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Abstract: The current model includes only the main and tail rotor mod-
ules, this to allow for an incremental model validation! procedure. We
present hereunder some candidate model extensions that could potentially
be added in the future, to increase the model representativity and valid-
ity. These additions exclude aeroelasticity aspects, but include issues on
the fuselage, tail, further comments on the tail rotor, ground effects, engine
control and transmission, fuel slosh, and atmospheric disturbances.

1 Model extensions

1.1 Fuselage

The following two paragraphs are derived from [54].

!The final step of any model development is model validation, through wind tunnel
measurements and/or flight tests. It is indeed well known that about 80% of fidelity
can be achieved with a physical model, the remaining 20% requires artificial tuning and
corrections applied to the physical parameters of the model [55, 54]. But, due to time and
space constraints, further aspects relative to model validation such as time- and frequency-
domain system identification techniques will not be covered in this paper
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The flow around the fuselage is characterized by strong nonlinearities and
distorted by the influence of the main rotor wake [54]. Hence the associ-
ated forces and moments due to the surface pressures and skin friction are
therefore complex functions of flight speed and direction [54]. Further it is
important to note that in general the fuselage moments are destabilizing,
stemming from the large planform and side area ahead of the vehicle CG.

For low speed sideways flight, the important fuselage characteristics are the
sideforce, vertical drag, and yawing moment. While in forward flight, the
three most important fuselage characteristics include drag, and pitching and
yawing moments variations with incidence and sideslip [54]. The fuselage
rolling moment is usually small, except for configurations with deep hulls
where the fuselage aerodynamic center may be significantly below the vehi-
cle CG [54].

For a simple analytical model see [34], for an alternative formulation in-
cluding also pitch and yaw moments see [56]. Often only steady airloads
effects on the fuselage are considered. It is however important to know, as
mentioned in [54], that important unsteady separation effects also exist, but
are rather complex to model.

An expression for rotor downwash over the fuselage, for typical single rotor
helicopters, was provided in [75] as a polynomial in wake skew angle. The
polynomial coefficients were empirically fit to data presented in [45], but in
the case of our UAV, these would potentially need to be readjusted through
flight tests.

For fuselage drag calculations, it is estimated that the fuselage may account
for up to 50% of the total helicopter drag [24]. Vertical drag penalty in hover
and corresponding drag coefficient may be derived from available lookup
tables, or for instance from a chart in [62]. Additionally the presence of
the fuselage just under the main rotor acts as a so-called pseudo-ground
effect, resulting in some thrust recovery. This latter effect may be obtained
from a chart in [62]. In forward flight, for parasite drag calculations, and
the associated form factor and skin friction coefficients may be derived from
[72, 62].

1.2 Tail
The following is mainly derived from [54].
The horizontal tail (called also horizontal fin) and vertical tail (called also

vertical fin) form together the tail of a helicopter. Their role is to perform
two principal functions. The first one in forward flight, the horizontal tail
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generates a trim load that reduces the main rotor fore-aft flapping, while
the vertical tail generates a sideforce and yawing moment reducing the tail
rotor thrust requirement, in order to increase the fatigue life of the tail rotor
[54, 62]. The second aspect during maneuvers, and during wind gusts, the
tail surfaces provide pitch and yaw damping and stiffness, and enhance pitch
and directional stability [54].

The tails are basically wings, hence refer to [72, 2] for basic aerodynamics
characteristics, and to [43, 75, 34, 56] for helicopter applications.

It is also well known that depending on the longitudinal and vertical posi-
tion of the horizontal tail with respect to the main rotor, erratic longitudinal
trim shifts may happen when the helicopter is transitioning from hover to
forward flight [62]. This is the case when the main rotor wake impinges on
the tail surface, for an overview of main rotor wake skew angle limits see [54].

Regarding the modeling of the main rotor downwash on the tail, good results
were obtained by using flat vortex wake theory [7] (valid for small sideslip
angles), as presented in [84, 74]. An alternative formulation is to represent
the downwash as a polynomial in wake skew angle [75].

Finally the effect of the main rotor downwash on the tail boom should also
be considered at low speed, since this may influence yaw damping [54].

1.3 Tail rotor

The tail rotor operates in an adverse aerodynamic environment, a strongly
nonuniform flow field, due to the wake of the main rotor, main rotor hub,
fuselage, and vertical fin which reduce the aerodynamic efficiency, and con-
trol requirement and increase the tail rotor loads and vibrations [46]. This
is particularly true in low-speed flight, in-ground effect, sideways flight (po-
tentially operating in the VRS), and in transition to forward flight [54].

