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Summary

A new space-time discontinuous Galerkin finite element method for the solution of the Euler equa-

tions of gas dynamics in time-dependent flow domains is presented. The discontinuous Galerkin

discretization results in an efficient element-wise conservative upwind finite element method,

which is particularly well suited for local mesh refinement. The upwind scheme uses a formu-

lation of the HLLC flux applicable to moving meshes and several formulations for the stabiliza-

tion operator to ensure monotone solutions around discontinuities are investigated. The non-linear

equations of the space-time discretization are solved using a multigrid accelerated pseudo-time

integration technique with an optimized Runge-Kutta method. The linear stability of the pseudo-

time integration method is investigated for the linear advection equation. The numerical scheme is

demonstrated with simulations of the flow field in a shock tube, a channel with a bump, and an os-

cillating NACA 0012 airfoil. These simulations show that, using the data at the superconvergence

points, the accuracy of the numerical discretization is
� � � � � 	 �

in space for smooth subsonic flows,

both on structured and locally refined meshes, and that the space-time adaptation can significantly

improve the accuracy and efficiency of the numerical method.
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1 Introduction

This article discusses a new discontinuous Galerkin (DG) finite element method for the adaptive

solution of the unsteady Euler equations of gas dynamics in three-dimensional time-dependent

flow domains. The algorithm results in a second order accurate finite element discretization on

deforming meshes and accuracy can be improved using local mesh refinement or
�
-type mesh

adaptation. In the development of the numerical scheme the main objectives to be satisfied are

obtaining a conservative discretization on deforming meshes, the accurate capturing of flow dis-

continuities usingh-adaptation, while maintaining accuracy on locally refined meshes, and achiev-

ing good computational efficiency on parallel computers. These requirements have been the main

motivation to develop a discontinuous Galerkin finite element method. The main feature of dis-

continuous Galerkin methods is the use of basis functions which are discontinuous across element

faces. This results in a finite element discretization with a very compact stencil, which can be

combined well withh-adaptation. These properties are important for many problems and the main

reason why discontinuous Galerkin methods presently are receiving significant attention.

Discontinuous Galerkin methods can be subdivided into two main classes, namely discretizations

with basis functions which are discontinuous either in space or in time. The first class of DG

methods, in combination with a TVD Runge-Kutta time integration method, has been thoroughly

investigated by Cockburn and Shu. Detailed surveys can be found in (Ref. 12, 13). The second

class of DG methods uses discontinuous basis functions in time and a streamline upwind Galerkin

or Galerkin least squares discretization in space. Both classes of discontinuous Galerkin methods

are also extensively discussed in Barth (Ref. 2) and Schwab (Ref. 25).

The separation between space and time becomes cumbersome for time-dependent domain bound-

aries, which require the mesh to follow the boundary movement. We will therefore not separate

space and time, but consider the Euler equations directly in four dimensional space, and use basis

functions in the finite element discretization which are discontinuous across element faces, both in

space and time. We refer to this technique as the space-time discontinuous Galerkin finite element

method. The space-time DG method provides optimal efficiency to adapt and deform the mesh,

while maintaining a conservative scheme which does not require interpolation of data after mesh

refinement or deformation. The space-time DG method presented in this article is an extension of

our research on a solution adaptive discontinuous Galerkin finite element method for steady three-

dimensional inviscid compressible flows, Van der Vegt and Van der Ven (Ref. 31). This article

discusses the general formulation of the space-time DG method for the adaptive solution of the

Euler equations in time-dependent flow domains. Important improvements in the computational
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efficiency are discussed in Van der Ven and Van der Vegt (Ref. 34), where we present and analyze

a new integration technique for the element face and volume integrals for discontinuous Galerkin

discretizations. There we will also demonstrate the maturity of the space-time DG discretization

with three-dimensional aerodynamic applications, such as a deforming wing in transonic flow.

The combined use of space and time discontinuous basis functions in a discontinuous Galerkin

method has been proposed by Jaffre, Johnson and Szepessy (Ref. 19), which theoretically analyzed

this technique for multi-dimensional scalar conservation laws on non-deforming meshes. See also

Cockburn and Gremaud (Ref. 8). Until now, however, the use of space-time discontinuous basis

functions in DG methods has not been fully explored for non-linear hyperbolic systems of partial

differential equations, such as the Euler equations of gas dynamics. An initial study was conducted

by Lowrie, Roe and van Leer (Ref. 22). Their formulation results in a staggered space-time mesh,

which is quite different from the DG discretization presented in this article, and does not easily

extend to local mesh refinement which is important for many applications.

In order to make the space-time DG method an accurate and efficient technique for the solution

of the Euler equations of gas dynamics we had to deal with a number of issues. First, we will

extensively discuss the weak formulation of the space-time discontinuous Galerkin finite element

method using the Arbitrary Lagrangian Eulerian (ALE) approach. This technique decouples the

grid motion from the motion of the fluid particles and is widely used in fluid-structure interac-

tion problems and ideally suited for deforming meshes. The discontinuous Galerkin discretization

which we present automatically satisfies the geometric conservation law, which states that a uni-

form flow field should not be influenced by the grid motion, since the element face and volume

integrals are calculated with sufficiently accurate quadrature rules. This problem was analyzed in

detail by Lesoinne and Farhat (Ref. 21), and is an essential condition to obtain at least first order

accuracy in time, as was proven by Guillard and Farhat (Ref. 17).

The space-time discontinuous Galerkin discretization results for each element in a coupled sys-

tem of non-linear equations. We will present and analyze a pseudo-time integration method with

multigrid acceleration which can efficiently solve these equations. In this technique the non-linear

equations of the DG discretization are augmented with a pseudo-time and marched to steady state

in pseudo-time. The pseudo-time integration is significantly improved by optimizing the Runge-

Kutta time integration method. The use of a multigrid technique for a DG discretization of hy-

perbolic partial differential equations is new and required a significant development effort. The

proposed algorithm works well on locally refined meshes and maintains the local structure of a

DG discretization, which allows a straightforward parallelization of the method.
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Since the Euler equations of gas dynamics are hyperbolic and develop discontinuities in finite

time it is important to ensure monotone solutions around discontinuities. In the TVD Runge-Kutta

discontinuous Galerkin method this is accomplished by using a slope limiter, for a survey see

Cockburn (Ref. 12). In our earlier work we also used this limiter (Ref. 31, 32), but the limiter in

a DG method prevents convergence to steady state and also has a negative effect on the numerical

accuracy. In this article we will discuss the use of a stabilization operator instead of a slope

limiter to maintain monotone solutions. This technique significantly improved the accuracy and

convergence to steady state of the pseudo-time integration.

The DG discretization combines well with local mesh refinement and this is considered one of its

main benefits. The question if the DG discretization of the Euler equations maintains accuracy

on non-smooth meshes has, however, not been addressed until now. This has only been done for

target functionals of the data, such as lift and drag on an airfoil, for a survey see Giles and S¨uli

(Ref. 15), but this does not provide a global error estimate for the solution. In this article we will

investigate this issue with a number of mesh refinement studies on uniform and adapted meshes.

The outline of the article is as follows. After some preliminaries we discuss in Section 3 the defi-

nition of the space-time discontinuous Galerkin discretization. First, the ALE weak formulation is

discussed, followed by a derivation of the non-linear equations for the DG expansion coefficients.

Next, a definition of the HLLC flux suitable for moving boundaries is given and the stabilization

operator necessary to ensure monotone solutions around discontinuities is discussed. In Section

4 the multigrid accelerated pseudo-time integration method for the solution of the non-linear DG

equations is presented and its stability is analyzed. The mesh adaptation is discussed in Section

5 and extensive results to demonstrate and validate the space-time DG method are presented in

Section 6.
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2 Space-time formulation of the Euler Equations of gas dynamics

We consider the Euler equations of gas dynamics in a time-dependent flow domain. Since the

flow domain boundary is moving and deforming in time we do not make an explicit separation

between the space and time variables and consider the Euler equations directly in� �
. Let � � � �

be an open domain. A point� � � �
has coordinates

� � 
 � � � � � � � �
, but we will also frequently use

the notation
� �� � � � � � �

, with
�� � � � 
 � � 	 � � � � � � � the position vector at time� and � � � �

representing time. The flow domain� � � �
at time � is defined as:� � � � � �  �� � � � $ � �� � � � � � ( ,

with � * and , the initial and final time of the evolution of the flow domain. The space-time

domain boundary- � consists of the hypersurfaces� � � * � � �  � � - � $ � � � � * ( , � � , � � �  � �- � $ � � � , ( and 8 � �  � � - � $ � * ; � � ; , ( .

Let = � � � > � � ? �
denote the flux tensor, which is defined as:

= �
ABBBBBBB
C

D E 
 D E 	 D E � DD E 	 
 H J D E 
 E 	 D E 
 E � D E 
D E 
 E 	 D E 	
	 H J D E 	 E � D E 	D E 
 E � D E 	 E � D E 	� H J D E �

� D K H J � E 
 � D K H J � E 	 � D K H J � E � D K

M NNNNNNN
O

�

with D , J , and K the density, pressure, and specific total energy, respectively, andE P the velocity

components in the Cartesian coordinate directions� P , R �  T � V � X ( of the velocity vectorE � � >
� � . Let the vectorY � � > � �

denote the conservative flow variables with components:

Y P � = P � �
then the Euler equations of gas dynamics are defined as:

Z [ \ = ^ Y � � � _ � ` � � � � � (1)

together with the initial and boundary conditions:

Y � � � � Y * � � � � � � � � � * � �
Y � � � � e � Y � Y f � � � � 8 h

Here Y * � � � � * � > � �
denotes the initial flow field,e � � � k � � > � �

the boundary operator

and Y f � 8 > � �
the prescribed boundary flow field data. The divergence of a second order

tensor is defined as:
Z [ \ = � o q r so t s , and the summation index is used on repeated indices in this

article. The Euler equations are completed with the equation of state for a caloric perfect gas:J � � u w T � D � K w 
	 E P E P �
, with

u
the ratio of specific heats.
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3 Space-Time Discontinuous Galerkin Discretization of the Euler Equations

3.1 Geometry definition of space-time elements

Consider a partitioning� * ; � 
 ; � � � ; , of the time interval
� � * � , �

and define the time interval� �
as:

� � � � � � � � � � 
 �
. The space-time domain� � � �

is split into a finite number of space-

time slabs:  � � � $ � � � � � ( . The evolution of the flow domain during the time interval
� �

is

represented by the mapping�
�� , which is defined as:

�
�� � � � � � � > � � � � � �� �> �

�� � �� � � � � � � h (2)

