architecture
is suitable for the development of an optimizer from scratch.

In Figure 1(b), a conventional optimizer selects for each query an efficient gep. Then, all geps
are passed to a reuse module, which attempts to profit from the common parts (caused by the
dependencies) by computing them only once and to reuse them in geps. Consequently, query eval-
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uation plans are rewritten before being executed. Query evaluation plans are based on the available
storage structures and access structures in a database management system. A gep produced by a
Ingres optimizer may differ from a plan produced by Oracle optimizer. Since the reuse manager
attempts to optimize a number of plans by reusing the results of common parts, it is not interested
in all details provided by a specific optimizer, such as how a relation is accessed. So, it abstracts
from the details and focus on the information relevant for the reuse of earlier computed results, as
illustrated in [Ref 16]. Once the re-use parts are determined, the abstracted evaluation plan should
be augmented with the processing details, in order to be executed by the database system. In fact,
architecture 1(b) requires another interface between the optimizer and reuse manager for each kind
of database system. Another disadvantage of this architecture is that an optimal plan generated by
the conventional optimizer for a query may be killed by the re-use manager, making the effort of
the conventional optimizer wasteful. This may happen, e.g., when the output of a query is solely
derived from earlier computed results. In this case, a plan generated by an optimizer becomes
useless.

In Figure 1(c), a multi-set of queries arrives at the reuse manager. The reuse manager determines
in which order the queries are to be passed to the conventional optimizer and how to reuse earlier
computed results. In fact, the reuse manager determines a part of the gep. An advantage of this
architecture above architecture 1(b) is that in principle the same reuse manager can be used for
each kind of database system. Furthermore, since the reuse manager determines a part of the qep,
it relieves the task of a conventional optimizer.

In Figure 1(d), the order manager receives a multi-set of queries and chooses an order of execution.
Then, it passes the queries to a reuse module to determine the best way to reuse earlier computed
results given this order. After receiving the requested information, it passes each query with the
information on how to reuse earlier computed results to the optimizer. The optimizer passes on its
turn a query evaluation plan to the order module. On the basis of the evaluation plans, the order
module may choose another order and the whole procedure may be repeated. This architecture
is comparable with architecture 1(c). The difference with architecture 1(c) is that the task of
determining an order in which queries should be executed and what and how to reuse earlier
computed results are made explicitly in this architecture.

In the remainder of this paper, we will elaborate and implement architecture 1(c) for the following
reasons. Commercial database management systems can efficiently handle queries in which a
limited number of basic operations appears, e.g., no more than 10 joins [Ref 17]. For example,
the optimization algorithm used in System R [Ref 15] becomes infeasible if the number of joins
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is larger than 10 [Ref 17]. Since we attempt to use existing optimizers in the optimization of
interdependent queries, we avoid large query graphs. Therefore, we reject architecture 1(a). Since
query optimization is a time consuming process, we attempt to limit the number of invocations of

an optimizer. Consequently, architecture 1(d) is rejected as well. Finally, we choose architecture
1(c) above 1(b) for the reasons discussed above, namely, the same reuse manager can be used for
each kind of database system and it relieves the task of a conventional optimizer.
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3 Query processing

This section is devoted to a model to store output of queries and how to use them in query pro-
cessing. Before presenting this model, we briefly outline some preliminaries in Section 3.1.

3.1 Preliminaries & assumptions

We deal with relational databases. Each relations defined over some attributes, such as,

a1, s, ..., ap, and is a subset of the Cartesian proditet(ay) x dom(as) X ... X dom(ay,),

in which dom(«;) is the set of values assumed &y. A restricted class of conjunctive queries,

i.e., a conjunction of selections and equi-joins in a WHERE clause, is considered. A selection

is a predicate of the fornR.«; op constantin whichop € {=, #, <,<,>,>}. An equi-join is

a predicate of the fornRk,.c;; = Ry.a;. We do not consider projections to simplify our anal-

ysis without invalidation of the obtained results. Incorporation of projections into our approach

is straightforward. Observe that a disjunction of predicates in a WHERE clause of a query can
be replaced by a number of queries, for which the WHERE clause consists of a conjunction of
predicates. Although we restrict ourselves to a special class of queries, this class contains the most
common types of queries. This class of queries is also significant for complex queries, since a
complex query is often split into a number of queries of the above-mentioned types [Ref 1]. Fur-
thermore, we assume that a database resides on disk. For the above-mentioned class of queries, the
processing cost depends on the number of disk accesses and CPU costs. However, the dominant
cost factor is still disk accesses [Refs 2, 4]. Therefore, we take disk accesses as cost unit. Finally,
we assume that a relation is stored as a heap, and no indices are allocated to attributes. We note
that a data warehouse, which generally maintains historical information, is a typical application
that is implemented in this way.