Modeling of the main rotor downwash on the tail rotor can be done using
flat vortex wake theory, as outlined in the previous section.

Further a vertical tail blockage factor kp can be added, as in [4], to account
for vertical tail interference

2
U
ke = (1— btl)% +by  for urp <oy (1a)
bl

ky =1 for wurgr > vy (1b)
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Where the transitions velocity v and tail blockage constant b;, can be
derived from flight tests.

1.4 Interactional aerodynamics

Interactional aerodynamics refers to the interaction between several vehicle
components. This phenomena is inherently related to a.o. the geometry of
the helicopter configuration, the physical relationships between the elements,
the relative wind direction and magnitude, and the rotor downwash velocity
[70]. It is safe to say that this presents a formidable modeling problem, see
[70, 26, 11, 5, 52, 54, 10, 25] and references therein.

1.5 Ground effects

Ground effects can be divided into three domains: static ground effect,
dynamic ground effect, and the ground vortex. Static ground effect had
already been taken into account in the current model.

1.5.1 Dynamic ground effect

When a helicopter is hovering above a heaving, rolling and pitching surface
(such as a ship deck), the lifting rotor is subjected to a so-called dynamic
ground effect. The static ground effect models cannot capture the unsteady
aerodynamics due to such dynamic ground effect. In [79, 80] the generalized
finite-state dynamic inflow [58] was extended to include dynamic ground
effects. For the case of helicopter hover above an inclined ground plane or
ship deck, in which not only the magnitude but also the distribution of rotor
induced velocity are changed, see [82, 41].

Now in some operations, a helicopter has to partially hover above a building
top or a ship deck (thus not completely above the ground surface), the case
is known as hovering with partial ground effect. Further details about this
problem can be found in [81].

1.5.2 Ground vortex

It is well known that when a lifting rotor is operated close to the ground
at low advance ratios, under certain conditions, a horseshoe ground vortex
forms under the rotor [70].

The earliest identification of the ground vortex phenomenon occurred in
[44], followed by theoretical investigations in [20, 38, 28|, and experimental
results in [71, 18, 17].
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The ground vortex is produced by the interaction of the rotor downwash,
the ground, and the velocity of translation. And estimates of the ground
vortex strength indicated that it is at least an order of magnitude stronger
than the blade tip vortex [18, 17]. Additionally its position relative to the
helicopter depends on helicopter forward speed [70]. For example, for a
full-size helicopter, the ground vortex does not seem to exist from hover to
about bkts. It appears to form at about 5kts, several rotor diameters in
front of the helicopter and in the direction of flight [71]. The consequence of
such a ground vortex is that such characteristics as the control required to
trim the helicopter and the effectiveness of the tail rotor as well as engine
performance? can be markedly changed [18].

1.6 Engine, ECU and transmission unit

The propulsion system dynamics can have a profound effect on the helicopter
flight dynamics. Dynamic interface problems involving the engine/fuel con-
trol and the rotor/drive train/airframe have been encountered in the ground
or flight testing of helicopters for a long time [15].

In flight, the power required by a helicopter varies continuously, due to re-
quired changes in forward speed, due to maneuvers, due to power recovery
following autorotative flight, and due gusts, which result in rapid thrust
variations [53, 73, 1]. Fast main rotor RPM compensation by a governor
mechanism, i.e. an Engine Control Unit (ECU), is thus required since any
discrepancy between the required and the available main rotor torque will
cause the rotor to decelerate or accelerate.

For example, assuming a constant rotor RPM may result in poor heave axis
dynamics, and poor yaw response to pitch input dynamics, when compared
to flight test data [49]. Also specific problems can also be related to the fact
that main rotor and drive train systems may have lightly damped torsional
dynamic modes, which may be within the bandwidth of the ECU. Further
highly responsive engines have the potential of destabilizing the lag dynam-
ics of the main rotor, or may cause large resonant responses in lag through
fast rotor speed excitation. This is especially true when the lag mode is
only lightly damped, as is the case for hingeless rotors which are usually not
equipped with lag dampers [53].

Finally the advantages of variable rotor speed may be worth considering,
since in principle optimal rotor speed for a certain flight condition will not
be optimal for another one, i.e. being for example function of vehicle air-
speed, altitude, load factor, and/or total mass. It has been shown that

2Such as engine inlet ingestion of its own exhaust [71]
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performance benefits, i.e. in terms of maneuverability and agility, can be
obtained, by varying the main rotor rotor speed during transient maneuvers
[42].

