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Abstract

For the problem of tracking multiple targets the Joint Proba-
bilistic Data Association (JPDA) filter approach has shown
to be very effective in handling clutter and missed detec-
tions. Recently the problem of track coalescence has been
also solved for JPDA. The aim of this paper is to combine
this JPDA avoiding track coalescence approach with IMM
to track multiple maneuvering targets. The tracking prob-
lem is first embedded into one of filtering for a jump linear
descriptor system with stochastic coefficients. Next, for this
descriptor system, exact filter equations are derived, hypoth-
esis management assumptions are adopted, and IMMJPDA
avoiding track coalescence filter equations are developed.
Finally, the filter performance is illustrated through Monte
Carlo simulations for a simple example.

1 Introduction

We consider the problem of tracking multiple maneuver-
ing targets in clutter with a proper combination of two
well known approaches in target tracking: IMM and JPDA.
Since each of these two solve complementary tracking prob-
lems it is of significant interest to combine these two ap-
proaches. In literature the problem of combining IMM
(Blom & Bar-Shalom, 1988) and JPDA (Bar-Shalom and
Fortmann, 1988) has been studied by Bar-Shalom et al.
(1992), De Feo et al. (1997) and Chen and Tugnait (2001).
Bar-Shalom et al. (1992) developed an IMMJPDA-Coupled
filter for situations where the measurements of two targets
are unresolved during periods of close encounter. Blom &
Bloem (2000) have shown that these IMMJPDA-Coupled
filter equations are rather heuristic. Chen and Tugnait
(2001) developed an IMMJPDA-Uncoupled filter; implic-
itly they assumed that different targets evolve according to
modes that are mutualy independent. They also showed that
the IMMJPDA of De Feo et al. (1997) does not account for
”interactions” between target modes. All in all, in spite of
the significant headway which has been made regarding the
combination of IMM and JPDA, there appears to be a lack
of insight in the proper choices to be made when combining
IMM and JPDA for multiple maneuvering target tracking.

In order to improve this situation, the paper studies the prob-
lem of combining IMM and JPDA following an approach
that is based on recent new insight gained regarding the
derivation of a track coalescence avoiding JPDA version
(Blom & Bloem, 2000). The basis for this development is to
embed the multi target tracking problem with possibly false
and missing measurements into one of filtering for a linear
descriptor system with random coefficients. In this paper
this embedding approach is extended towards the develop-
ment of novel IMMJPDA filters.

The paper is organized as follows. Section 2 defines the
problem considered. In this way it is ensured that there is no
unambiguity which mathematical model is addressed. Sec-
tion 3 embeds the tracking problem considered into one of
filtering for a jump linear descriptor system with stochastic
i.i.d. coefficients. Subsequently, in section 4, for this filter-
ing problem an exact Bayesian characterization of the evo-
lution of the conditional density for the state of the multiple
targets is developed. In addition second order conditional
characterizations are developed. Sections 3 and 4 in par-
ticular provide the derivation steps that were announced in
Blom & Bloem (2002). Sections 5 and 6 present the steps
of novel IMMJPDA filter equations. Section 7 shows Monte
Carlo simulation results.

2 Stochastic Modelling

This section describes the target model and the measure-
ment model.

2.1 Target model
ConsiderM targets and assume that the state of thei-th
target is modelled as a jump linear system:

xi
t+1 = ai(θi

t+1)x
i
t + bi(θi

t+1)w
i
t, i = 1, ...,M, (1)

wherexi
t is then-vectorial state of thei-th target,θi

t is the
mode of thei-th target and assumes values from{1, .., N},
ai(θi

t) andbi(θi
t) are(n×n)- and(n×n′)-matrices andwi

t

is a sequence of i.i.d. standard Gaussian variables of dimen-
sionn′ withwi

t ,wj
t independent for alli �= j andwi

t ,xi
0, x

j
0

independent for alli �= j. Let xt
�
= Col{x1

t , ..., x
M
t }, θt

�
=
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Col{θ1
t , ..., θ

M
t }, A(θt)

�
= Diag{a1(θ1

t ), ..., aM (θM
t )},

B(θt)
�
= Diag{b1(θ1

t ), ..., bM (θM
t )}, and wt

�
=

Col{w1
t , ..., w

M
t }. Then we can model the state of ourM

targets as follows:

xt+1 = A(θt+1)xt +B(θt+1)wt (2)

with A andB of sizeMn ×Mn andMn ×Mn′ respec-
tively.

2.2 Measurement Model
A set of measurements consists of measurements origi-
nating from targets and measurements originating from
clutter. Firstly the measurements originating from targets
are treated. Subsequently the clutter measurements are
randomly inserted between the target measurements.