3.2 Model

Our approach for multi-query optimization exploits the dependencies between the queries in a
sequence. To speed-up query processing, (intermediate) results of queries are temporarily stored
and reused. Although our approach can be targeted to different models that store intermediate
results, we describe a model to store and reuse intermediate results for illustrative purposes.

We assume that each tuple in a relation has a unique tuple identifier (tid). Instead of storing tuples
that qualify as intermediate results, we store its tid in main memory. For reasons of simplicity, we
assume that a main memory is large enough to store all tids that qualify as intermediaté.results

Lif this assumption appears to be false, several strategies can be used to control the main memory by discarding
results. One strategy might be to discard the results that will be not used in future.
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So, an intermediate result can be regarded as a relatiaalled tid-relation, in which attribute
«; assumes tid values of relatidd;. For example, storage of intermediate results due to a join
between two relation®; and R; leads to the storage of a tid-relati@i; having two attributesy;
anda;, in which o; anda; assume tid values aok; and R; respectively. A consequence of this
storage model for intermediate results is that whenever one needs a tuple, this should be retrieved
from disk. Before illustrating how to use tid-relations in query processing, we present a definition
for the intersection of two tid-relations that resides in main memory.
Definition 3.1: LetTg, ry ks...k, = (Q1,02,03,...,an) @NdTs, s, s, .. 5., = (B1, B2, 33, -y Bm)
be relations, in whictdom(c;), 7 < n, anddon(3;), 7 < m, are the set of tid values that
appears in relatio®; and.S;, respectively. Let..a. represents the value of an attributén
atupleu. Then, the intersection afz, r,.r;...,r, aNdTs, 5, 5s.....5,, IS

N(Try o\ R B 151,85,83,5m) = {uv|u € Ty Ry Ry, Ra3 0 € T'81,95,85,...,m
Vay, B : dom(ey) = dom(B;) = v.oy; = v.5;} O
We note that the intersection of two tid relations results into a relation in which attributes that
are defined on the same domain have the same value. Consider the two rétadiath§ below.

Assuming thaty; and3;, andas and 3, are defined on the same domain, the result of the inter-
section is a relation with one tuple as given below.

R |03 0y ag| S| By By a1 93 O3 By By
intersected relation
100 200 301 203 302 102 203 302 203 302
102 203 302 200 304
103 209 304 204 300

Let us continue by illustrating how to use tid-relations in query processing by means of an ex-
ample.

Example 3.1: Consider the relational schema and queries defined in Figure 2 with the follow-

ing content.

Emp Dept

tid name age | sdary |dept-name tid | dept-name | num-of-emps
601 | Tutiram 30 60K AA 402 AA 14
603 | Tataram 34 40K AA 404 AP 32
609 | Totaram 22 8K AP 407 IS 8
610 |Titwam | 26 | 15K AP

621 | Jansen 40 30K AP

623 | Pincho 31 9K IS

624 | Oeroey 45 20K AA

The queriesy, g2, andgs will be processed according to the following plan. First, querys
resolved. Then, the following intermediate query;, is resolved. The tids of tuples that satisfy
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Relations:
Emp(name, age, salary, dept-name)
Dept(dept-name, num-of-emps)

Queries:

q1: SELECT * FROMEmp, Dept
WHERE Emp.dept-name: Dept.dept-name
AND Emp.age< 40
AND Dept.num-of-emps 20

g>: SELECT * FROMEmp, Dept
WHERE Emp.dept-name Dept.dept-name
AND Emp.age< 50
AND Dept.num-of-emps 10

q3: SELECT * FROMEmp, Dept
WHERE Emp.dept-name Dept.dept-name
AND Emp.age< 40
AND Dept.num-of-emps 15
AND Emp.salary> 10.000

Fig. 2 Relational schema and queries defined on schema

to these queries will be stored in main memory.

gint: SELECT * FROMEmp, Dept
WHERE Emp.dept-name- Dept.dept-name
AND Emp.age< 50
AND Dept.num-of-emps. 15
Finally, g3 is resolved by using the results of the intermediate qygryandg:, andgs by using

qint-

The following relations will be stored in main memory due to the resulig @ndgin;.

res(d,) res( int )
Etid | D.tid E.tid D.tid
601 402 601 402
603 402 603 402
623 407 623 407
624 402

Using the result ofyy; that is stored in main memory, may be processed as follows. For each
tuplet in gint, tuplew in relationDept whose tid corresponds to the D.tid value gk retrieved. If
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this tuple satisfies to the restriction nunm-of-emp$< 10), tuplev in Emp whose tid corresponds
to the E.tid value ot, is retrieved. Then, tuples andv are concatenated.