The mapping�
�� is assumed to be sufficiently smooth, orientation preserving and invertible in each

time interval
� �

, but can be different in different time intervals. This makes it possible to generate

a new grid when elements become too severely distorted during the dynamic mesh movement. At

the time level� �
we use hexahedral elements
 to define the tessellation

�� �� :

�� �� � �  

�� $ � ��� � 


�

�� �

�
� � � � � �

and 

�� � 


�� � � � if � �� � � � T ! � � � � ! & � ( �

such that� � � � � � > � � � � �
as

� > ` , with
�

the radius of the smallest sphere completely con-

taining each element
 �
�� �� , and & �

the total number of hexahedra in� � � � � �
. Each element



�

�
�� �� is related to the master element(
 � � w T � T � � through the mapping)

�* :

)
�* � (
 > 


� � �+ �> �� �
,-

P � 

� P � 


�
� . P � �+ � �

with � P � 

� � � � � , T ! R ! 2 , the spatial coordinates of the vertices of the hexahedron


�
at time � �

and
. P � �+ �

the standard tri-linear finite element shape functions for hexahedra, with�+ � � + 
 � + 	 � + � � � (
 . The elements

� � 
 are now obtained by moving the vertices of each

hexahedron

�

�
�� �� with the mapping�

�� to their new position at time� � � � � 
 , and we can

define the mapping:

)
� � 
* � (
 > 


� � 
 � �+ �> �� �
,-

P � 

�

�� � 5 6
� � P � 


� � � . P � �+ � h

The space-time elements are obtained by connecting the elements in� � � � �
and � � � � � 
 �

by linear

interpolation in time. This results in the following parameterization of the space-time elements9 �
:

: � * � (9 > 9 � � + �> � �� � � � � ^ 

	

� T w + � � )
�* � + � H 


	
� T H + � � )

� � 
* � + � �



	
� � � H � � � 
 � H 
	

� � � � 
 w � � � + � _ � (3)
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with
+ � (9

the computational coordinates in the master element(9
, which is defined as: (9 �

� w T � T � �
. The space-time tessellation is now defined as:

� �
� � �  9 � : �

* � (9 � $ 
 �
�� �

� ( h

We will also frequently use the notation
 � � �
for the element
 at time � , which is defined as:


 � � � �  �� � � � $ � �� � � � � 9 ( . The space-time element
9 �

is bounded by the hypersurfaces


 � �
�� � � � [ �� � * 
 � � � H � �

, 
 � � 	� � 
 � � � [ �� � * 
 � � � � 
 w � �
, and 8

�
� - 9 � �

^ 
 � �
�� � � 
 � � 	� � 
 _ �

.

This notation is used to indicate that the mesh can change discontinuously at the time levels� �
and

� � � 
 .

The boundary faces of
9 �

can also be represented using the mapping (3). ForT ! � ! 2 define

the eight faces� � of the space-time element
9

, with - 9 � � ,� � 
 � � , by:

� 	 � 	 
 �  : * � + � $ + � (9 � + � � w T ( �
� 	 � �  : * � + � $ + � (9 � + � � T ( � T ! � ! � h (4)

Note that 8
�

� � �� � 
 � � , 
 � �
�� � � � � , and 
 � � 	� � 
 � � � , . The reader is referred to Figure 1

for a two-dimensional illustration of the elements and mappings.

Remark 1 The tessellation
� �

� does not impose a limitation on the number of elements which can

connect to a face of an element. This is important because during the simulations the computa-

tional mesh will be adapted by subdividing elements in space and/or time in regions where more

mesh resolution is required.

Remark 2 Since we use a tri-linear representation of the elements in space, this implies that we

use a bi-linear representation of the geometry at slip flow boundaries. In an interesting article,

Bassi and Rebay (Ref. 1), concluded that a higher order representation of a slip flow boundary

is mandatory in order to avoid strong numerical boundary layers and to obtain convergence.

Recently, van der Vegt and van der Ven (Ref. 33) showed that under grid refinement the numerical

boundary layer diminishes for hexahedral type elements. Since local mesh refinement already

is an integral part of our algorithm, we use this technique to remove the numerical boundary

layer at slip flow boundaries and it is not necessary to use a higher-order accurate boundary

representation.
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3.2 Space-time discontinuous Galerkin finite element approximation

3.2.1 Weak formulation of the Euler equations

In order to ensure that the different forms of the weak formulation of the Euler equations of gas

dynamics, which are discussed in this section, are well defined we introduce the broken space� � � �
� �

:� � � �
� � � � � Y � � �

� > � � $ � � � � Z Y 
 � 	 � = � Y 	 � $ � �s � � 
 � 9 �
� � �

^ � � � � Z Y 	 � 	 � � � Y 
 � _ � � � � Z Y 
 $ � �s � � 
 � 9 �
� � �

u
	

� Y 
 � � ^ � 	 � = � u
	

� Y 	 � � H � 	 � = � u � � Y � � � _ � � 
 � - 9 �
� � �

� � Y 
 � Y 	 � Y � � � � � � �
� � � � 9 �

� � � �
� � �

with � 
 the space of Lebesgue integrable functions,
u � � Y � � �

[ � � � * Y � � � � � � �
the traces

of Y at - 9
, � � � � �

the unit outward normal vector at- 9
, � � � � > � � ? �

the artificial

viscosity matrix, and superscript, denotes the transposition of a vector. We will also frequently

use the notationY �
to denote

u � � Y �
. The gradient operator

� � � Z � � � > � � ? �
is defined as:

� � � � Z Y � P � � o � so t r and the symbol
�
represents the dyadic product of two second order tensors and

is defined for , e � �
� ? � as  � e �  P � e P � .

The discontinuous Galerkin finite element discretization is obtained by approximating the test and

trial functions in each element
9 � � �

� with polynomial expansions which are discontinuous

across element faces, both in space and time. First, in the master element(9
the basis functions

(" �
� (9 > � are defined which are linear in computational space:

(" �
� + � � T � � � ` �

� + � � � � T � � � � � � h
Next, the basis functions

" � � 9 > � are constructed through the parameterization
: * :" � � (" � # : 	 
* � � � ` � h h h � � h

We also introduce the basis functions% �
� 9 > � , which are defined as:

% �
� �� � � � � T � � � ` �

� "
�

� �� � � � w T$ 
 � � � 	� � 
 � $
&

* s ' � )� 5 6 +
" �

� �� � � 	� � 
 � - 
 � � � T � � � � � � � (5)

since this will result in a splitting of the test and trial functions into an element mean at time� � � 

and a fluctuating part. This property will be beneficial in the definition of the stabilization operator

and the multigrid convergence acceleration, discussed in Sections 3.5 and 4.
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The finite element space
� 
� � � �� �

is now defined as follows:

� 
� � � �� � � � � Y � �� Y � $ � � � � 
 � 9 � � � � � � � � �� � �
with the polynomial space

� 
 � 9 � � � �
� �  % � � � � ` � � � � � � ( . The trial functionsY � � � �� >

� �
are defined in each element

9 � � �� as:

Y � � �� � � � $ � 
 � � Y � �� � � � $ � � �
�-

� � *
(Y �

� 9 � % �
� �� � � � � (6)

with � � � � > � 
� � � �� �
the projection operator onto the space

� 
� and (Y � � � �
the expansion

coefficients. The test functions� � � � �� > � �
are defined analogously, only with(Y � replaced

by (� � . The weak formulation for the Euler equations of an inviscid compressible gas can now be

formulated as:

Find a Y � � � 
� � � �� �
, such that for all� � � � 
� � � �� �

, the following variational equation is

satisfied:

� �-
� � *

� �-
� � 


� &
� �s

� � � Z [ \ = � Y � � - 9 H
&

� �s
^ � � � � Z � � � 	 � � � Y � � _ � � � � Z Y � - 9 � � ` � (7)

with & 	 H T the total number of space-time slabs and& �
the number of elements in the tessellation� �� . The second contribution in (7) is the stabilization operator and added to the weak formulation

to prevent numerical oscillations around discontinuities and in regions with sharp gradients, for

more details see Section 3.5.

3.2.2 Transformation of the space-time weak formulation into ALE form

The weak formulation (7) can be transformed into an integrated by parts form using Gauss’ theo-

rem. This has as main benefit that it does not result in loss of conservation under inexact quadra-

ture, see e.g. Hansbo (Ref. 18). This approach is for instance followed by Shakib et al. (Ref. 26).

It is, however, possible to establish a relation between the Arbitrary Lagrangian Eulerian (ALE)

formulation, commonly used on moving and deforming meshes, and the space-time approach.

This can be done either directly for the partial differential equations, as presented by Masud and

Hughes (Ref. 23), or for the weak formulation using Stokes’ theorem, see Bottasso (Ref. 6). In

this section we will establish the relation between the space-time and ALE formulation in a more

simplified way, which does not require the use of differential forms, and gives more insight into

the origin of the various contributions.

If we introduce

� � � Z [ \ = � Y � � � Z [ \ �
�

	� = � Y � � � w � � � � Z
� � � 	 � = � Y � � � (8)
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into the weak formulation (7) and apply Gauss’ theorem to the contribution resulting from the first

term on the righthand side of (8) then we obtain:& � �s
Z [ \ �

�
	� = � Y � � � - 9 � &

o � �s
� � � ^ �

� 	� � 	 = � Y 	� � _ - � - 9 � � (9)

where� � is the unit outward normal vector at the boundary- 9 �
. The ALE formulation can now

be obtained by calculating the normal vector� � .

Given the parameterization
� �� � � � � : � * � + �

for the space-time element, the normal vector� � at

the boundary surface components� 	 P
	


 and � 	 P , T ! R ! � , defined in (4), is orthogonal to the

tangential vectors� P 6 � � P � , and� P � , with the indices R 
 � R 	 � R � ( �  T � � � � � � ( complementary to the

index  R ( . The tangential vectors are defined as:� � � o � � �
o � s , and are equal to (cf. (3)):

� � �
A
C 


	
� T w + � � o � �� ' �� +o � s H 


	
� T H + � � o � � 5 6� ' �� +o � s`

M
O � � � T � V � X �

� � � 

	

A
C )

� � 
* � �+ � w )
�* � �+ �

� � � 
 w � �
M
O � 


	

A
C 	 ��

	 �
M
O �

(also see Figure 1). The normal vectors at� � and � , are simply
� ` � ` � ` � w T �

and
� ` � ` � ` � T �

,

respectively, hence the boundary integrals over the surfaces� � and � , are equal to:
,-

� � �

&

 � � � � ^ �

� 	� � 	 = � Y 	� � _ -
� � &

* s ' � )� 5 6 + � 	� � Y 	� -
�

w &
* s ' � 5� + � 	� � Y 	� -

� � (10)

where we used the relations:Y 	� � = P � � Y 	� �
, � � � 
 � � � �� �

and � , � 
 � � � 	
� � 
 �

.