A Measurements originating from targets
We assume that a potential measurement associated with
state xi

t (which we will denote byzi
t) is modelled as a

jump linear system:

zi
t = hi(θi

t)x
i
t + gi(θi

t)v
i
t , i = 1, ...,M (3)

wherezi
t is anm-vector,hi(θi

t) is an (m × n)-matrix and
gi(θi

t) is an (m × m′)-matrix, andvi
t is a sequence of

i.i.d. standard Gaussian variables of dimensionm′ with
vi

t and vj
t independent for alli �= j. Moreovervi

t is in-

dependent of xj
0 and wj

t for all i,j. Next with zt
�
=

Col{z1
t , ..., z

M
t }, H(θt)

�
= Diag{h1(θ1

t ), ..., hM (θM
t )},

G(θt)
�
= Diag{g1(θ1

t ), ..., gM (θM
t )}, and vt

�
=

Col{v1
t , ..., v

M
t }, we obtain:

zt = H(θt)xt +G(θt)vt (4)

with H and G of size Mm × Mn and Mm × Mm′

respectively.

We next introduce a model that takes into account
that not all targets have to be detected at momentt, which
implies that not all potential measurementszi

t have to
be available as true measurements at momentt. To this
end, letP i

d be the detection probability of targeti and
let φi,t ∈{0,1} be the detection indicator for targeti,
which assumes the value one with probabilityP i

d > 0,
independently ofφj,t, j �= i. This approach yields the
following detection indicator vectorφt of sizeM :

φt
�
= Col{φ1,t, ..., φM,t}.

Thus, the number of detected targets isDt
�
=

∑M
i=1 φi,t.

Furthermore, we assume that{φt} is a sequence of i.i.d.
vectors.
In order to link the detection indicator vector with the mea-
surement model, we introduce the following operatorΦ: for

an arbitrary (0,1)-valuedM ′-vectorφ′ we defineD(φ′)
�
=

∑M ′

i=1 φ
′
i and the operatorΦ producingΦ(φ′) as a(0, 1)-

valued matrix of sizeD(φ′) × M ′ of which the ith row
equals theith non-zero row of Diag{φ′}. Next we define,
for Dt > 0, a vector that contains all measurements origi-
nating from targets at momentt in a fixed order.

z̃t
�
= Φ(φt)zt, where Φ(φt)

�
= Φ(φt) ⊗ Im,

with Im a unit-matrix of sizem, and⊗ the tensor product.

In reality we do not know the order of the targets.
Hence, we introduce the stochasticDt × Dt permutation
matrix χt, which is conditionally independent of{φt}.
We also assume that{χt} is a sequence of independent
matrices. Hence, forDt > 0,

˜̃zt
�
= χ

t
z̃t, where χ

t

�
= χt ⊗ Im,

is a vector that contains all measurements originating from
targets at momentt in a random order.

B Measurements originating from clutter
Let the random variableFt be the number of false mea-
surements at momentt. We assume thatFt has Poisson
distribution:

pFt
(F ) = (λV )F

F ! exp
(−λV )

, F = 0, 1, 2, . ..

= 0, else

whereλ is the spatial density of false measurements (i.e.
the average number per unit volume) andV is the volume
of the validation region. Thus,λV is the expected number
of false measurements in the validation gate. We assume
that the false measurements are uniformly distributed in the
validation region, which means that a column-vectorv∗t of
Ft i.i.d. false measurements has the following density:

pv∗
t |Ft

(v∗|F ) = V −F

whereV is the volume of the validation region. Furthermore
we assume that the process{v∗t } is a sequence of indepen-
dent vectors, which are independent of{xt}, {wt}, {vt}
and{φt}.

C Random insertion of clutter measurements
Let the random variableLt be the total number of
measurements at momentt. Thus,

Lt = Dt + Ft

With ỹt

�
= Col{˜̃zt, v

∗
t }, it follows with the above defined

variables that

ỹt =


 χ

t
Φ(φt)zt

..............
v∗t


 , if Lt > Dt > 0 (5)

whereas the upper and lower subvector parts disappear for
Dt = 0 andLt = Dt respectively. With this equation, the
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measurements originating from clutter still have to be ran-
domly inserted between the measurements originating from
the detected targets. To do so, we first define target indi-
cator and clutter indicator processes, denoted by{ψt} and
{ψ∗

t }, respectively. Let the random variableψi,t ∈{0,1} be
a target indicator at momentt for measurementi, which as-
sumes the value one if measurementi belongs to a detected
target and zero if measurementi comes from clutter. This
approach yields the following target indicator vectorψt of
sizeLt:

ψt
�
= Col{ψ1,t, ..., ψLt,t}.

Let the random variableψ∗
i,t ∈{0,1} be a clutter indicator at

momentt for measurementi, which assumes the value one
if measurementi comes from clutter and zero if measure-
menti belongs to an aircraft (thusψ∗

i,t = 1 − ψi,t). This
approach yields the following clutter indicator vectorψ∗

t of
sizeLt:

ψ∗
t

�
= Col{ψ∗

1,t, ..., ψ
∗
Lt,t}.