Query g3 is processed as follows. The intersection betweefy,) andreqgin;) is computed,
which results intaegq;). So, this means thatqq;) contains all tids of tuples that satisfiesgn
except for the restriction oBmp.salary To output the result that satisfies also to this restriction,
a similar procedure can be used as in the processigg of O

From the example it should be clear that the cost entailed by using tid relations in processing
queries depends on the different number of tuples that should be retrieved from disk from each
relation. Once, this is known the cost involved in retrievingiples fromm pages containing

n(> m) tuples can be estimate by the well-known formula presented in [Ref 19]. For rough esti-
mation of the number of tuples that satisfies to a selection or join, we refer to [Ref 18]. Given the
formulae for these estimations, the derivation of a rough cost model for above-mentioned query
processing technique is straightforward.
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4 Exploiting interdependencies between queries

In this section, we study how to re-structure a sequence of queries such that it can be efficiently
processed by an optimizer. Re-structuring a sequence of queries means that a new sequence of
queries is determined and the order in which these queries should be passed to the optimizer is
established. A query in the new sequence is either a query coming from the original sequence or is
an intermediate query, which is derived to speed-up a number of queries in the original sequence.
Such an intermediate query is called@ammon subqueryn Section 4.1, we precisely define what

is meant by a common subquery. Then, in Section 4.2, we exploit common subqueries in our
approach.

4.1 Common subquery

Our approach is based on the exploitation of results of common subqueries between two queries.
The result of a common subquery (csq) of two quegieandg; is a set of tuples that contains the
result of bothg; andg;. For example, a common subquery for querieandgs in Figure 2 is the
querygint in Example 3.1. In the following, we formalize the notion of common subquery.

qz qs
q1 | Emp.dept-name Dept.dept-name q
Emp.age< 50
Dept.num-of-emps 20
q2 - Emp.dept-name Dept.dept-name
Emp.age< 50
Dept.num-of-emps 15

Fig. 3 c¢sq matrix corresponding to Figure 2

Definition 4.1: A selections; subsumes a selectiof}, s; = s, if s; ands; are defined over
the same relational schema and the set of tuples satishyimga subset of those tuples
satisfyings;. Selections;; ands; are equals; = sj, iff s; = s; ands; = s;. O
Definition 4.2: Let S; represent the set of selections afdhe set of equi-joins in the WHERE
clause of a query;. A queryg; ; is a common subquery of querigsandg;, in which
i # j, if S;; contains all selections; ; for which holds: 3s; € S;;3s; € Sj;(s; =
sij Nsj = si5)V(si = sij Ns; = s;;) and&; ; contains all equi-joing; ; for which
holds:e; ; € & Ae;; € € O
The detection of common subqueries is beyond the scope of this paper. Several algorithms have
been proposed to detect common subqueries [Refs 5, 11]. For parsing and analysing queries,
which are necessary to detect common subqueries, we rely on existing DBMSs, which are able to
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handle these tasks well. In the remainder of this paper, we assume that a common subquery can
be generated.

4.2 Approach

Before presenting our approach, we introduce the notion of a common subquery matrix, abbrevi-
ated as csg-matrix. A csg-matrix for a sequence gueries has size ¢l — 1) by (n — 1). An
elemente; ;,7 < j, represents the WHERE clause of the common subquery of qugreslq;.

Since elements; ; ande; ;, « # j concern the same WHERE clause, we omit the clause;for
Furthermore, the value of an eleme#t is not defined, since a common subquery with regard to

a single query is not defined. S%(,"Z;l) elements in a csg-matrix are relevant. An example of

a csg-matrix, which regard to the relational schema and queries of Figure 2, is given in Figure 3.
The first element; » contains the WHERE clause of the subquery with regard to the qugries
andg.. We note that if the common subquery of two queggandg; is ¢;, then we denote, for
convenience’s sake; in a csg-matrix and not its WHERE clause. For example, from Figure 3,
we see thag;, andgs haveq; as common subquery.