For the remaining boundary terms remember that for each
+ � � � w T � T �

the element
 � � �
, such

that
� 
 � � � � + � � � : � * � �+ � + � �

, is the space-element defined by the interpolated vertices of the

elements
 � � �� �
and 
 � � 	

� � 
 ). Let
�� P� � �� � � � � � � ,

� T ! R ! 
 �
, be the space part of the normal

vector at the boundary parts� P � 8 �� . By definition,
�� 	 �

	

� and

�� 	 �� ,
� T ! � ! X �

, are

perpendicular to the tangential vectors� P � � 

	

� T w + � � o � ��
o � r � H 


	
� T H + � � o � � 5 6�

o � r � , with � � T or 2,

such that R 
 � R 	 � � ( �  T � V � X ( . Hence, the vectors
� �� P� � � � � � �

are orthogonal to the tangential

vectors� P � , if and only if the conditions:



	

	 �� � �� P� H 
	 � 	 � � ` �
are satisfied. The space-time normal vector� P� at � P , � T ! R ! 
 �

, therefore is equal to:

� P� � � �� P� � w � � �� P� � �
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with the grid velocity
� � � � given by the relation:

� � � �� � � � . Since the space-time normal

vector � � has length one, the space normal vector
�� � has a length$ �� � $ � T � � T H � � �

. The

boundary flux integral over� P , � T ! R ! 

�

is now equal to:

�-
P � 


&



r
� � � ^ �

� 	� � 	 = � Y 	� � _ -
�

�
&

� �s

	 �� � � ^ �
� 	� � 	 �

= � Y 	� � _ w �� � � � �
� 	� � Y 	� � _ 
 - 8 � (11)

where the flux tensor
�

= � � � > � � ? � has components
�

= P � � = P � with T ! � ! X . If we

replace the righthand side of (9) with the sum of (10) and (11) using the fact that- 9 �
� � ,P � 
 � P ,

and introduce this relation into (7) we obtain the weak formulation for the Euler equations of gas

dynamics in ALE form:

Find a Y � � � 
� � � �� �
, such that for all� � � � 
� � � �� �

, the following variational equation is

satisfied:

� �-
� � *

� �-
� � 


� w & � �s
� � � � Z

� � � 	 � = � Y � � - 9 H
&

*
s ' � )� 5 6 + � 	� � Y 	� - 
 w

&
*

s ' � 5� + � 	� � Y 	� - 
 H
&

� �s
� 	� � ^

�
= � Y 	� � �� � w �� � � � Y 	� _ - 8 H

& � �s
^ � � � � Z

� � � 	 � � � Y � � _ � � � � Z Y � - 9 � � ` h (12)

3.2.3 Introduction of numerical flux

In the summation over the space-time elements, the integrals over the internal faces of8
�
, 
 � � � �

and 
 � � � � 
 �
in the weak formulation (12) are counted twice, since two elements are connected

to each side of the faces. (In case of mesh refinement this applies to subsets of these faces.) This

results in a multi-valued flux tensor at internal faces, since in generalY 	� �� Y
�� in the discontin-

uous Galerkin discretization, and this requires special care. If we use the fact that the normal flux

through the boundary faces must be continuous, almost everywhere, to ensure conservation then

we obtain the relations:&
*

s ' � 5� + � *
s ' � )� 5 6 + � 	� � Y 	� - 
 �

&
*

s ' � 5� + � *
s ' � )� 5 6 + � 	� � Y

�
� - 
 � �

� � � � 
� � � �� � �
&

� �s
� 	� � � �= � Y 	� � �� � � - 8 �

&
� �s

� 	� � � �= � Y
�

� � �� � � - 8 � �
� � � � 
� � � �� � � (13)
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with Y
�

� the trace ofY � at - 9 �� of elements connected to
9 �� . The generalized flux tensor

�= �
� � > � � ? � is defined as:

�= � Y � �
�

= � Y � w � � Y �

where
� � Y � � P Y � . The integrals over internal faces
 � � �

�� �
then transform into:

� �-
� � 


&
*

s ' � 5� + � 	

� � Y 	

� - 
 �
� �-

� � 


&
*

s ' � 5� + � 	

� � 

	

� Y 	

� H Y
�

� � - 
 �

with a similar relation for
 � � � 	

� � 
 �
. The multivalued time flux is now replaced with a numerical

flux � 	 which, in order to ensure the causality of the time flux, is defined as:

� 	 � Y 	

� � Y
�� � � Y

�� at 
 � � �
�� �

� Y 	

� at 
 � � � 	

� � 
 � h

The numerical flux� 	 can also be used at the boundary faces
 � � �
�
* �

, where the external trace is

provided by the initial condition at� � � * . The numerical flux� 	 makes it possible to drop the

summation over the space-time slabs in the weak formulation (12), since each space-time slab only

depends on the previous space-time slab. The introduction of the time flux is an alternative to the

weak coupling between space-time slabs generally used in time-discontinuous Galerkin methods

and results in a uniform treatment of the space-time flux in the DG discretization. Using (13), the

integrals over8
�� in (12) can be transformed into:

� �-
� � 


&
� �s

� 	

� � � �= � Y 	

� � �� � � - 8 �
� �-

� � 


&
� �s

� 	

� � 

	 ^ �= � Y 	

� � �� � H �= � Y
�

� � �� � _ - 8 h (14)

The representation of the flux in (14) as the average between the left and right states at the element

face results in a central discretization which suffers from numerical oscillations around disconti-

nuities. Monotone solutions are obtained by adding the stabilization operator and introducing a

Godunov type upwind flux. The use of an upwind flux fits very well into a discontinuous Galerkin

discretization, since the statesY 	

� and Y
�

� can be considered as the left and right states in a Rie-

mann problem. We replace therefore the flux

	 ^ �= � Y 	

� � �� � � � � �� � H �= � Y
�

� � �� � � � � �� � _
at the element

faces 8
�� in the time interval� � � � H � � �

with a monotone upwind flux� � Y 	

� � Y
�� �

, which is con-

sistent: � � Y � � Y � � � �= � Y � � �� � , and conservative:� � Y 	

� � Y
�

� � � w � � Y
�

� � Y 	

� �
. At external

boundary faces we apply the same procedure, but at these faces the external stateY
�

� is controlled

by the boundary operator:Y
�

� � e � Y 	

� � Y f �
.

Any of the well-known (approximate) Riemann solvers, such as those from Godunov, Roe, Lax-

Friedrichs, or Osher, for a survey see Toro (Ref. 30), can be used as upwind numerical flux. In
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earlier work, Van der Vegt and Van der Ven (Ref. 31), we used the Osher flux because of its good

accuracy and nice mathematical foundation, but the Osher flux is computationally expensive and is

replaced with the HLLC flux. The HLLC flux is introduced by Toro, Spruce and Speares (Ref. 29)

and further analyzed by Batten et al. (Ref. 3, 5). The HLLC flux provides solutions of at least

the same quality as the Osher flux, but at less than one quarter of the computational cost. The

definition of the HLLC flux for moving interfaces is provided in Section 3.4. An important benefit

of using an upwind numerical flux is that this already ensures nearly monotone solutions without

a stabilization operator. A relatively simple stabilization operator in comparison with for instance

the one used by Shakib, Hughes and Johan (Ref. 26) for the Galerkin least squares finite element

method then is sufficient to obtain monotone solutions. The weak formulation for the space-time

discontinuous Galerkin finite element discretization of the Euler equations of gas dynamics now

is equal to:

Find a Y � � � 
� � � �� �
, such that for all� � � � 
� � � �� �

, the following variational equation is

satisfied:

� �-
� � 


� w & � �s
� � � � Z

� � � 	 � = � Y � � - 9 H
&

*
s ' � )� 5 6 + � 	

� � Y 	

� - 
 w

&
*

s ' � 5� + � 	

� � Y
�� - 
 H

&
� �s

� 	

� � �
� Y 	

� � Y
�� � - 8 H

& � �s
^ � � � � Z

� � � 	 � � � Y � � _ � � � � Z Y � - 9 � � ` h (15)

3.3 Equations for the flow field expansion coefficients

An important element in the numerical discretization is the splitting of the test and trial functions

into an element mean
�

Y � � � �� > � �
at the time level� � � 
 and a fluctuating part

�Y � � � �� > � �
:

Y � � �� � � � �
�

Y � � 
 � � � 	

� � 
 � � H �Y � � �� � � � � � � �� � � � � 9 �� � (16)

with:

�
Y � � 
 � � � 	

� � 
 � � � (Y * � (17)&
*

s ' � )� 5 6 +
�Y � � �� � � � - 
 � ` h (18)

The flow field can now be represented as:

Y � � �� � � � �
�

Y � � 
 � � � 	

� � 
 � � H
�-

� � 

(Y �

� 9 �� � % �
� �� � � � � � � �� � � � � 9 �� h
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This splitting is a direct consequence of the fact that the basis functions% �
� �

� � �
�

are constructed

such that: &
*

s ' � )� 5 6 + % �
� �� � � 	

� � 

� - 
 � ` � �

� T � (19)

and has several advantages. In the first place, the structure of the space-time discontinuous

Galerkin discretization becomes more clear, because the equations for the element mean are iden-

tical to a finite volume discretization. A second advantage of the splitting is that it makes it easier

to define the stabilization operator and the multigrid convergence acceleration procedure. The

stabilization operator does not act on the element mean, only on the fluctuating part. Any ad-

justment to the element fluctuations due to the stabilization operator will therefore not affect the

element mean, and preserve a conservative scheme. The multigrid procedure also benefits from

this splitting since it only uses the equations for the element mean at the coarse grid levels. This

results in a significant simplification of the multigrid algorithm, while maintaining good multigrid

performance.