In order to link the target and clutter indicator vectors with
the measurement model, we make use of the operatorΦ
introduced before. With this the measurement vector with
clutter inserted reads as follows:

yt =
[
Φ(ψt)T

... Φ(ψ∗
t )T

]
ỹt if Lt > Dt > 0 (6)

Substituting (5) into (6) yields the following model for the
observation vector yt at momentt:

yt =
[
Φ(ψt)T

... Φ(ψ∗
t )T

] 
 χ

t
Φ(φt)zt

..............
v∗t


 if Lt > Dt > 0

(7)
This, together with equations (2) and (4), forms a com-
plete characterization of our tracking problem in terms of
stochastic difference equations.

3 Embedding into a descriptor system with stochastic
coefficients

Because

[
Φ(ψt)T

... Φ(ψ∗
t )T

]
is a permutation matrix for

Lt > Dt > 0, its inverse satisfies

[
Φ(ψt)T

... Φ(ψ∗
t )T

]T

=


 Φ(ψt)

....
Φ(ψ∗

t )


 (8)

Premultiplying (7) by such inverse yields

 Φ(ψt)

....
Φ(ψ∗

t )


 yt =


 χ

t
Φ(φt)zt

..............
v∗t


 if Lt > Dt > 0 (9)

From (9), it follows that

Φ(ψt)yt = χ
t
Φ(φt)zt if Dt > 0 (10)

Substitution of (4) into (10) yields:

Φ(ψt)yt = χ
t
Φ(φt)H(θt)xt + χ

t
Φ(φt)G(θt)vt if Dt > 0

(11)
Notice that (11) is a linear Gaussian descriptor system (Dai,
1989) with stochastic i.i.d. coefficientsΦ(ψt) andχ

t
Φ(φt).

Becauseχt has an inverse, (11) can be transformed into

χT
t
Φ(ψt)yt = Φ(φt)H(θt)xt + Φ(φt)G(θt)vt if Dt > 0

(12)
Next we introduce an auxiliary indicator matrix processχ̃t

of sizeDt × Lt, as follows:

χ̃t
�
= χT

t Φ(ψt) if Dt > 0.

With this we get a simplified version of (12):

χ̃
t
yt = Φ(φt)H(θt)xt + Φ(φt)G(θt)vt if Dt > 0 (13)

Size ofχ̃
t

isDtm×Ltm and size ofΦ(φt) isDtm×Mm.

4 Exact filter equations

In this section a Bayesian characterization of the conditional
density pxt,θt| Yt

(x, θ) is given whereYt denotes theσ-
algebra generated by measurements yt up to and including
momentt. Subsequently, characterizations are developed
for the mode probabilities and the mode conditional means
and covariances.

From (14), it follows that forDt > 0 all relevant as-
sociations and permutations can be covered by(φt, χ̃t)-
hypotheses. We extend this toDt = 0 by adding the combi-
nationφt = {0}M andχ̃t = {}Lt . Hence, through defining
the weights

βt(φ, χ̃, θ)
�
= Prob{φt = φ, χ̃t = χ̃, θt = θ | Yt},

the law of total probability yields:

pxtθt|Yt
(x, θ) =

∑
χ̃,φ

βt(φ, χ̃, θ)pxt|θt,φt,χ̃t,Yt
(x | θ, φ, χ̃)

(14)
And thus, our problem is to characterize the terms in the last
summation. This problem is solved in two steps, the first of
which is the following proposition.

Proposition 1 For any φ ∈{0, 1}M , such that D(φ)
�
=∑M

i=1 φi ≤ Lt, and any χ̃t matrix realization χ̃ of size
D(φ) × Lt, the following holds true:

pxt|θt,φt,χ̃t,Yt
(x | θ, φ, χ̃) =

=
pz̃t|xt,θt,φt

(χ̃yt | x, θ, φ) · pxt|θt,Yt−1(x | θ)
Ft(φ, χ̃, θ)

(15)

βt(φ, χ̃, θ) = Ft(φ, χ̃, θ)λ(Lt−D(φ))·

·[
M∏
i=1

(1 − P i
d)

(1−φi)(P i
d)

φi ] · pθt|Yt−1(θ)/ct (16)



-7-

NLR-TP-2002-445

where χ̃
�
= χ̃ ⊗ Im , and Ft(φ, χ̃, θ) and ct are such that

they normalize pxt|θt,φt,χ̃t,Yt
(x | θ, φ, χ̃) and βt(φ, χ̃, θ)

respectively.

Proof: Omitted. It is similar to the proof of Proposition
1 in Blom & Bloem (2000). The specialty of this proof
is because of the derivation of Bayesian equations for the
descriptor system (13).

Our next step is given by the following Theorem.