Our approach to optimize a sequence of interdependent queries consists of two phases. In the first
phase, we derive from the csg-matrix the set of common subqueries that may be used in computing
the output of a query. We apply some rules to limit the elements in this set. Then, we build up a
graph that establishes the relationships between the output of all remaining (common sub)queries.
The graph corresponding to the queries of Figure 2 and its csg-matrix is given in Figure 4. An
edge from a node; to a noder; means that the output of the query corresponding; toontains

the output of the query correspondingrtp Therefore, the output of; can be used in computing

—

Fig. 4 Relationship graph corresponding to Figure 2

the query corresponding to;.

a3 dq €12

€23

9,

In the second phase, we analyse the nodes that correspond to a query that does not belong to the
initial sequence of queries, callédtermediatenodes. In Figure 4¢; » ande, 3 are intermediate
nodes.
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If the output of a query corresponding to imermediatenode can be obtained by an intersection

of the (available) output of other nodes, this intermediate node is kept into the graph. The reason
is that there is no need to retrieve tuples from base relations in this case and intersections can
be cheaply performed. Whenever it happens that the output of such a query will not be used
in the computation of other queries, the loss of efficiency is linliteth all other cases, we
estimate the investments in computing queries corresponding to intermediate nodes and the return
on investments. On the basis of these estimations, it is decided whether an intermediate node will
be discarded or not. For example, in Figure 4, nedewill be deleted if we expect that the sum

of the cost to computg; andg, without usinge; » is less than using; . Similarly, e; 3 will be

deleted if the sum of the cost to compyteandgs without usinge; 3 is less than usingy ;. Of

course, the cost to compute the output of a query corresponding to an intermediate node should
be taken into account in the decision whether a node should be discarded or not. We note that the
cost to compute the query corresponding4g depends on whethey 5 is discarded or not.

In two consecutive subsections, we discuss the phases of our approach, and the rationales behind
them in more detail.

4.2.1 Phasel
From a csg-matrix we can derive all common subqueries to evaluate agueard at least one
other query) from a sequence of queries. Consider a csg-matrix with regard to a sequence of
queries,S = q1,42,43, -, qn- L€t Q5 = Uicje;j and Q7 = Ujcicnej, in whiche; ; is an
element of the csg-matrix ang ; # ¢;. Then,Q; = Qj< U Qj> contains all the queries whose
output can be used in processing queyy For example, query;, g2 andgs in Figure 2 can be
evaluated using a subset@f = {e; 2}, Q2 = {e12,e23}, andQ3 = {q¢1, ez 3}, respectively, in
which e; ; is the i-jth element of the csg-matrix of Figure 3. To limit the number of elements of
Q;, we present the following two rules.
Rule 1: Let ¢; andg; belong to a sequence of querifs and Q; contains the set of common

subqueries whose output can be used to process guet/ g; andg, are elements 0f;

and the output of; is a subset of the output gf, thusoutpuig;) C outputgs), theng; can

be deleted fronQ;. O.
The rationale behind this rule is based on the following. Since ggebglongs to sequencg,
it should be computed. The computation of the outpug,ofrom a smaller amount of tuples is
cheaper than from a larger amount, and, therefore, it is better tg usstead ofy;. We note that,
although this argument holds evenyifdoes not belong t§, Rule 1 is hard to defend in this case,

LOf course, if it is known in advance that an intermediate node will not be used, it can be deleted.
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because we will suffer from information loss. ¢f does not belong t&, it is not certain that;

will be evaluated; this depends on the gain that we expect from using the outpun @valuating
other queries. Suppose it is not profitable to evalgasnd we have discardeg from Q;, then
we have lost the information that can be used for the evaluatigp.

The second rule to reduce the size of a graph looks as follows.
Rule 2: Let ¢;, gk, kv15--,m € Qj, @andgj, gk, Gi+1, ---, ¢m DelONG to a sequence, while g;

does not belong t§'. If output(q;) = output(g;) N outputgi.1) N ... N outpuig,, ), theng;

can be discarded fro@; O.
The rationale behind this rule is as follows. Let it be possible that the output of a common subquery
qs that does not belong t8 can be obtained by the intersection of output of queries belonging to
S. Then, such a query does not require retrievals from base relations. Since queries belonging to
S should be computed anyway, the outputggfcan be obtained for some CPU cost. Therefore,
there is no need to considey for further analysis. We note that, in general, computjndrom
scratch will be more expensive than computing it from available output of queries.

In Section 6, we demonstrate the effectiveness of above-mentioned rules by means of a case study.