If we introduce the polynomial expansions (6) forY � and � � into the weak formulation of the

Euler equations (15), use (16)-(19) and the fact that the coefficients(� are arbitrary, then the

following set of equations for the element mean
�

Y P � 
 � � � 	
� � 


� �
, T ! R ! � , is obtained:

�
� 
 � �

� 	
� � 


� �
�

�
Y P � 
 � � � 	

� � 

� � w &

*
s ' � 5� + Y � � P � �� � � 	

� � - 
 H
&

� �
s

�
P � Y 	� � Y

�� � - 8 � ` h (20)

The coefficients for the fluctuating part of the flow field(Y �
P � 9 �� �

with � � T � � � � � � , are equal

to:
�-

� � 

(Y �

P � 9 �� � � w & � �
s

- % � � �� � � �

- � % �
� �� � � � - 9

H
&

*
s ' � )� 5 6 + % � � �� � � 	

� � 

� % �

� �� � � 	
� � 


� - 
 
 w

&
*

s ' � 5� + Y � � P � �� � � 	
� � % � � �� � �

�� � - 
 w �
Y P � 
 � � � 	

� � 

� �

& � �
s

- % � � �� � � �

- �
- 9

H

&
� �

s
% � � �� � � �

�
P � Y 	� � Y

�� � - 8 w & � �
s

- % � � �� � � �

- � �
�

= P � � Y � � - 9
H

�-
� � 


(Y �
P � 9 �� �

& � �
s

- % � � �� � � �

- � � � � � � Y � � - % �
� �� � � �

- � �
- 9 � ` � � � T � � � � � �

� R � T � � � � � � h (21)

The computational mesh can be discontinuous at the interface between two space-time slabs. This

implies that more than one element in
� �

	

� can connect to the element

9 �� �
� �� . In that case

the polynomial representation ofY � � �� � � 	
� �

in the various elements in
� �

	

� which connect to the
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element
9 �� must be used in the evaluation of the integrals� *

s ' � 5� + Y � � �� � �
	

� � % �
� �� � �

�� � - 
 . This

is discussed in Sections 5.1 and 5.2. The different contributions in (21) are evaluated separately.

Define the geometric coefficients� 
 � � 	 �  � � � ? �
as:

� 
� � �
& � �s

- % �
� �� � � �

- � % �
� �� � � � - 9 �

� 	
� � �

&
*

s ' � )� 5 6 + % �
� �� � � 	

� � 
 � % �
� �� � � 	

� � 
 � - 
 �

 � � � w � 
� � H � 	
� � �

and the coefficients� � � � ? �
, which couple the space-time slabs, as:

� P �
� Y

�� $ *
s ' � 5� + � �

&
*

s ' � 5� + Y � � P � �� � � 	
� � % �

� �� � �
�� � - 
 h (22)

The element face and volume flux contributions� 
 � � � ? �
, � 	 � � � ? �

are defined as:

� 
P �
� Y 	� $ � �s � Y

�� $ � �s
� �

&
� �s

% �
� �� � � �

�
P � Y 	� � Y

�� � - 8 (23)

� 	P �
� Y � $ � �s

� �
& � �s

- % �
� �� � � �

- � �
�

= P �
� Y � � - 9 � (24)

and the integrals of the stabilization operator� � � � ? �
are denoted as:

� � �
� Y � $ � �s � Y �� $ � �s

� � �
& � �s

- % �
� �� � � �

- � �
� � �

� Y � $ � �s � Y �� $ � �s
� - % �

� �� � � �

- � �
- 9 � (25)

with Y �� $ � �s the solution in the elements
9 � � �� which connect to the element

9 �� . The evaluation

of the flux and stabilization operator integrals is discussed in Sections 3.4 and 3.5, respectively.

The system of non-linear equations (21) for the expansion coefficients(Y �
P � 9 �� �

can be expressed

as:

	 � (Y
�

� (Y
�

	

 � � ` � (26)

with (Y
�

� (Y �
P � 9 � � 9 � � �� � ` ! � ! � � T ! R ! � , and

	 � � � ? � k � � ? � > � � ? �
having

components in each space-time element:

	 P * � $ 
 � � � 	
� � 
 � $ �

Y P � 
 � � � 	
� � 
 � � w � P * � Y

�� $ *
s ' � 5� + � H � 
P * � Y � $ � �s � Y �� $ � �s

� � (27)

	 P � �
�-

� � 

^  � �

� 9 �� � H � � �
� Y � $ � �s � Y �� $ � �s

� _ (Y �
P � 9 �� � w � P �

� (Y
�� $ *

s ' � 5� + � w

� 
� *
�

Y P � 
 � � � 	
� � 
 � � H � 
P �

� Y 	� $ � �s � Y
�� $ � �s

� w � 	P �
� Y � $ � �s

� � � � T � � � � � � h (28)
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The space-time discontinuous Galerkin discretization results in a set of non-linear equations (26)

for the expansion coefficients(Y
�
. This set of non-linear equations is solved with a Full Approx-

imation Storage (FAS) multigrid scheme, which is discussed in Section 4. Since the evaluation

of the coupling terms� between space-time slabs is fairly complicated for general meshes it is

also useful to consider the equations for continuous grid motion. In this case these integrals are

relatively simple:

�
P

�

� Y
�

� $ *
s ' � 5� + � � e � � (Y �

P � 9 �
	


� �

with:

e � � �
&

*
s ' � � + % �

� �� � �
�� � % �

� �� � � 	
� � - 
 h

If we use the relationse * * � $ 
 � � � � � $ and (Y * P � 9 �
	


� � �
�

Y P � 
 � � � 	
� � �

then (27) is a standard finite

volume discretization for the element mean.

Remark 3 It would have been more convenient to define the element mean flow field for the space-

time element
9

instead of using the element mean flow field in 
 � � � 	
� � 


� �
, but this would not result

in a decoupling of the equations for the element mean from the equations for the fluctuations
�Y �

due to the weak coupling between the different time slabs in the weak formulation (15).

3.4 Flux Calculation

3.4.0.1 Extension of the HLLC scheme to moving meshes

In Section 3.2.3 we introduced the HLLC flux into the weak formulation in order to prevent numer-

ical oscillations around discontinuities. The formulation of the HLLC scheme discussed in Toro et

al. (Ref. 29, 30) and Batten et al. (Ref. 3, 5) is, however, only valid for non-moving meshes. In this

section we will discuss the extension of the HLLC scheme to moving meshes. This extension is

most easily accomplished by considering the structure of the wave pattern in the Riemann problem

which is assumed in the HLLC scheme, see Figure 2. The HLLC scheme assumes that we have

two averaged intermediate statesY �� and Y �� in the star region, which is the region bounded by

the waves with the slowest and fastest signal speeds
� � and

� � , respectively. The star region is

divided into two parts by a contact wave which moves with velocity
� �

. Outside the star region

the solution still is at its initial values at time� � , which are denotedY � and Y � and are equal

to the tracesY 	� � � �
�

and Y
�

� � � �
�
, respectively. In the time interval� � � � � � H � � �

the solution
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Y � � � � at an element face which moves with the velocity
�

then is equal to:

Y � � � � �

��������� ��������

Y � 
 Y 	

� �
� �

�
if

� � � �

�

Y �� if
� � ! �

;
� �

�

Y �� if
� � ! �

;
� � �

Y � 
 Y
�

� �
� �

�
if

� � ! �

�

(29)

where depending on the grid velocity
�

we have to consider four different cases. The time interval

� � is chosen such that there is no interaction with waves coming from other Riemann problems.

Assume that
� � ;

�

,
� � � �

, and
� � � �

, then we can calculate the flux� � � � � �
Y � � Y � �

in the time interval � � � � � � H � �
�

by integrating the Euler equations over the control volumes� 
 K ) � and
� K

� � ) as shown in Figure 2. Using Gauss’ theorem we obtain for the control

volume
� 
 K ) � the relation:& � � � �

t
� Y � -

� H
& � � �

� � � � Y � �
� � � � H � �

� -
�

�
& *

t
� Y � �

� � � �
� -

� H
& � �

� � �
� �

(=
�

Y � �
� � � �

� � -
�

w & � �
� � �

� �
(=

�
Y 	� � �

� � �
� � -

� � (30)

and for the control volume
� K

� � ) :& � � � �
� � � Y � �

� � � � H � �
� -

� H
& � � � �

� � � � Y � �
� � � � H � �

� -
� H

&
t

�
� � � � Y � -

�

�
&

t
�

*
Y � �

� � � �
� -

� H
& � �

� � �
� �

(=
�

Y
�

� � �

� � �
� � -

�
w & � �

� � �
� �

(=
�

Y � �
� � � �

� � -
� � (31)

with (=
�

Y � �
�

�� � �
=

�
Y � �

. If we introduce now the averaged solutionsY �� and Y �� , which are

defined as:

Y �� �
T

� � � w � � �
� �

& � � � �
� � � � Y � �

� � � � H � �
� -

� �

Y �� � T
� � � w � � �

� �

& � � � �
� � � � Y � �

� � � � H � �
� -

� �

and use the fact thatY
�� is constant along the line� �

�

� in the Riemann problem then we obtain

after subtracting (30) from (31) the following expression for the HLLC flux at the interface in the

time interval � � � � � � H � �
�
:

� � � � � �
Y � � Y � �

� 
	
� �

=
�

Y 	� � �

� � �
� �

H
�

=
�

Y
�

� � �

� � �
� � �

� 

	

� (=
�

Y � �
H (=

�
Y � �

H
� � � � w � �

H
� � � w � � �

Y �� H
� � � � w � � w � � � w � � �

Y ��
w � � Y � w � � Y � �

h
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For the other three cases:
� � � ; � � � � � � � � �

!
� �

,
� � � ; � � � � ; � � � � ; � �

, and
� � � � � � � � � � � � � � � �

a similar analysis can be made. If we combine the four cases then

we obtain the following expression for the HLLC flux at a moving interface in the time interval

� � � � � � H � � �
:

� � � � � � Y � � Y � � � 

	 ^ (= � Y � � H (= � Y � � w � $ � � w � $ w $ � � w � $ � Y �

� H
� $ � � w � $ w $ � � w � $ � Y �

� H $ � � w � $ Y � w $ � � w � $ Y � w
� � Y � H Y � � _ h (32)

In order to completely define the HLLC flux we still need to define the star statesY �
� and Y �

� , and

the wave speeds
� � ,

� � and
� �

. This can be done in various ways, but since there is no difference

with the HLLC scheme for non-moving meshes, we only state the final results. We will follow the

approach of Batten et al. (Ref. 3) which assumed that:

� � � (
E

�
� � (

E
�
� � (

E
� �

with (
E � � � � �

� � � E � � � , and (
E

� the normal velocity calculated from the HLL approximation. This

results in the following expression for
� �

:

� � � D �
(

E � � � � w
(

E � � w D �
(

E � � � � w
(

E � � H J � w J �D � � � � w
(

E � � w D � � � � w
(

E � � h
The star states are obtained using the Rankine-Hugoniot relations across the waves moving with

the velocities
� � and

� � :