Theorem 1 For each θ ∈ {1, ..., N}M , let pxt|θt,Yt−1(x |
θ) be Gaussian with mean x̄t(θ) and covariance P̄t(θ) and
let βt(φ, χ̃, θ) and Ft(φ, χ̃, θ) be defined by Proposition 1.
Then Ft({0}M , {}Lt , θ) = 1, whereas for φ �= {0}M :

Ft(φ, χ̃, θ) = [(2π)mD(φ)Det{Qt(φ, θ)}]− 1
2 ·

· exp{−1
2
µT

t (φ, χ̃, θ)Qt(φ, θ)−1µt(φ, χ̃, θ)} (17)

where

µt(φ, χ̃, θ)
�
= χ̃yt − Φ(φ)H(θ)x̄t(θ)

Qt(φ, θ)
�
= Φ(φ)

(
H(θ)P̄t(θ)H(θ)T +

+G(θ)G(θ)T
)
Φ(φ)T

Moreover, pxt|θt,Yt
(x | θ) is a Gaussian mixture, with over-

all weight pθt|Yt
(θ), mean x̂t(θ) and its overall covariance

P̂t(θ) satisfying:

pθt|Yt
(θ) =

∑
φ,χ̃

βt(φ, χ̃, θ) (18)

x̂t(θ) = x̄t(θ) +
∑

φ

φ�=0

Kt(φ, θ)
( ∑

χ̃

βt|θ(φ, χ̃)µt(φ, χ̃, θ)
)

(19)

P̂t(θ) = P̄t(θ)+

−
∑

φ

φ�=0

Kt(φ, θ)Φ(φ)H(θ)P̄t(θ)
( ∑

χ̃

βt|θ(φ, χ̃)
)

+

+
∑

φ

φ�=0

Kt(φ, θ)
( ∑

χ̃

βt|θ(φ, χ̃)µt(φ, χ̃, θ)µT
t (φ, χ̃, θ)

)
·

·KT
t (φ, θ) +

−




∑
φ

φ�=0

Kt(φ, θ)
( ∑

χ̃

βt|θ(φ, χ̃)µt(φ, χ̃, θ)
)

 ·

·




∑
φ′

φ′ �=0

Kt(φ′, θ)
( ∑

χ̃′
βt|θ(φ′, χ̃′)µt(φ′, χ̃′, θ)

)


T

(20)

with:

Kt(φ, θ)
�
= P̄t(θ)H(θ)T Φ(φ)TQt(φ, θ)−1 if φ �= 0,
�
= 0 else

(21.a)

βt|θ(φ, χ̃)
�
= βt(φ, χ̃, θ)/pθt|Yt

(θ) (21.b)

Proof: (Outline) If pxt|θt,Yt−1(x|θ) is Gaussian with
mean x̄t(θ) and covarianceP̄t(θ), then the density
pxt|φt,χ̃t,θt,Yt

(x|φ, χ̃, θ) is Gaussian with mean̂xt(φ, χ̃, θ)
and covariancêPt(φ, θ) satisfying forφ �= 0,

x̂t(φ, χ̃, θ) = x̄t(θ) +Kt(φ, θ)[χ̃yt − Φ(φ)H(θ)x̄t(θ)]
P̂t(φ, θ) = P̄t(θ) −Kt(φ, θ)Φ(φ)H(θ)P̄t(θ)

and forφ = 0:

x̂t(φ, χ̃, θ) = x̄t(θ)
P̂t(φ, θ) = P̄t(θ)

Hence,pxt|θt,Yt
(. | θ) is a Gaussian mixture, and all equa-

tions follow from a lengthy but straightforward evaluation
of this mixture.

Theorem 1 provides some characterizations for the joint tar-
gets modes and states. The subsequent step is to further
evaluate these equations under the assumption of prior de-
composition between individual targets. This is done in
Theorem 2.

Theorem 2 Let pθt|Yt−1(θ) =
∏M

i=1 pθi
t|Yt−1

(θi)
and let pxt|θt,Yt−1(x|θ) be Gaussian with mean
x̄t(θ) = Col{x̄1

t (θ
1), ..., x̄M

t (θM )} and covariance
P̄t(θ) = Diag{P̄ 1

t (θ1), ..., P̄M
t (θM )}, then βt(φ, χ̃, θ) of

Proposition 1 satisfies:

βt(φ, χ̃, θ) = λ(Lt−D(φ))·

·
M∏
i=1

[
f i

t (φ, χ̃, θ
i)(1 − P i

d)
(1−φi)(P i

d)
φi · pθi

t|Yt−1
(θi)

]
/ct

(22)

with: f i
t (φ, χ̃, θ

i) = 1 for φ = {0}M and for φ �= {0}M

f i
t (φ, χ̃, θ

i) = [(2π)mDet{Qi
t(θ

i)}]− 1
2 φi ·

· exp{−1
2

Lt∑
k=1

(
[Φ(φ)]T∗iχ̃∗kµ

ik
t (θi)T [Qi

t(θ
i)]−1µik

t (θi)
)}

(23.a)

where:

µik
t (θi)

�
= yk

t − hi(θi)x̄i
t(θ

i) (23.b)

Qi
t(θ

i)
�
= hi(θi)P̄ i

t (θ
i)hi(θi)T + gi(θi)gi(θi)T (23.c)

whereas [Φ(φ)]∗i and χ̃∗k are the i-th and k-th columns of
Φ(φ) and χ̃, respectively. Moreover, pxi

t|θi
t,Yt

(xi|θi), i ∈
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{1, ...,M}, is a Gaussian mixture, while its overall mean
x̂i

t(θ
i) and its overall covariance P̂ i

t (θ
i) satisfy:

pθi
t|Yt

(θi) =
∑
φ,χ̃,η

ηi=θi

βt(φ, χ̃, η) (24.a)

x̂i
t(θ

i) = x̄i
t(θ

i) +W i
t (θ

i)

(
Lt∑

k=1

βik
t (θi)µik

t (θi)

)
(24.b)

P̂ i
t (θ

i) = P̄ i
t (θ

i) −W i
t (θ

i)hi(θi)P̄ i
t (θ

i)

(
Lt∑

k=1

βik
t (θi)

)
+

+W i
t (θ

i)

(
Lt∑

k=1

βik
t (θi)µik

t (θi)µik
t (θi)T

)
W i

t (θ
i)T +

−W i
t (θ

i)

(
Lt∑

k=1

βik
t (θi)µik

t (θi)

)
·

·
(

Lt∑
k′=1

βik′
t (θi)µik′

t (θi)

)T

W i
t (θ

i)T (24.c)

with:

W i
t (θ

i)
�
= P̄ i

t (θ
i)hi(θi)T [Qi

t(θ
i)]−1

βik
t (θi)

�
= Prob{[Φ(φ)]T∗i,tχ̃∗k,t = 1 | θi

t = θi, Yt} =

=
∑
φ,χ̃,η
φ�=0

ηi=θi

Φ(φ)T
∗iχ̃∗kβt(φ, χ̃, η)]/pθi

t|Yt
(θi)

Proof: Omitted. It follows from Proposition 1 and Theo-
rem 1 in a similar way as in Blom & Bloem (2000).

5 IMMJPDA filter

In this section the IMMJPDA filter algorithm is specified.
To do so use is made of the IMM filter algorithm and of
Theorem 2. One cycle of the IMMJPDA filter algorithm
consists of the following six steps.

IMMJPDA Step 1: For each target this comes down
to the mixing/interaction step of the IMM algorithm (Blom
& Bar-Shalom, 1988) for alli ∈ {1, . . . ,M}: Starting
with the weights

γ̂i
t−1(θ

i)
�
= pθi

t−1|Yt−1
(θi), θi ∈ {1, ..., N}

the means

x̂i
t−1(θ

i)
�
= E{xi

t−1|θi
t−1 = θi, Yt−1}, θi ∈ {1, ..., N}

and the associated covariances

P̂ i
t−1(θ

i)
�
= E{[xi

t−1 − x̂i
t−1(θ

i)][xi
t−1 − x̂i

t−1(θ
i)]T |

| θi
t−1 = θi, Yt−1}, θi ∈ {1, ..., N}

one evaluates the mixed initial condition for the filter
matched toθi

t = θi as follows:

γ̄i
t(θ

i) =
N∑

ηi=1

Πηi,θi · γ̂i
t−1(η

i)

x̂i
t−1|θi

t
(θi) =

N∑
ηi=1

Πηi,θi · γ̂i
t−1(η

i) · x̂i
t−1(η

i)/γ̄i
t(θ

i)

P̂ i
t−1|θi

t
(θi) =

N∑
ηi=1

Πηi,θi · γ̂i
t−1(η

i) ·

·
(
P̂ i

t−1(η
i) + [x̂i

t−1(η
i) − x̂i

t−1|θi
t
(θi)] ·

·[x̂i
t−1(η

i) − x̂i
t−1|θi

t
(θi)]T

)
/γ̄i

t(θ
i)

with

Πηi,θi
�
= Pr{θi

t = θi | θi
t−1 = ηi}

γ̄i
t(θ

i)
�
= pθi

t|Yt−1
(θi)

x̂i
t−1|θi

t
(θi)

�
= E{xi

t−1 | θi
t = θi, Yt−1}

P̂ i
t−1|θi

t
(θi)

�
= E{[xi

t−1 − x̂i
t−1(θ

i)] ·
·[xi

t−1 − x̂i
t−1(θ

i)]T |θi
t = θi, Yt−1}

IMMJPDA Step 2: Prediction for alli ∈ {1, . . .,M},
θi ∈ {1, . . . ,N} :

x̄i
t(θ

i) = ai(θi)x̂i
t−1|θi

t
(θi) (25.a)