4.2.2 Phase?2
Phase 2 takes as input a graph produced in phase 1. To minimize the processing cost of a sequence
S, we analyse whether the output of the corresponding query of a node contributes to this goal or
not. We divide the nodes of a graph into two groups.
1. The first group contains nodes that correspond to queries that ap@ear in
2. The second group contains all other nodes, i.e., nodes that correspond to queries that do not
appear inS and require joins with base relations or selections on base relations to compute
their output.
In phase 2, we focus on the analyse of queries corresponding to nodes of group 2, i.e., we estimate
the investment to compute the output of a node and the return on investment. Since the output of
the queries of group 1 should be computed anyway, they are not analysed.

The analysis of queries of group 2 will be done on the basis of cost estimations. Before introducing
our analysing technique, we introduce the notion of logical query plan (Igp). A logical query plan

is a sequence of operations on a number of sets of tuples. The operations in a Igp are selection
(o) on relation$, join () between relations, and the intersectior) 6f tid-relations. A lgp of

a queryq represents how the output gfmay be computed by making use of available output of

ZWe note that the output of a query is a derived relation.
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queries and base relations. To generate Igps, we use the following intuitively appealing heuristics
[Ref 18]. We perform first the intersection on tuple identifiers of relations that are stored in main
memory, then selections, and finally joins. Furthermore, all output of queries in main memory
that can be used, and are available, will be used. Figure 5 represents a logical query plan for the
queries corresponding to the nodgs, ¢1, g2, andgs of the graph in Figure 4.

lap(e1,2) = >dept-name = dept-namé(Tage<50 (EMP), (Tnum-of-emps<20 (DEPY)))
lap(q1) = oage<ao (OUtpULe1 2))

lap(q2) = Unum—of—emps§20(OUtpUt(GZ,S))

lap(g3) = osalary>10.000 (N(0UtpUTe2 3), Outpui(q;)))

Fig. 5 Examples of logical query plans

In order to analyse a query corresponding to an intermediate node, let sag which joins are
involved, we distinguish two sets of queries. The first 8}, ;, consists of queries that appear

in the initial sequence& and which may be computed by a selection on the output of the query
corresponding te,, ; or by a selection on a subset of the output of the query corresponding.to

In the following formal descriptions of the sets, we mean by a nggets corresponding query.

SQL, = {qlg € SA((Igp(A) = o op constanfOutput(es ;))) U (Iap(q) =

O op constanfOUtpUtep, o)) A ep g & S A ey is the csq ok ; ande,, ;) }

The first part of our rule to evaluate nodes in phase 2 is bas&{ip,. Let Cos(SQl, ;) be the

sum of the processing cost of the queriesS¢fi ;; ; using the output of the query corresponding

to ey, ;, while Cos(SQJ) represents the cost not using this output. Then, Rule 3a looks as follows:

Rule 3a: Let G be a graph andy,; a node. IfCos{SQY, ;) + Cosfe,;) < Cos(SQJ, theney
remains inG.

The values folCost(.) may be obtained by passing each query to the optimizer and asking for an

estimate, or they can be estimated on the basis of a rough cost model.

For the second part of Rule 3, we introduce theSQE, ;. This set considers queries with the
following two features. First, the output ef ; is involved in the Igp of a query, but is not simply a
selection on the output ef, ;. Second, the removal of the outputepf; will lead to a lgp in which
more joins will be involved than in the initial lgp. Besides the querieS@1, ;, this set of queries
are the candidates that may benefit from the preseneg;dbr the following reason. Since a join
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is the most expensive database operation, a reasonable strategy is to limit the number of joins in
processing queries. Rule 3b evaluates whether the presenggisfindeed beneficial.

Let Jigp represents the number of joins involved in a logical query plan Igp, and let the operation
remove(lgp, outpuf(e,;)) returns a logical query plan Igpsuch that Igpdoes not contain the
output ofey ;. ThenSQZ, ; is defined as

SQ%, = {dqlg € SAq¢ SQIA outputes;)involved in Igdq) A
remove(lgp,outpute ) = Jigy A Jigy > Jigp}

This set will be used in Rule 3b. We note that this rule is applied on nodes for which no statement
could be made by Rule 3a.

Let Cos(SQZ ;) be the sum of the processing cost of the queries of i &&Y, ; using the output

of the query corresponding te,;, while Cos{SQ2 represents the cost not using this output.

Then, Rule 3b looks as follows:

Rule 3b: LetG be agraphg,; anode, an€os(SQY ;) +Cosfex,;) > Cos(SQJ). If Cos(SQY )+
Cos(SQ% ) + Costey,) < Cos(SQ) + Cos(SQ2I theney; remains inG, elseey; is
discarded.