Y �
� � � � w

(
E �

� � w � � Y � H T
� � w � �

ABB
C

`
� J �

w J � � �
� �

J �

� � w J �
(

E �

M NN
O � (33)

with an identical relation forY �
� , only with � replaced with� . The intermediate pressures are

equal to:

J �
� � D � � � � w

(
E � � � � � w

(
E � � H J � �

J �
� � D � � � � w

(
E � � � � � w

(
E � � H J � �

but the definition of
� �

ensures thatJ �
� � J �

� � J � , as is required for a contact discontinuity. The

wave speeds
� � and

� � are computed according to Davis (Ref. 14) as:

� � � � [ � �
(

E � w � � � (
E � w � � � � � � � � � � �

(
E � H � � � (

E � H � � � � (34)

with � � � u J � D the speed of sound. Batten et al. (Ref. 5) showed that it is better to use wave

velocities based on the Roe averaged velocities, but we did not notice any major difference with

the simpler waves velocities defined in (34) for the simulations discussed in this article.
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3.4.1 Evaluation of flux integrals

The flux integrals (23) and (24) are computed by transforming the integrals to the reference face
� w

T � T
� � and reference element(9

, respectively, after which the integrals are approximated with

product Gauss quadrature rules. For the element face flux integrals (23) a two-point product Gauss

quadrature rule is used for the integration in the local coordinate directions
+


 ,
+ 	 and

+
� , and a

three point Gauss quadrature rule for the integration in the local coordinate direction
+ � . The

volume flux integrals (24) are computed with a three-point product Gauss quadrature rule. In

Van der Ven and Van der Vegt (Ref. 34), Corollary 16, it is shown that these quadrature rules

are sufficiently accurate to ensure that the discontinuous Galerkin discretization discussed in this

article is second order accurate in a suitable Sobolev norm. The product Gauss quadrature rules

also evaluate the flux integrals sufficiently accurate to satisfy the Geometric Conservation Law

(GCL). The GCL, which is originally formulated by Thomas and Lombard (Ref. 28), requires that

a uniform flow field is not disturbed by the grid motion and is an essential condition in order to

obtain at least first order accuracy in time, as was proven by Guillard and Farhat (Ref. 17).

The product Gauss quadrature rules are easy to implement, but require 12 flux evaluations per

element face integral and 81 flux evaluations per volume integral. This number can be slightly

reduced using more sophisticated quadrature rules, as described by Stroud (Ref. 27), but the num-

ber of flux evaluations remains large. In Van der Ven and Van der Vegt (Ref. 34) we describe and

analyze a technique to reduce the number of flux evaluations in the flux integration to one, while

maintaining the same second order accuracy as obtained with the product Gauss quadrature rules.

The discussion of this technique is, however, beyond the scope of this article.

3.5 Stabilization operator

The discontinuous Galerkin finite element method without stabilization operator does not guar-

antee monotone solutions around discontinuities and sharp gradients. In these regions numerical

oscillations develop when polynomials of degree one or higher are used. For the Runge-Kutta dis-

continuous Galerkin method Cockburn, Hou and Shu (Ref. 10) derived a local projection or slope

limiter which guarantees monotone solutions for multi-dimensional scalar conservation laws. This

approach was a major breakthrough for the numerical solution hyperbolic partial differential equa-

tions because initially discontinuous Galerkin finite element discretizations experienced severe sta-

bility limitations. The use of a slope limiter in combination with a DG method results in a robust

numerical discretization and has become quite popular. We have used this technique to compute

complex three-dimensional (unsteady) flows for aerodynamical applications in combination with

local mesh refinement, Van der Vegt, Van der Ven and Boelens (Ref. 31, 32). Other applications of

DG methods with limiters, including higher order discretizations, can be found in Cockburn and
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Shu (Ref. 11), Cockburn, Karniadakis and Shu (Ref. 13), and Kershaw et al. (Ref. 20).

Despite its robustness the use of a slope limiter has serious disadvantages since it may result in

an unnecessary reduction in accuracy in smooth parts of the flow field and prevents convergence

to steady state. The accuracy problem has been an important motivation for Cockburn and Shu to

look at Total Variation Bounded (TVB) DG discretizations (Ref. 9), but these techniques are not

easy to apply in multiple dimensions and contain problem dependent constants which are difficult

to estimate. Recently, Burbeau, Sagaut and Bruneau (Ref. 7) proposed limiters for second and

higher order accurate DG methods without problem dependent constants which look promising

but still need further testing on real applications.

The problems with the convergence to steady state caused by the limiter are more severe and

originate from an inconsistency in the combination of a discontinuous Galerkin discretization

and a limiter. Since the limited solution does not satisfy the steady state discontinuous Galerkin

equations, it is not possible to reduce the residual to machine accuracy. Instead, the scheme tries

to converge to the unlimited solution, which suffers however from numerical oscillations, and the

limiter must remain active to prevent this. This is particularly annoying for industrial applications,

since it is unclear when to stop the calculations. Convergence to steady state is also important

for unsteady problems. In Section 4 we solve the non-linear equations for the DG expansions

coefficients (26) by introducing a pseudo-time and marching the solution to steady state in pseudo-

time with a FAS multigrid algorithm.

The problems in obtaining steady state solutions with a limited DG method are well known, but

have received little attention since most applications of DG methods have been to unsteady prob-

lems in combination with an explicit Runge-Kutta time integration method. After extensive testing

we came to the conclusion that a better alternative is provided by stabilizing the discontinuous

Galerkin method by adding artificial dissipation. This approach is also followed by Barth (Ref. 2),

Baumann (Ref. 4), Cockburn and Gremaud (Ref. 8), and Jaffre, Johnson and Szepessy (Ref. 19)

for the discontinuous Galerkin method and is standard in the Streamline Upwind Petrov Galerkin

(SUPG) and Galerkin least squares methods. In this section we will discuss new stabilization oper-

ators for the space-time discontinuous Galerkin method and in later sections we will demonstrate

that this technique provides excellent shock capturing and convergence to steady state in pseudo-

time. The stabilization operators use the jump in the polynomial representation at the element

faces in the discontinuous Galerkin discretization and the element residual. In this way optimal

use is made of the information contained in a DG discretization and we maintain the compact

stencil of the discontinuous Galerkin discretization.
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The effectiveness of the stabilization operator� defined in (25), strongly depends on the artifi-

cial viscosity matrix� � Y � $ � �s
� Y �� $ � �s

� � �
� ? �

. The definition of the artificial viscosity matrix

is more straightforward if the stabilization operator acts independently in all computational co-

ordinate directions. This is achieved by introducing the artificial viscosity matrix
�� � �

� ? �
in

computational space using the relation:

� � Y � $ � �s
� Y �� $ � �s

� � � 	 �� � Y � $ � �s
� Y �� $ � �s

� � � (35)

where the matrix� � �
� ? �

is defined as:

� � V � 	


 � � � Z : * h (36)

The matrix� � �
� ? �

is introduced to ensure that both� and
�� have the same mesh dependence

as a function of
� P , and is defined as:

� � Z [ � � � � 
 � � 	 � � � � � � � �

with
� P � �

�
the leading terms of the expansion of the mapping

: * (3) in the computational

coordinates
+ P , � T ! R ! �

�
. The multiplication with the factor two in (36) ensures that for

orthogonal cells the matrix� is the rotation matrix from the computational space to the physical

space. The integrals in the stabilization operator�
�

� given by (25) can now be further evaluated,

resulting in:

�
�

�
� Y � $ � �s

� Y �� $ � �s
� �

&
� �s

- % �
- � �

� � �
�� � �

� Y � $ � �s
� Y �� $ � �s

� � � �
- % �

- � �

- 9

� �

&
�� �

� 	

 �

�
� �� � �

� Y � $ � �s
� Y �� $ � �s

� �
� 	


 �
� �

$ � �
�

$ - (9 �

�
�

$ 9 �
� $

� 	� �
�

�
�� � � � Y � $ � �s

� Y �� $ � �s
�

(no summation on� ), where we used the relations:
� � � � Z : * � P � � - � � � - + P and - % �

� - +
� � �

�
�

and made the assumption that
�� is constant in each element.

The stabilization operator should act only in areas with discontinuities or when the mesh resolu-

tion is insufficient. This requirement can be directly coupled to the jump in the solution across

element faces and the element residual, respectively, both of which are readily available in the

discontinuous Galerkin discretization. In regions with smooth solutions these contributions are of

the order of the truncation error and will therefore not reduce the accuracy in these regions. We

have tested two models for the artificial coefficients:
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Model I. In the artificial viscosity model I only the jump in the pressure across the element faces

influences the stabilization matrix. This technique works very well in subsonic and transonic

flows with weak shocks. The artificial viscosity matrix is defined as:

�� � �

� Y � $ � �s � Y �
� $ � �s

� � � � � �
�$ 8

�� $
�-

� � 

$ J

� � � ' � +
� w J 	

� � ' � +
� $ $ � � $

J
� � � ' � +

� H J 	
� � ' � +

� � � � T � V � X �

� ` � otherwise�

with J � � � ' � +
� � u � � J � � ' � +

� �
the pressure at the centers of the faces� � � 8

�� , and
u

the

trace operator. The scaling factor
�

is defined as:
� � $ �� � � � E w � � $ H � , and is the maximum

of the eigenvalues of the flux Jacobians-
�

= � - Y at the midpoints� ' � + of the faces� � , with�� � the space normal at8
�� , E and

�

the fluid and grid velocity, and� � � u J � D the speed

of sound. The constant� � is of order one. Other discontinuity sensors, based for instance

on the density, have also been tested, but the difference with the pressure sensor generally

was very small.