P̄ i
t (θ

i) = ai(θi)P̂ i
t−1|θi

t
(θi)ai(θi)T + bi(θi)bi(θi)T (25.b)

IMMJPDA Step 3: Gating, which is based on Bar-Shalom
& Li (1995).
Evaluate for eachi andθi the covariance as follows:

Qi
t(θ

i) = hi(θi)P̄ i
t (θ

i)hi(θi)T + gi(θi)gi(θi)T

Subsequently identify for each target the mode for which
DetQi

t(θ
i) is largest:

θ∗i
t = Argmax

θi
{DetQi

t(θ
i)}

and use this to define for each targeti a gateGi
t ∈ IRm as

follows:

Gi
t
�
= {zi ∈ IRm; [zi − hi(θ∗i

t )x̄i
t(θ

∗i
t )]T ·

·Qi
t(θ

∗i
t )−1[zi − hi(θ∗i

t )x̄i
t(θ

∗i
t )] ≤ γ}

with γ the gate size. If thej-th measurement yjt falls
outside gateGi

t; i.e. yj
t /∈ Gi

t, then thej-th component
of the i-th row of [Φ(φ)T χ̃t] is assumed to equal zero.
This reduces the set of possible detection/permutation hy-
potheses to be evaluated at momentt for variousφ to X̃t(φ).

IMMJPDA Step 4: Evaluation of the detec-
tion/association/mode hypotheses is based on Theorem 2.
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For all φ ∈ {0, 1}M , χ̃ ∈ {0, 1}D(φ)×D(φ),
θ ∈ {1, ..., N}M :

βt(φ, χ̃, θ) = λ(Lt−D(φ))
∏M

i=1[f
i
t (φ, χ̃, θ

i)·
·(1 − P i

d)
(1−φi)(P i

d)φi · γ̄i
t(θ

i)/ct
for χ̃ ∈ X̃t(φ),

= 0 else
(26.a)

with f i
t ({0}M , {}Lt , θi) = 1 and forφ 	= {0}M :

f i
t (φ, χ̃, θ

i) ∼= [(2π)mDet{Qi
t(θ

i)}]− 1
2 φi

· exp{−1
2

Lt∑
k=1

[Φ(φ)T
∗iχ̃∗kµ

ik
t (θi)T [Qi

t(θ
i)]−1µik

t (θi)]}

(26.b)

where
µik

t (θi) = yk
t − hi(θi)x̄i

t(θ
i) (26.c)

IMMJPDA Step 5: Measurement update equations
are based on Theorem 2. For alli ∈ {1, ...,M},
θi ∈ {1, ..., N} :

γ̂i
t(θ

i) ∼=
∑
φ,χ̃,η

ηi=θi

βt(φ, χ̃, η) (27.a)

x̂i
t(θ

i) ∼= x̄i
t(θ

i) +W i
t (θ

i)

(
Lt∑

k=1

βik
t (θi)µik

t (θi)

)
(27.b)

P̂ i
t (θ

i) ∼= P̄ i
t (θ

i) −W i
t (θ

i)hi(θi)P̄ i
t (θ

i)

(
Lt∑

k=1

βik
t (θi)

)
+

+W i
t (θ

i)

(
Lt∑

k=1

βik
t (θi)µik

t (θi)µik
t (θi)T

)
W i

t (θ
i)T +

−W i
t (θ

i)

(
Lt∑

k=1

βik
t (θi)µik

t (θi)

)
·

·
(

Lt∑
k′=1

βik′
t (θi)µik′

t (θi)

)T

W i
t (θ

i)T (27.c)

with:

W i
t (θ

i)
�
= P̄ i

t (θ
i)hi(θi)T [Qi

t(θ
i)]−1 (27.d)

βik
t (θi) =

∑
φ,χ̃,η
φ�=0

ηi=θi

Φ(φ)T
∗iχ̃∗kβt(φ, χ̃, η)]/γ̂i

t(θ
i) (27.e)

with [.]∗k thek-th column of[.] .

IMMJPDA Step 6: Output equations:

x̂i
t =

N∑
θi=1

γ̂i
t(θ

i) · x̂i
t(θ

i)

P̂ i
t =

N∑
θi=1

γ̂i
t(θ

i)
(
P̂ i

t (θ
i) + [x̂i

t(θ
i) − x̂i

t] ·

·[x̂i
t(θ

i) − x̂i
t]

T
)

Remark 1: It can be verified that the above IMMJPDA fil-
ter algorithm is similar to the IMMJPDA filter algorithm
of Chen & Tugnait (2001). The main new element is that
the above specification of IMMJPDA Steps 4 and 5 ex-
plicitly shows the relation to the processes{χ̃t} and{φt}.
In the sequel this relation is exploited for the development
of a track-coalescence-avoiding IMMJPDA filter, for short
IMMJPDA* filter.