In the next section, we present an algorithm to implement the approach discussed so far.
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5 An algorithm

The algorithm takes as input a sequence of interdependent quériesd produces a list of
queries,L. The number of queries it is larger or equal to the number of queriesSn It
should be clear that additional queries/t@are added to speed up the evaluations of other queries.
The body of the algorithm consists of the following four steps. We discuss each of these steps.
1. In the first step a csg-matrix is build with regard to the queries.ofFor each common
subquerygg, we check whethegg is equal to a queryg that belong to the sequenée If
this is the cas@g is replaced by;s. Finally, we derive for each query, the set containing
all queries whose output can be used in compuing, as discussed in Section 4.2.1.
2. Rules 1 and 2 are successively applied on €ch

3. Steps 1 and 2 are repeated for common subqueries that do not belong to the initial sequence
S. This step establishes the relationships between these common subqueries and between

these common subqueries and queries belongig Then, a graph is built up on the basis
of the obtained results so far.
4. Each intermediate node is evaluated according to Rule 3a and Rule 3b.
In the literature, algorithms are described to perform parts of above-mentioned steps. It is not our
intention to describe similar algorithms for these parts. In the following, we discuss the imple-
mentation of the parts of each step that is not straightforward and for which no algorithms are
described in literature.

The core of step 1 is to build a csq matrix with regard to the queriés @fe have already noticed
that a csq matrix can be generated by using algorithms described in [Refs 5, 11]. In Section 4.2.1,
we have described how to obtain for each qugitg corresponding se® from the csq matrix.

More effort is required for the application of rules 1 and 2 in step 2. Let us describe algorithms
to perform these rules. Rule 1 can be applied as follows. A query Q;, such thaly, € S,

is picked. Then, all elements that appeadp can be deleted fron®;, since the output of each
query corresponding to an elementdl), is a superset of the output ¢f. In Figure 6(a), the
pseudo-code is presented.

For the time being, we apply Rule 2 in a naive way. A &gtis split into two setsQf and QZC.
SetQ; contains the queries @®; that also belong to the initial sequen§ewhile QY contains

all other queries 0B;. If 9F # {} and Q7 contains at least two elements, we determine for each
subsetQgqyn C Qf , the intersection of the queries &kup, calledintersectedquery. We note that
the output of an intersected query of a gkis the greatest common set of tuples with regard to
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Rule1(Q1, Qa, ..., Qn,var: Qi,Qos, ..., Q,)
FORi = 1ton DO
FORg, € Q; DO
IF gr €S
THEN
FORg, € 9 DO
IF g, € Q; THEN deletdqy,, Q:); FI;
OD;
Fl;
OD;
OD;

@)
Rule2(91, Q2, ..., Qn,var: Q1,9s, ..., 9y)
FOR: =1ton DO
split(Qs, 97, QF)
IF Qf # {} AND |Qf| > 2
THEN
FORQ C 97 DO
q := intersected.query(Q);
IF check(q, QF) THEN deletdq, Q;); FI;
OD;
FI;
OD;
(b)
Fig. 6 Procedures for Rule 1 and Rule 2

the queries in this set. The WHERE clause of an intersected guefriwo queriesg; andg, can
be obtained by taking the union of the WHERE clauseg;@indg,. We check for each query in
Q¢ whether it can be replaced by an intersected query. In Figure 6b, the pseudo-code for Rule 2

is presented.

Since step 3 is a repetition of steps 1 and 2, the implementation of this step is similar to the

implementation of steps 1 and 2.

Finally, step 4 involves the application of Rule 3a and Rule 3b. As described in Section 4.2.2, the
application of these rules requires logical query plans. The generation of logical query plans, as
described in Section 4.2.2, from SQL is a well-understood subject, and, therefore, it is omitted
from this paper. Once logical query plans are available, Rule 3a and Rule 3b can be applied as

discussed in Section 4.2.2.
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6 A case study

In this section, we illustrate the effectiveness of the rules in our approach by means of a realistic
case that has been introduced in [Ref 5] and slightly modified and used in [Ref 16]. The case
consists of eight queries defined on three relations. We have adopted the modified version of this
case as presented in [Ref 16]. The queries and relations are presented in Figure 7.