Model II. For problems with stronger discontinuities the artificial viscosity model proposed and ana-

lyzed by Jaffre, Johnson and Szepessy (Ref. 19) is used. In this model both the jumps at the

element faces and the element residual are used to define the artificial viscosity:

�� � �

� Y � $ � �s � Y �
� $ � �s

� � � � � ^ � 	 � 	
	

�� � �

� Y � $ � �s � Y �
� $ � �s

� � � 
 �
�

�� _ � � � T � V � X �

� ` � otherwise�

with

� � Y � $ � �s � Y �
� $ � �s

� � �
�
�

�-
� � *

- = � Y � �

- Y � � P
- Y � � P � : * � ` � �

- � �

�
�
�

H � * �
� Y

�� � � ' � +
� w Y 	� � � ' � +

�
�
� �

� � H
�-

� � 

T

� � �
�

�� 	 � �= � Y
�� � � ' � +

� � w �� 	 � �= � Y 	� � � ' � +
� �

�
� � (37)

with
� � � � � 	 
 H � 	

	 H � 	� H � 	� and Y � � P the components ofY � . The coefficients� , � * ,

� 
 and � 	 are positive constants and set equal to� * � T h V , � 
 � ` h T , � 	 � T h ` and

� � ` h T . For stronger shocks the addition of the quasi-linear form of the conservation law

in (37), which is the first contribution on the righthand side of (37), significantly improves

the robustness of the numerical scheme, since this contribution detects discontinuities very

well. Numerical tests showed that the contributions of the element residual of the quasi-

linear equations and the contributions in the jump of the flux at the element faces are equally

important.
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4 Solution of the non-linear DG coefficient equations

4.1 Multigrid algorithm for pseudo-time integration

The space-time discontinuous Galerkin discretization results in each element in a system of cou-

pled non-linear equations for the expansion coefficients(Y
�
. In this section we will describe an

efficient multigrid technique to solve these non-linear equations. The use of a multigrid scheme

is motivated by the fact that it maintains the local, element based structure of the discontinuous

Galerkin discretization when a proper relaxation scheme is chosen. This greatly facilitates the use

of a domain decomposition technique on parallel computers, which are our main target platforms.

The multigrid technique has only been discussed for the linear advection-diffusion equation by

Gopalakrishnan and Kanschat (Ref. 16), which theoretically analyzed its performance. Until now

multigrid techniques have not been used for DG discretizations of the Euler equations and on

locally refined meshes. The development of an efficient technique has turned out to be non-trivial.

The non-linear equations of the space-time discontinuous Galerkin discretization (26) are solved

by augmenting them with a pseudo-time derivative:

$ 
 � � � 	

� � 
 � $ - (Y � 9 �
� �

- �
� w T

� �
	 � (Y

�
� (Y

�
	


 � � (38)

where the righthand side of (38) is divided by� � to make it possible to obtain also steady state

solutions as� � > �
, because 


� � 	
is independent of� � . The system (38) is integrated in

pseudo-time using an optimized Runge-Kutta scheme in combination with a FAS multigrid algo-

rithm to accelerate the convergence to steady state. On the coarse meshes only the equations for

element mean are used. Depending on the type of artificial dissipation we must, however, modify

the Runge-Kutta scheme.

We define the following five stage semi-implicit Runge-Kutta scheme as relaxation operator for

the multigrid procedure:

Procedure
� �� �

� � 	 � � = �� � (�
� �

:

1. Initialize the first Runge-Kutta stage: (� ' * + � (�
� .

2. Do for all stages � � T to 5:

� � H � �
��

$ 

� $ ^ $ 


� $ � H
�

� � � (� ' �
	


 + � _ 
 (� ' � + �

(� ' * + H � �
��

$ 

� $ � � $ 


� $ � H
�

� � � (� ' �
	


 + � � (� ' �
	


 + w 	 � � (� ' �
	


 + � (Y � � 9 �
	


 � � H = �� 
 (39)

3. End do
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4. Update solution: (�
� � (� ' � + .

End Procedure
� �� ,

with 

�

� 
 � � � 	

� � 

�
. In this procedure (�

� are approximations to the expansion coefficients

(Y � 9 � �
at the different grid levels� , (Y � � 9 �

	


 �
are the expansion coefficients of the restriction

of Y � � 9 �
	


 �
to the grid level � , and = �� represents the forcing function, which is defined in

Procedure FAS. At the fine grid level� � �
, the non-linear operator

	 � � � � ? � k � � ? � >

� � ? �
satisfies:

	 �

� 	
, with

	
defined in (27)-(28), and we have(Y

�

, (� �

, (�

�

, (=
�

� � � � ? �
.

At the coarse grid levelsT ! � ; �
the components of the operators

	 � � � � k � � > � �
are

equal to:
	 �P � 	 P * , and we have(� � , (�

� , (= �� � � �
. The coefficients (Y � � � �

only consist

of the coefficients of the mean flow field(Y * P and the coefficient
��

is defined as:
�� �

� �� � , with

� � the time step in the pseudo-time integration. The Runge-Kutta coefficients� � are defined as:

� 
 � ` h ` � � T � � T , � 	 � ` h T 
 X � � T , � � � ` h V 2 X 
 
 X , � � � ` h � , and � � � T h ` , and optimized with a

searching technique to improve the stability and smoothing properties of the Runge-Kutta scheme.

The matrix
�

�
�

� � � ? �
is defined as:

�
�

�

�
�

` `
` � 	 �

at the fine grid level, with the dissipation matrix� � �
� ? �

given by (25), and
�

� � is zero at the

coarse grid levels. Note, the dissipation operators discussed in Section 3.5 both result in a diagonal

matrix, hence the implicit treatment of this contribution is straightforward. The matrix
� � � � ? �

represents the identity matrix.

The Runge-Kutta scheme (39) is obtained from a second order accurate five-stage Runge-Kutta

method:

(� ' � + � (� ' * + w � �
��

$ 

� $

	 � � (� ' �
	


 + � (Y � � 9 �
	


 � � � for � � T � � � � � � � (40)

by treating (�
in

	 � � (� � (Y � � 9 �
	


 � �
semi-implicitly. This is accomplished by approximating

� �
 H�

� � (�
as:

� $ 

� $ �

H
�

� � (� ' � + H
� �

 w $ 

� $ � � (� ' �

	

 + . Here

�
 is the coefficient matrix multiplying

(�
in (27) and (28). The contribution� �

�� � $ 

� $ �

H
�

� � (� ' �
	


 + �
$ 


� $ then is added and subtracted

to the righthand side of (40) to restore the operator
	 � . This makes it possible to have a residual

	 � � (Y
�

� (Y
�

	

 � � ` when the solution converges to a steady state, which facilitates the definition

of the multigrid algorithm.

The semi-implicit Runge-Kutta scheme is necessary because the pseudo-time integration would

otherwise become unstable for values of
��

of the order of one. The use of a semi-implicit Runge-
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Kutta scheme was proposed by Melson, Sanetrik and Atkins (Ref. 24) for time-accurate calcula-

tions with multigrid acceleration using a Jameson type finite volume discretization of the com-

pressible Navier-Stokes equations. In Section 4.2 we analyze this procedure and show that for

small values of
��

it also greatly enhances the stability of the pseudo-time integration method for

the space-time discontinuous Galerkin discretization.

The multigrid procedure also requires the definition of the coarse grid meshes and the restriction

and prolongation operator. The unadapted mesh is generated such that it has a sufficient number of

coarse grid levels. For most calculations at least three levels are used. In general the mesh is also

locally refined, and starting at the leaves of the refinement tree, we traverse the tree backwards

untill a sufficiently large number of cells is merged into coarse grid cells. The ratio of the number

of cells between two grid levels is approximately eight in three dimensions. In Figure 3 an example

of this process is given. This process results in a number of tessellations
� �

� � � , T ! � ! �
, for

each grid level, which are defined as:

� �
� � �

� �  9 �
� � �

$ 9 �
� � � � � � � � �

s �
� 9 �

� � � 9 �
� � � � �

� ( �

with
� � � � the indices of the elements

9 �
� � which agglomerate into the coarse grid element

9 �
� � � .

Note, at the fine grid level� � �
we have

� �
� � � � � �

� . An example of tree multigrid levels in a

locally refined mesh is given in Figure 4.

We also have to correct for the fact that the agglomerated coarse grid cells are not necessarily hex-

ahedronal elements. This does not give serious problems since at the coarse grid levels we only

use equations for the element mean. These equations are identical to a first order accurate finite

volume discretization for which it is straightforward to obtain a discretization on agglomerated

elements. This is considerably more complicated for a second or higher order accurate discon-

tinuous Galerkin discretization, which also uses the equations for the flow field fluctuations, and

is one of the main reasons for only using the equations for the element mean on the coarse grid

levels.

For the discretization at the coarse grid levels we introduce the approximation spaces
� � � � , which

are defined as:

� � � �
� � �

� � �
� � �

�� � � Y � �
� Y � $ � �

�
Y � 
 � � 	

� � 

� � � � 9 � � �

� � � � if T ! � ; � �
� 
 � � �

� �
if � � � h

The restriction operator
� �

	



�

� � � � �
� � �

� � �
� > � � � �

	


 � � �
� � �

	



�

is a volume weighted average and is
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defined as:

� �
	



� Y � $ � �s �

� � � � �

s �
� (Y * P � 9 �

� � � $ 9 �
� � $

� � � � �

s �
� $ 9 �

� � $ � (41)

with
9 �

� � � �
� � � . The prolongation operator

� �
�

	


 � � � � �
	


 � � �
� � �

	


 � > � � � �
� � �

� � �
�

is a pure injec-

tion and defined as:

� �
�

	


 Y � $ � �s �
� �

�
Y � 
 � � �

� � 	

� � 
 � � � (42)

for all fine grid elements
9 � � � �

� � � which agglomerate into the coarse grid element
9 �

� � � . We can

now define a FAS multigrid algorithm for the space-time discontinuous Galerkin discretization on

locally refined meshes:

Procedure FAS( � � 	 � � = �
� � (�

� ):

1. Do � 
 Runge-Kutta steps
� � � � � 	 � � = �

� � (�
� �

at grid level � .

2. Compute forcing function:

) �
	



� � 	 �

	

 ^ � �

	



� (�
� � � �

	



� (Y � � 9 �
	


 � _ H � �
	



� ^ = �

�
w 	 � � (�

� � (Y � � 9 �
	


 � � _ �
with =

�
� � ` .

3. If � � ` Do Procedure FAS( � w T ,
	 �

	

 � = �

	



� � (�
�

	

 )

4. Update element mean solution at grid level � : (�
�P * � (�

�P * H � �
�

	

 � (�

�
	


P * w � �
	



� (�

�P * �
.

5. Do � 	 Runge-Kutta steps
� � � � � 	 � � = �

� � (�
� �

at level � .

End Procedure FAS.