6 IMMJPDA* filter

A shortcoming of JPDA is its sensitivity to track coa-
lescence. With the JPDA* approach, Blom & Bloem
(2000) have shown that this is due to JPDA’s merging
over permutation hypotheses, and that a suitable hypothe-
sis pruning may provide an effective countermeasure. The
JPDA* filter equations can be obtained from the JPDA algo-
rithm by pruning per(φt, ψt)-hypothesis all less likelyχt-
hypotheses prior to measurement updating. In order to ap-
ply this approach to IMMJPDA the JPDA* hypothesis prun-
ing strategy is now extended: evaluate all(φt, ψt,θt) hy-
potheses and prune per(φt, ψt,θt)-hypothesis all less-likely
χt-hypotheses. To do so, define for everyφ, ψ andθ, satis-
fyingD(ψ) = D(φ) ≤Min{M,Lt}, a mappinĝχt(φ, ψ,θ):

χ̂t(φ, ψ, θ)
�
= Argmax

χ
βt(φ, χT Φ(ψ), θ)

where the maximization is over all permutation matricesχ
of sizeD(φ) ×D(φ).
The pruning strategy of evaluating all(φ, ψ, θ)-hypotheses
and only oneχ-hypothesis per(φ, ψ, θ)-hypothesis implies
that forD(φ) > 0 we adopt the following pruned hypothe-
sis weightsβ̂t(φ, ψ, θ):

β̂t(φ, ψ, θ)= βt(φ, χ̂(φ, ψ, θ)T Φ(ψ), θ)/ĉt

if D(φ) = D(ψ) ≤ Min{M,Lt}
= 0 else

with ĉt a normalization constant for̂βt; i.e. such that∑
φ,ψ,θ

D(ψ)=D(φ)

β̂t(φ, ψ, θ) = 1

By inserting these particular weights within IMMJPDA,
we get IMMJPDA*. One cycle of the IMMJPDA* filter
algorithm consists of 6 steps, all except step five are
equivalent to the IMMJPDA steps. IMMJPDA* step 5
reads as follows:

IMMJPDA* Step 5: Track-coalescence hypothesis
pruning and measurement update equations.
First evaluate for every(φ, ψ,θ) such that0 < D(ψ) =
D(φ) ≤ Min{M,Lt}:

χ̂t(φ, ψ, θ) = Argmax
χ

βt(φ, χT Φ(ψ), θ)
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Next evaluate all̂χt(φ, ψ,θ) hypothesis weights:

β̂t(φ, ψ, θ)= βt(φ, χ̂t(φ, ψ, θ)T Φ(ψ), θ)/ĉt

if 0 < D(ψ) = D(φ) ≤ Min{M,Lt}
= βt({0}M , {}Lt , θ)/ĉt

if D(ψ) = D(φ) = 0
= 0 else

whereĉt is a normalizing constant for̂βt.

Measurement update equations for alli ∈ {1, ...,M},
θi ∈ {1, ..., N} :

γ̂i
t(θ

i) ∼=
∑
φ,ψ,η

ηi=θi

β̂t(φ, ψ, η) (28.a)

x̂i
t(θ

i) ∼= x̄i
t(θ

i) +W i
t (θ

i)

(
Lt∑

k=1

β̂ik
t (θi)µik

t (θi)

)
(28.b)

P̂ i
t (θ

i) ∼= P̄ i
t (θ

i) −W i
t (θ

i)hi(θi)P̄ i
t (θ

i)

(
Lt∑

k=1

β̂ik
t (θi)

)
+

+W i
t (θ

i)

(
Lt∑

k=1

β̂ik
t (θi)µik

t (θi)µik
t (θi)T

)
W i

t (θ
i)T +

−W i
t (θ

i)

(
Lt∑

k=1

β̂ik
t (θi)µik

t (θi)

)
·

·
(

Lt∑
k′=1

β̂ik′
t (θi)µik′

t (θi)

)T

W i
t (θ

i)T (28.c)

with:

W i
t (θ

i)
�
= P̄ i

t (θ
i)hi(θi)T [Qi

t(θ
i)]−1 (28.d)

β̂ik
t (θi) =

∑
φ,ψ,η
φ,ψ �=0
ηi=θi

[Φ(φ)T
∗i[χ̂t(φ, ψ, η)T Φ(ψ)]∗k ·

·β̂t(φ, ψ, η)]/γ̂i
t(θ

i) (28.e)

where[.]∗k is thek-th column of[.].