In Figure 8(a), the csq matrix is presented with regard to the queries in Figure 7 and in Figure
8(b) the set of querieg?, that can be used in processing a qugryor ag;, Q; can be obtained

by taking the union of the cells corresponding to rgmwand columng; in a csg-matrix. Thus,

from Figure 8(a) follows tha@s = {output(q; ), output(g2), output B), output(g ), outpuf C)} U
{output(gs) }

The application of Rule 1 results into the following sets:
Q1 ={}

Q> = {outputq: ), output4)}

Qs = {outputq ), output B) }

Q, = {outputq, ), output A), outpu{ B)}

Qs = {outputgs )

Qs = {outputC), output(gs) }

Q7 = {outpufgs), output D), outpu{gs) }

Qs = {outputy:), outputgs)}

We note that the elements in a number of sets has been considerably decreased due to Rule 1. For

)
)
)
), outputC'), output D), outpu{gs) }
)
)

example, inQg four of the seven elements could be discarded. Satpul(gs) is a subset of each
element ofQg andoutpu{gsg) can be used in processigg, outpulq; ), outpu(g,), outpu(B), and
outpu(q,) could be deleted fron®.

Application of Rule 2 leads to the following results. Sin@g and Q7 are the only sets satisfying

to the condition of containing at least two queries that belong to the initial seqyesmue at least

one common subquery that do not belongStowe investigate for these sets whether common
subqueries can be replaced by intersected queries or not. It appears that the intersected query of
g3 andgg is equal to the query correspondingfo Sincegs andgg are elements of5; as well as

of @7, D can be discarded fro@s; and Q7. So, after application of Rules 1 and 2 the sets look as
follows:

Q1 =1{}
Q. = {outputq, ), output4)}
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Relations:

E(mployeejname, emgbyer), age, exferience) salary, edutation))
C(orporationjcname, loation),earnings, pre@dent), business)
S(chool)sname, level)

Queries:

q1: SELECT * FROME WHEREE.exp> 10
q2: SELECT * FROME WHEREE.exp> 20 AND E.age< 65

gs: SELECT * FROME, CWHEREE.empl = C.cnam@&ND E.exp> 10
AND  C.earnings> 500 AND C.loc# ‘Kansas’

qs: SELECT * FROME, CWHEREE.empl = C.cnam@&ND E.exp> 20
AND  C.earnings> 300 AND C.loc# ‘Kansas’

gs: SELECT * FROME, CWHEREE.empl = C.cnam@&ND E.empl = C.pres
AND E.exp> 20 AND E.age< 65
AND  C.earnings> 500 AND C.loc= ‘New York’

gs: SELECT * FROME, CWHEREE.empl = C.cnam@&ND E.empl = C.pres
AND E.exp> 30 AND E.age< 60
AND  C.earnings> 300 AND C.loc= ‘New York’

g7: SELECT * FROME, C, SWHEREE.empl = C.cnam@&ND E.educ = S.shame
AND E.exp> 20 AND E.age< 65
AND  C.earnings> 500 AND C.loc= ‘New York’
AND  S.level=‘univ’

gs: SELECT * FROME, CWHEREE.empl = C.cnam@&ND E.exp> 20
AND E.age< 65 AND C.earnings> 300
AND  C.loc=‘New York’

Fig. 7 Relational schema and workload description

Qs = {outputq: ), outputB)}
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a, dg dy ds dg 97 dg
9 | 9 9 9 9 9 9 9
a, ql Eexp> 20 =A a, a, q2 q2
E.empl = C.cname E.empl = C.cname E.empl = C.cname
Eexp 2 10 Eexp 2 10 Eexp > 10
q C.earnings > 300 a3 C.earnings > 300 a3 C.earnings > 300
8 Cloc# ‘Kansas Cloc § ‘Kansss Cloc# ‘Kansas
[ I
: : L
Gq g 94 94 g
E.empl = C.cname
E.emp = C.pres E.empl = C.cname
Eexp > 20 Eexp > 20
q Eage < 65 E'age—ﬁ o 98
5 C.loc =‘New York’ Ciloc="New York
C.earnings > 300 C.earnings > 500
I I
C D
E.empl = C.cname
E.exp > 20
46 Eage < 65
Cloc="New York' 98
C.eaernings > 300
b
ay Yg
(€)
Q1 {}
Qs {output(q; ), output A) }
Q3 {output(q, ), output B)}
Q, = {outpulq:),outpuf4), output B)}
Qs {outputq:), output(gz), output(gs), outputqs ), output(C), outpu D), output(gs) }
Qs {outputq: ), output(gz), outpu( B), output(gs), outpufC'), outpui(gs) }
0; = {outpulq:),outputas), outpulgs), OUtpUIgs), OUtPUL D), outpUtgs ) }
0 = {outpulq:),outputas), outpul B), outputas)}

(b)

Fig. 8 (a) csq matrix corresponding to Figure 7 and (b) associated Q sets
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Q, = {outputq: ), output4), outpu(B)}

Qs = {outputgs), outputC’), outputgs) }

Qs = {outputC), output(gs) }

Q7 = {outputgs), outputgs) }

Qs = {outputy:), outputgs)}

Step 3 of the algorithm results into the following csq matrix forB, andC.