We provided here only a very brief introduction on this subject, for further
references see for example [6, 53, 1, 9].

1.7 Fuel slosh

Sloshing is the occurrence of any free liquid surface motion inside a con-
tainer. Sloshing becomes complex during sporadic movements in partially
filled liquid containers. Depending on the frequency of the disturbance and
the container shape, the free surface of the liquid will undergo a number of
complex motions including non-planar, rotational, irregular beating, quasi-
periodic and chaotic [69]. The problem of fuel sloshing has received extensive
attention, especially in the spacecraft community (satellite and launcher dy-
namics).

As in the case of vibrations, there are passive and dynamic ways to prevent
and lower the effect of fuel sloshing. It starts with proper fuel tank design,
often including hydrodynamic damping through so-called baffles. Then the
residual sloshing is often dealt with through modeling and adequate design
of the flight control computer. Fuel sloshing can be modeled in several ways,
the most common approach is to model the sloshing as a pendulum like mo-
tion.

For some UAVs, the sloshing phenomenon may particularly be important
to consider, since in some cases up to 30% or 40% of the vehicle total mass
may be subject to sloshing.

1.8 Atmospheric disturbances

Atmospheric disturbances may be added to a model as additive perturba-
tions, and these come in three different forms: constant linear wind velocity,
stochastic linear turbulence velocity, and stochastic rotational turbulence
velocity. While linear disturbances will affect the vehicle aerodynamic ve-
locity, rotational turbulence velocities will affect vehicle body roll, pitch,
and yaw rates.

Now the main rotor is sensitive to atmospheric disturbances. Wind and
wind gusts, induced by atmospheric variations, by local terrain or man-
made structures, will change the aerodynamic conditions at the rotor, hence
impact blade lift [37, 50].
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A low altitude turbulence survey with a huge amount of data can be found
in [77], see also [60] for an early description of a nonstationary® low altitude
atmospheric turbulence. Further two atmospheric models have been exten-
sively used in the aerospace community, to investigate fixed- and rotary-wing
responses to atmospheric disturbances. The first one is the von Karman
model [76], where an isotropic* turbulence model was assumed, which was
validated by experimental measurements of low altitude turbulence in [33].
The second one is the Dryden atmospheric model [3]. The difference be-
tween the von Karman and Dryden models lies basically in a small variation
in the high frequency content [36]. The Dryden model is most frequently
used owing to its greater simplicity of implementation, i.e. by passing white
noise through linear filters, [8]. On the other hand, the FLIGHTLAB atmo-
spheric model [4] is based on the von Karman spectrum [76], and on results
from [66, 68], where only the vertical turbulence velocity is modeled, since
it is supposed to have the most important effect on blade aerodynamics.

The literature on transient and steady-state gusts (turbulence) modeling,
and aircraft and helicopter response to gusts, is extensive to say the least.
We refer the reader to the following influential contributions, for fixed-wing
design and response to gusts see [83, 61, 40, 39, 23, 22], for rotary-wing an
excellent tour d’horizon is provided by Gaonkar in [31, 29, 30], additionally
for flapping response to gusts see [78], for coupled flap-torsion dynamics
to stochastic vertical turbulence see [32, 47, 27|, for flap-lag dynamics to
stochastic vertical turbulence in hover see [63, 48], for flap-lag dynamics to
stochastic horizontal turbulence in hover see [64] and in forward flight see
[65], for the effect of deterministic gusts see [12, 13, 14], for hingeless re-
sponse to random gusts in forward flight see [21, 22], for stochastic stability
analysis see [51], for effects on handling-qualities see [37, 57], and for blade-
fixed® atmospheric turbulence see [67, 68, 59, 35, 16, 19].

In the case of our UAV, due to its small scale compared to the large-scale
turbulence, we will assume that the entire rotor disk experiences a spatially
uniform turbulence velocity, identical to that at the rotor center, hence
spatial gradients effects will be judged insignificant.

3A stochastic process whose probability distribution changes when shifted in time or
space

4Statistical properties invariant with respect to direction

5Body-fixed atmospheric turbulence refers to the turbulence experienced by a point
fixed on a non-rotating vehicle component such as the vehicles CG, while blade-fixed
atmospheric turbulence refers to the turbulence experienced by a component of a rotating
rotor blade [67]. Indeed the atmospheric turbulence velocities seen by non-rotating vehicle
components and rotating blades may be substantially different
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