In the definition of theProcedure FAS we used (17)-(18), which allow us to apply the restriction

and prolongation operator directly to the coefficients(Y without first projectingY � to the basis

functions % � . TheProcedure FAS uses a V-cycle multigrid strategy. Other cycling strategies,

such as the W-cycle can be obtained with minor changes to theProcedure FAS. The present

multigrid algorithm makes rather crude assumptions at the coarse grid levels, but has a good per-

formance in practice. An example is given in Figure 5 for calculations of the transonic flow about

a NACA 0012 airfoil on a locally refined mesh. This figure shows that after each adaptation step,

which result in the peaks in the residual, the residual is efficiently reduced by the multigrid pro-

cedure, both for the equations of the element mean and the fluctuations. We have extensively

tested several other multigrid strategies, including solving the equations for the flow field fluctu-

ations (Y �
P , �

� T also on the coarse meshes and more elaborate restriction and prolongation

operators. Although some of these methods were promising in a two-level smoothing analysis,

and their theoretical performance was verified in calculations on simple model problems, none of

these techniques came close to the performance of the multigrid algorithm for the solution of the

Euler equations discussed in this section.
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4.2 Stability analysis of pseudo-time integration

In this section we investigate the stability of the pseudo-time integration method discussed in Sec-

tion 4.1. As a model problem we use the linear advection equationE � H � E t � ` , with � a positive

constant. For this equation a relatively simple discretization is obtained, which is summarized in

the Appendix. The Runge-Kutta scheme (39) is used for the pseudo-time integration.

If we assume that the time step, element size, and velocity remain constant, i.e.� � � � � �
,

	 � � � � � � 
� � � � �
� , and � � �

�
�

	

6� � �

�
� � 6� for all � and � , and set the artificial viscosity

coefficients equal to zero, then the operator
	

for the linear advection equation defined in the

Appendix can be expressed as:

	 � (Y � � (Y �
	


 � �  (Y � 9 �
� � w e (Y � 9 �

�
	


 � w � (Y � 9 �
	


� � � (43)

with the matrices � e � � � � � ? � defined as:

 �
ABBB
C

T H � �
w

�w
�


� H � �w V w
�

w
� V H � � �

M NNN
O � e �

ABBB
C

� �
w

�w
�

w
� �w

�
w

�

� � �

M NNN
O � � �

ABBB
C

T ` `
` 
� `w V ` `

M NNN
O �

with � � � � �
�

w
�

�
� � � and � ! � . Consider now the spatial Fourier mode:

(Y � 9 �
� � � � �

� � (Y � �
with � � � ` � V � �

and 
 � �
w T . Since the stability of the pseudo-time integration is determined by

the transients we only consider the homogeneous part of the equation for the Fourier coefficient

(Y �
:

- (Y �

-
�

� w T
	 � � � � � (Y � � (44)

with � � � � �  w �
	 �

� e . The matrix � � � � ? � is non-singular and we can write� as: � �
� � �

	


 , with
�

the matrix of right eigenvectors and
�

the diagonal matrix with the eigenvalues
�

�
� � �

,
�

� � ` � T � V �
of � � � �

. Introducing a new vector(� � � �
	


 (Y �
then (44) becomes a

system of uncoupled ordinary differential equations:

- (� �

�-
�

� w �
�

� � �

� � (� �

� � for � � ` � T � V h
This system of ordinary differential equations is solved with the semi-implicit Runge-Kutta scheme

(39), which has an amplification factor
: � 
 �

, with

 � � . The pseudo-time integration method
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is stable if the amplification factor
:

satisfies the condition$ : � 

�

� � � � $ ! T , for � � ` � T � V ;

� � � ` � V � �
with



�

� � �
defined as



�

� � � � w � �

� � � �
� � �

. The stability is analyzed for different

values of the physical and pseudo-time step� ) � -numbers (defined as� ) � � � � �
� � � � � and

� ) � � � � � � � � � � , respectively), and the ratio� � � . In Figure 6 contour values of the stability

domain $ : � 
 � $ ! T for the 5-stage semi-implicit Runge-Kutta scheme (39) with optimized coeffi-

cients are shown for the physical CFL numbers� ) � � � � T and 100, respectively. Also shown are

the locus of the eigenvalues



�
� � �

, � � � ` � V � �
, which must be inside the stability region to ensure

the stability of the pseudo-time integration. For� ) � � � � T the Runge-Kutta scheme is stable

for � ) � � � ! 
 h X and for � ) � � � � T ` ` the pseudo-time step CFL number must be less than

� ) � � � ! V h � , which is unchanged for larger values of� ) � � � . The large stability domain and

excellent smoothing properties of the semi-implicit Runge-Kutta method for small values of the

physical time step CFL number is important for time-accurate simulations. In Figure 7 the effect

of the semi-implicit treatment of(�
in (39) is shown for� ) � � � � T . For small physical time step

CFL numbers the stabilizing effect of this technique is very large and the pseudo-time step CFL

number must be reduced to 1.8 to ensure stability when the semi-implicit technique is not used.

For physical CFL numbers larger than 100 the effect of the semi-implicit Runge-Kutta scheme is,

however, negligible. The effect of using optimized coefficients in the Runge-Kutta scheme (39)

is also large, as can be seen in Figure 7 where the stability contours for the semi-implicit Runge-

Kutta scheme with coefficients� � � 
� � 

� � � , � 


	 � T for the stages� � T � � � � � � are shown. This are

the coefficients for the Jameson Runge-Kutta scheme, which is a popular Runge-Kutta method in

computational fluid dynamics and also frequently used as a smoother in multigrid algorithms. For

this Runge-Kutta scheme the pseudo-time CFL number must be reduced to� ) � � � ! V h 2 , when

the physical CFL number is equal to� ) � � � � T . When the physical CFL number is equal to

� ) � � � � T ` ` then the pseudo-time CFL number must be reduced to� ) � � � ! T h T 2 for the

Jameson Runge-Kutta scheme. The effect of grid velocity is stabilizing if the grid velocity is in

the rangè ! � ! � . This is a direct consequence of the relation� � � ) � � � � T w
� � �

�
. When

the grid velocity is in this range then it reduces the effective physical time step CFL number and

since the pseudo-time integration has a larger stability domain for smaller values of� ) � � � this

improves stability.
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5 Mesh adaptation

In order to improve the accuracy of the discontinuous Galerkin discretization the computational

mesh is adapted to provide more resolution in important flow structures. The mesh adaptation pro-

cedure is based on anisotropic refinement and coarsening of the mesh by subdividing and merging

elements, independently in each of the local coordinate directions
+ P , � T ! R ! �

�
, of the reference

element. The data structures and searching techniques for local mesh refinement and coarsening,

which are suitable for the space-time discontinuous Galerkin finite element discretization, are es-

sentially the same as discussed in Van der Vegt and Van der Ven (Ref. 31). The mesh adaptation

is controlled with a sensor function which is based on the following quantities:
� shock sensor, which measures differences in flow quantities and total pressure loss across

cell faces;
� vorticity sensor, which measures the vorticity within an element;
� grid sensor, which either measures the anisotropy of the mesh or the mesh width of a cell.

We do not control the adaptation procedure using a-posteriori error estimates, since this technique

presently is not sufficiently well developed for the Euler equations. After the mesh adaptation the

coupling coefficients (22), which link the old and new space-time slabs, have to be computed in

order to preserve time accuracy. In the next two sections we will discuss the evaluation of this

contribution for element refinement and coarsening.

5.1 Space-time slab coupling for element refinement

Given a refinement between two space-time slabs, where an element is divided in half in one of

the computational coordinate directions, let
9 �

	

� be an element in the space-time slab

� �
	


� , and9 �� � ,
9 �� 6 two space-time elements in

� �� such that:

�� � �

�
 � � � 	
� � �

�
 � �
� �

�� � � �
 � 6 � �
�� �

. The

solution Y � � �� � � 	
� �

in element
9 �

	

� is approximated as:

Y � � � � �� � � 	
� � �

�-
� � *

(Y �
� 9 �

	

� � % � � � � �� � � 	

� � �

where the element index� is added toY � and the basis functions% � to indicate to which element

they belong. The space-time slab coupling coefficients (22) for the elements
9 �� � , � � ` or 1, can

now be evaluated as:

� �
� Y

�� $ *
s

� ' � 5� + � �
&

*
s

� ' � 5� + Y � � � � �� � � 	
� � % � � � � � �� � �

�� � - 


�
�-

� � *
(Y �

� 9 �
	


� �
&

*
s

� ' � 5� + % � � � � �� � � 	
� � % � � � � � �� � �

�� � - 
 � � � ` � � � � � � h (45)
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The summation over the DG expansion coefficients is from zero to three, since% � � � � �� � �
	

� � � ` (cf.

(5)). The evaluation of the integrals on the right hand side of (45) requires an explicit expression

for % � � � � �� � � 	
� �

in the element
 � � . Since the basis functions% � are defined in the reference

element (9
using the basis functions(% � , we must link % � � � � �� � � 	

� �
to its representation in the

reference element. Introduce the mappings�
�P , with T ! R ! X , and � � ` or 1, which are defined

as:

�
�P � (9 > (9 � � +

� �>
�� � 


	
+

�
w 


	 H � if R � �

+
� if R �� � �

with:

(9 � � � w T � T � k h h h k � w T H � � � � k h h h k � w T � T � h

R -th entry

Here the subscriptR denotes the coordinate direction in which the element is refined. Note that: *
s

� and
: *

s # �
�P are identical isoparametric mappings of

9 � � . We can use this property to

relate the basis function in the element
9 � to the basis functions in its children

9 � � and
9 � 6 . The

basis functions% � � � , restricted to
 � � and 
 � 6 in (45), transform to:

% � � � � (% � #
:

	

*

s
� (% � # �

�P #
:

	

*

s
� �

� 
	 % � � � � w 
	 H � if R � �

% � � � � if R �� � �
(46)

and we can use (46) to define the basis functions% � � � in the elements
 � � . If we introduce (46)

into (45) and transform back to the reference element(
 then we obtain simple expressions for the

element integrals which can be evaluated with a product Gauss quadrature rule with three points

in each coordinate direction.

5.2 Space-time slab coupling for element coarsening

Given a de-refinement between two space-time slabs, let
9 �

	

� � and

9 �
	


� 6 be two elements in

the space-time slab
� �

	

� , and

9 �
� � � �

� , the space-time element such that:

�

� � �
�


 � � �
�� � �
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�
 � �
� �

	

� � � �
 � 6 � �
	

� �
. The integral for the coupling coefficients (22) then can be evaluated as:

� �

� Y
�� $ * ' � 5� + � �

&
*

s
� ' � )� + Y � � � �

� �� � � 	

� � % � � � � �� � �
�� � - 
 H

&
*

s 6 ' � )� + Y � � � 6 � �� � �
	

� � % � � � � �� � �
�� � - 


�
�-

� � *
� (Y �

� 9 �
	


� �

�
&

*
s

� ' � )� + % � � � � �� � � 	
� � % � � � � �� � �

�� � - 
 H

(Y �
� 9 �

	

� 6

�
&

*
s 6 ' � )� + % � � � � �� � � 	

� � % � � � � �� � �
�� � - 
 
 � (47)

with % � � � restricted to
9 � � and

9 � 6 given by (46). After transformation to the reference element it

is straightforward to calculate the integrals in (47) with a product Gauss quadrature rule with three

points in each coordinate direction.
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6 Discussion and Results

The space-time discontinuous Galerkin finite element method has been tested on a number of

problems with increasing complexity. In this section we discuss results of simulations aimed at

verifying and validating the algorithm. In Van der Ven and Van der Vegt (Ref. 34) we present

three-dimensional simulations, including a deforming wing, which demonstrate the applicability

of the space-time DG method to unsteady aerodynamics.