B|C
A q1 A
B|-|B

From this csg-matrix, we deriv@4 = {1}, @ = {¢:}, andQ¢ = {4, B}. Then, on the
basis of the derived relationships between the queries, we can derive the graph of Figure 9.

ql A qz\

q q
q4//> 1) 6

B C

dg 97

Fig. 9 Relationship graph corresponding to Figure 7

To decide whether an intermediate node will remain in the eventual graph or not, we apply Rule
3(a) and Rule 3(b), which is the key activity of step 4. For nel@olds thatSQ1l, = {q¢2},
because the output gf can be obtained by a selection on the outputiofFor the other queries
where A can be used, i.eqs,q4, andC, this is not the case. Let the cost to process the query
corresponding to nodé be 1000 disk accesseand the processing cost to procgssvhether or

not using the output afl is also 1000. Then, nodé should be removed from the graph according

to Rule 3(a).

For nodeB holds: SQ1z = {¢3,q4,95,96} andSQZ = {}. Let the cost to process the query
corresponding t@ be 1500 disk accesses, and the total cost to process queligesgs, andgs by
using the output o3 be 800 disk accesses. The total cost to process the qyerigsgs, andgs
without using the output aB is 3000 disk accesses Th&ps{SQ1;)+Cos(B) = 15004800 =
2300 < Cos{SQY) = 3000. Thus,B will be remain in the graph.

Let us assume that for node C it is decided that it should be discarded from the graph. Then, the

'This cost depends, of course, on database characteristics and the physical schema of the database. However, for
illustrative purposes we have chosen some hypothetical cost values.
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9 92

\

q q
a_ '8 6

ag 97

Fig. 10 Reduced relationship graph

graph of Figure 9 is reduced to Figure 10. We note 8@f- = {¢s5, ¢s}-

From Figure 10, the following order can be derived to process the queries. First, @uisry
computed, and tids qualifying to this query are stored. Then, queayd the query corresponding
to expressionB are computed using the result@f. In which order these queries are computed
is not relevant. Once these gueries are computed and their results are stored, the result of query
q1 is discarded, since it follows from Figure 10 that the resulf;ofvill be not used longer. Then,
from the result of expressioR queriesqs andg, are computed and stored. Then, the result of
expressionB is discarded. The result @f is used to compute;, and the results af, andg, are
used to computeg. Since the result of query; will not be used to compute other queries, there
is no need to store this result. Once the resul§ohas been stored, the resultsggfandq, are
discarded. Finally, the result gf is used to computeg, and the results af; andgs are used to
computegs.
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7 Conclusions & further research

As the variety of database applications grows rapidly, its impact on the performance requirements
and the pattern of queries passed to the DBMS poses new research challenges. In some key
database applications, such as data mining, a sequence of interdependent queries may be posed
simultaneously to the DBMS. Optimizing such interdependent queries, called multi-query opti-
mization, separately leads to performance that is far from optimal. This paper is devoted to the
exploitation of the interdependencies between queries without re-development of complex query
optimizers. We have presented an architecture for multi-query optimization that seamlessly fits
into traditional optimization frameworks and is adaptive to emerging techniques. Based on this ar-
chitecture, we have developed an algorithm that restructures a sequence of queries such that it can
efficiently be processed by existing query optimizers. Our approach is based on the exploitation of
common subqueries. In this paper, we have focussed on how to benefit from common subqueries
in an optimal way. We note that the detection of common subqueries was beyond the scope of this
paper. Several algorithms in literature are available to handle this task [Refs 5, 11]. Finally, we
have shown by means of a realistic case that our algorithm is promising in tackling the problem of
multi-query optimization.

In the near future, we will implement the algorithm and connect it to the ORACLE DBMS. A
thorough evaluation of this algorithm is another topic for the future. For the time-being, we have
considered a restricted class of conjunctive queries, which are generally disk bound. In future, we
will consider queries that are also CPU intensive.
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