7 Monte Carlo simulations

In Blom & Bloem (2002) Monte Carlo simulation results
are given for the IMMJPDA and IMMJPDA* filter algo-
rithms, and for an IMMPDA which updates an individual
track using PDA by assuming the measurements from the
adjacent targets as false. The simulations primarily aim at
gaining insight into the behavior and performance of the fil-
ters when objects move in and out close approach situations,
while giving the filters enough time to converge after a ma-
noeuvre has taken place. In the example scenarios there are
two targets, each modelled with two possible modes. The
first mode represents a constant velocity model and the sec-
ond mode represents a constant acceleration model. Both
objects start moving towards each other, each with con-
stant initial velocityVinitial (i.e. the initial relative velocity

Vrel, initial = 2V ). At a certain moment in time both ob-
jects start decelerating with -0.5 m/s2 until they both have
zero velocity. The moment at which the deceleration starts
is such that when the objects both have zero velocity, the
distance between the two objects equalsd. After spending
a significant number of scans with zero velocity, both ob-
jects start accelerating with 0.5 m/s2 away from each other
without crossing until their velocity equals the opposite of
their initial velocity. From that moment on the velocity of
both objects remains constant again (thus the final relative
velocity Vrel, final = Vrel, initial). Note thatd < 0 implies
that the objects have crossed each other before they have
reached zero velocity. Each simulation the filters start with
perfect estimates and run for 40 scans. An example of the
trajectories ford > 0 is depicted in figure 1.

0 100 200 300 400
−1000

−500

0

500

1000
Trajectories for d > 0

time

po
si

tio
n

 d > 0 

Figure 1: Trajectories example ford > 0

For each target, the underlying model of the potential target
measurements is given by (1) and (3)

xi
t+1 = ai(θi

t+1)x
i
t + bi(θi

t+1)w
i
t (1)

zi
t = hi(θi

t)x
i
t + gi(θi

t)v
i
t (3)

Furthermore fori = 1, 2 and θi
t ∈ {1,2}:

ai(1) =


 1 Ts 0

0 1 0
0 0 0


 , ai(2) =


 1 Ts

1
2T

2
s

0 1 Ts

0 0 1




bi(1) = σi
a ·


 0

0
1


 , bi(2) = σi

a ·

 0

0
0




hi =
[

1 0 0
]
, gi = σi

m

Π =
[

1 − Ts/τ1 Ts/τ1
Ts/τ2 1 − Ts/τ2

]

whereσi
a represents the standard deviation of acceleration

noise andσi
m represents the standard deviation of the mea-

surement error. For simplicity we consider the situation of
similar targets only; i.e.σi

a = σa, σi
m = σm, P i

d = Pd.
With this, the scenario parameters arePd, λ, d, Vinitial , Ts,
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σm, σa, τ1, τ2, and the gate sizeγ. We used fixed parame-
tersσm = 30, σa = 0.5, τ1 = 500, τ2 = 50, andγ = 25.
Table 1 gives the other scenario parameter values that are
being used for the Monte Carlo simulations.

Table 1: Scenario parameter values.
IMMPDA’s λ = 0.00001 for scenarios 1 and 3

Scenario Pd λ d Vinitial Ts

1 1 0 Variable 7.5 10
2 1 0.001 Variable 7.5 10
3 0.9 0 Variable 7.5 10
4 0.9 0.001 Variable 7.5 10

During our simulations we counted tracki ”O.K.”, if

| hix̂i
T − hixi

T |≤ 9σm

and we counted tracki 	= j ”Swapped”, if

| hix̂i
T − hjxj

T |≤ 9σm

Furthermore, two tracksi 	= j are counted “Coalescing” at
scant, if

| hix̂i
t − hj x̂j

t |≤ σm∧ | hixi
t − hjxj

t |> σm

For each of the scenarios Monte Carlo simulations contain-
ing 100 runs have been performed for each of the track-
ing filters. To make the comparisons more meaningful, for
all tracking mechanisms the same random number streams
were used. The results of the Monte Carlo simulations for
the three scenarios are pictured in Blom & Bloem (2002)
and summarized in Tables 2 through 4 below:

• The average percentage of Both tracks ”O.K.” (Table
2).

• The average number of ”coalescing” scans (Table 3).

• The percentage of Both tracks ”O.K.” or ”Swapped”
(Table 4).

Table 2: Average % Both tracks ”O.K.”.

Scenario IMMPDA IMMJPDA IMMJPDA*
1 18 67 74
2 8 56 67
3 8 63 69
4 3 42 49

For the example considered, the simulation results show that
both IMMJPDA* and IMMJPDA perform much better than
IMMPDA. Moreover the results show that IMMJPDA*
avoids track coalescence and is less sensitive to track loss
than IMMJPDA is.

Table 3: Average number of coalescing scans.

Scenario IMMPDA IMMJPDA IMMJPDA*
1 9.8 1.5 0.4
2 11.1 1.9 0.3
3 18.6 1.7 0.5
4 14.7 2.6 0.5

Table 4: Average % Both tracks ”O.K.” or ”swapped”.

Scenario IMMPDA IMMJPDA IMMJPDA*
1 27.2 99.6 99.9
2 17.8 93.2 97.4
3 9.8 99.8 100
4 6.4 75.2 79.4
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