6.1 Sod’s shock tube problem

Sod’s problem is one of the classical shock tube problems, see Toro (Ref. 30). Its solution con-

sists of a left moving rarefaction wave and a right moving contact discontinuity and shock. Two

simulations have been performed, one with and one without mesh adaptation. Both simulations

start on a uniform mesh with 100 cells in space. The time step is chosen such that the physical

CFL number� ) � � � is less than or equal to 0.9. For the simulation with mesh adaptation, in the

first time step two refinements have been carried out, resulting in 21 extra cells. The minimum

mesh width is now one quarter of the mesh width of the original mesh. The mesh adaptation on

the initial solution is crucial because the error generated in the first time step cannot be recovered

with adaptation during the simulation and a result similar to the uniform mesh solution would be

obtained. In the subsequent time steps as many cells were added as removed, so the total number

of cells remained constant in time. The maximum number of refinement levels has been restricted

to one, which implies that no new cells with mesh widths less than half the mesh width of the orig-

inal mesh are created. The adapted space-time mesh is shown in Figure 8. The space-time mesh

clearly shows the structure of the solution and the adaptation based on coarsening and refinement

of elements follows the discontinuities without smearing. The flow solutions on the uniform and

adapted mesh at� � ` h V � X T are shown in Figure 9. Clearly, the solution on the adapted mesh

compares better with the exact solution. The flow solutions for Sod’s problem have been obtained

with dissipation model II, which results in nearly monotone solutions around the discontinuities.

For all other subsonic and transonic problems the simpler dissipation model I is sufficient.

6.2 Accuracy study of the discontinuous Galerkin discretization

The local element-wise discretization obtained with discontinuous Galerkin methods combines

well with local mesh refinement and the discretization does not strongly depend on the mesh

smoothness. It must, however, be verified if the DG method maintains its accuracy on non-smooth

meshes resulting from
�
-refinement. In order to verify this an accuracy study has been conducted

using different meshes and comparing the numerical solution with the exact solution. For this

purpose the subsonic two-dimensional flow through a channel with a�
[ � � bump is simulated on a
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sequence of meshes with 800, 3200, and 12800 elements. The coarsest mesh is shown in Figure 10.

At the inflow boundary total pressure, total temperature, and the velocity direction (normal to the

inflow plane) are prescribed. At the outflow boundary the freestream pressure is prescribed. Since

the entropyJ � D � should be conserved in subsonic isentropic flow, the�
	
-norm of the difference

between the computed entropy and the freestream value is taken as a measure for the discretization

error. In Figure 11 the�
	
-norm of the error is plotted for uniformly refined meshes. The�

	
-

error is proportional with
� � � 	

, which is better than the theoretical results presented by Cockburn

(Ref. 12) for the linear advection equation. This can be attributed to the fact that we use the data

in the element center at� 	

� �


 , which can be shown with a simple wave analysis for the linear

advection equation to be
� � � �

more accurate than the data at the element faces.

Table 1 Number of mesh points in uniformly and adaptively refined meshes

coarse grid medium grid fine grid

original 800 3200 12800

one adaptation 1120 4480 17920

two adaptations 1568 6272 25088

Each of the three meshes is also locally refined in two steps in order to test the accuracy of the

method on non-smooth meshes with hanging nodes. At each adaptation step, the mesh size is

increased with 40%. Since the mesh adaptation parameters are the same for all three grids, the

fine to coarse meshes have the following property: for an arbitrary region of the mesh the average

mesh width is halved with respect to the average mesh width in the next coarser mesh for the same

region. Hence the series is suited for a grid convergence study to obtain the discretization error

of the DG scheme on hanging nodes. A survey of the number of mesh points is given in Table 1.

In the adaptation the correct geometry of the bump is preserved. A view of the one time adapted

mesh, which initially has 800 mesh points, is shown in Figure 10. The�
	
-norm of the error on

the adapted meshes is shown in Figure 11, which clearly demonstrates that the�
	
-error on locally

refined meshes in the discontinous Galerkin discretization has the same mesh dependence
� � � 	

as

on the uniformly refined meshes, despite the fact that the adapted mesh contains hanging nodes

and is non-smooth.

6.3 Oscillating NACA 0012 airfoil in transonic flow

The performance of the space-time discretization and mesh adaptation algorithm on unsteady tran-

sonic flows has been investigated with the simulation of the flow field about an oscillating NACA

0012 airfoil. The freestream Mach number is 0.8, the pitching angle ranges between
w

` h � and � h �

degrees and the oscillation period is, � V ` (normalized with� � � � , where� is the chord length
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and � � is the freestream speed of sound), which results in a circular frequency� � � � T ` . The

flow field is computed both on a fine mesh with 32,768 elements and an adapted mesh, which has

approximately 9,400 elements during the simulation. During each time step the coarse mesh is

adapted, with first coarsening followed by refinement. Both simulations used a time step of 1.0

for the interval � X h ` � T X h `
�

of a period, and a time step of 0.5 in the remaining part of the period.

The smaller time steps during this part of the oscillation period are necessary since the shock at

the lower side of the airfoil has a greater velocity than the shock at the upper side. If the shock

moves through several cells during a time step this will result in numerical oscillations, since no

artificial dissipation or limiting is applied in the time direction. In Figure 12 the hysteresis curves

of the lift and drag force coefficients� � and � � are shown. The results on the fine and adapted

mesh are nearly identical, where the difference in the lift coefficient can be attributed to the im-

proved accuracy in the shock due to the mesh adaptation. This can be inferred from the pressure

coefficients� � at the wing shown in Figures 13 to 15, where the pressure coefficient is defined

as � � �
�

J
w

J �
�

�



	 D � 	
� , with J � and

�
� the freestream pressure and velocity, respectively.

The pressure coefficients for the fine and adapted mesh are nearly identical, except in the shock,

where the adapted mesh captures the discontinuity better. The physical interpretation of the flow

phenomena shown in Figure 15 at time� � � V h � which appear at the lower side of the airfoil when

the shock dissappears, is not clear. However, both the adapted mesh and fine mesh flow results

predict the same phenomena.

The Figures 13 to 15 also show that the mesh adaptation does not negatively influence the time

accuracy and is very efficient in capturing the flow discontinuities, also for the weak shock at the

lower side of the wing which periodically disappears.
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7 Concluding Remarks

In this article we have presented a new space-time discontinuous Galerkin finite element method

for the time-accurate solution of inviscid compressible flows on dynamic, hexahedron type meshes.

The accuracy is improved using local mesh refinement and we have presented an efficient pseudo-

time integration technique with multigrid convergence acceleration to solve the non-linear equa-

tions for the expansion coefficients in the DG discretization. The space-time DG method has been

demonstrated to combine well with local mesh refinement in various simulations and maintains

accuracy on non-smooth meshes. This makes the space-time DG method an interesting technique

for complex aerodynamic and aeroelastic problems. In a separate article, Van der Ven and Van der

Vegt (Ref. 34), we will address the issue of improving the computational efficiency of the space-

time discontinuous Galerkin discretization and demonstrate the capability of the DG method for

three-dimensional unsteady flows.
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Appendices

A Discontinuous Galerkin discretization for linear advection equation

In this Appendix we summarize the space-time discontinuous Galerkin finite element discretiza-

tion for the linear advection equation:

- E
- � H �

- E
- � � ` �

with � � ` . This results in a relatively simple linear system, which is useful for analyzing the

properties of the numerical discretization. See for instance Section 4.2. The space-time discon-

tinuous Galerkin discretization for the linear advection equation using a mesh with grid velocities
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� ! � , � � T � � � � & , with & the number of mesh points, can be represented in matrix form as:
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, respectively. The terms
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determined by the artificial dissipation operator.
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Fig. 1 Illustration of the geometry of two-dimensional space-time elements in both computational

and physical space. Notations in the text.
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Fig. 2 Wave pattern used in the definition of the HLLC flux function for an element face moving

with velocity
�

. Here
� � and

� � are the fastest left and right moving signal velocities. The

solution in the star region Y � is divided by a wave with velocity
� �

.
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Fig. 3 Coarsening based on refinement tree. The numbers at the nodes of the tree refer to the

number of leaves in the subtree. The dashed lines show where the tree is pruned. The

fine grid cells and the resulting coarse grid cells are shown to the right.
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Fig. 4 Multigrid levels in an adapted mesh about the NACA 0012 airfoil.
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Fig. 5 Convergence rate comparison of the residual for the element mean and fluctuating DG

coefficient equations using single and multigrid computations (dark lines) on a twice

adapted mesh of a NACA 0012 airfoil.
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coefficients. � ) � � � � T h ` , � ) � � � � 
 h ` (top), � ) � � � � T ` ` h ` , � ) � � � � V h V
(bottom), no grid velocity.
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Fig. 7 Locus of the eigenvalues
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and the stability domain of the explicit 5-stage Runge-Kutta method (40) with optimized

coefficients (top) and the five stage semi-implicit Jameson Runge-Kutta scheme (bottom).

� ) � � � � T h ` . � ) � � � � 
 h ` , no grid velocity.
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Fig. 8 Space-time mesh for the adaptive solution of Sod’s shock tube problem.
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Fig. 10 Original and one time adapted mesh for converging-diverging channel.
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Fig. 12 Lift and drag coefficient on oscillating NACA 0012 airfoil (
�

�

� ` h 2 , �
� � � T ` ).
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Fig. 13 Adapted mesh around oscillating NACA 0012 airfoil, contours of density, and pressure

coefficient � � on the airfoil surface for � � ` h � � (pitching downward) and � �
w

` h � �

(
�

� � ` h 2 , � � � � T ` ).
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Fig. 14 Adapted mesh around oscillating NACA 0012 airfoil, contours of density, and pressure

coefficient � � on the airfoil surface for � � ` h V X � (pitching upward) and � � V h ` �

(pitching upward) (
�

�

� ` h 2 , �
� � � T ` ).
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Fig. 15 Adapted mesh around oscillating NACA0012 airfoil, contours of density, and pressure

coefficient � � on the airfoil surface for � � X h � � � (pitching upward) and � � � h ` �

(pitching downward) (
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