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Summary 

We consider a single machine scheduling problem with resource dependent release times that 

can be controlled by a non-increasing convex resource consumption function. The objective is 

to minimize the weighted total resource consumption and sum of job completion times with an 

initial release time greater than the total processing times. It is known that the problem is 

polynomially solvable in O(n4) with n the number of jobs.  

We describe an improved algorithm of complexity O(n log n). We show further how to perform 

sensitivity analysis on the processing time of a job without increasing the complexity. 
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Abbreviations 

LAP  Linear Assignment Problem 

MSP  Machine Scheduling Problem 

NP hard Non-deterministic Polynomial-time hard 

CPU  Central Processing Unit 

RAM  Random Access Memory 
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1 Introduction 

Machine scheduling problems can have jobs with resource dependent release times that can be 

controlled by a resource consumption function. In reality the release times can be varied when 

jobs need to be preprocessed before they are processed. The preprocessing times can be 

considered as job release times, and they can depend on the resource consumed for the 

preprocessing treatment. Choi et al. (2007) described an example in steel plants where ingots 

must be preheated by gas in soaking pits to the required temperature, before they can be hot-

rolled by a blooming mill. The preheating time of an ingot is a non-increasing function of the 

amount of consumed gas; one can treat this time as the release time at which the ingot is 

available for the jobs of ingot rolling. 

In Air Traffic management we mention arrival scheduling problems of aircraft as another 

application. In this type of problems the time to win or lose for an aircraft in an arrival stream is 

a function of the fuel consumption. So it can be efficient to take simultaneously fuel costs into 

consideration to schedule the release of aircraft to the Terminal Area..  

In this paper, we consider a single machine scheduling problem (denoted as MSP) with 

release times that depend on a non-increasing convex function of consumed resources. The 

objective is to minimize the weighted total resource consumption and sum of job completion 

times with an initial release time greater than the total processing times. Choi et al. (2007) 

introduced a polynomial algorithm that solves the problem by a series of linear assignment 

problems, if there is a limitation for the initial release time of the jobs.  

In the context of the considered problem we define variables xij = 1 if job i is scheduled in 

position j and 0 otherwise. The mathematical model of the linear assignment problem (LAP) is 

as follows: Given an n × n matrix Q = ((qij)), determine a solution x = (x1, …, xn) such that 

(LAP) min 1 1

n n
ij iji j q x   (1a) (1a) 

subject to 

 1 1n
iji x   j = 1, …, n  (1b) 

 1 1n
ijj x   i = 1, …, n  (1c) 

  xij {0, 1} i, j = 1, …, n (1d) 

In section 2 we describe the known algorithm to solve MSP; it has complexity O(n4) with n 

the number of jobs. In section 3 we develop our improved algorithm of complexity O(n log n), 

followed by sensitivity analysis of a processing time within the same complexity in section 4. 

We illustrate the algorithm and the sensitivity analysis on an example in section 5. Finally we 

give some remarks and conclusions. 
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2  The known algorithm 

We first introduce the notation and the problem definition following Choi et al. (2007).  

Let Jj for j = 1, …, n denote job j having a processing time pj, a completion time Cj and rj 

denote the actual release time. Let v be an initial release time of all the jobs and f(rj) a resource 

consumption function of rj given as  

  ( ) max{ ,0},j jf r v r   

i.e., it is non-increasing and convex; so it is assumed that each job starts as soon as it is released. 

Let α and β denote the weight of the total resource consumption function and the sum of the job 

completion times, respectively. Let σ = {σ(1), ..., σ(n)} be a job sequence, where σ( j) = k means 

that job k is positioned jth in the sequence. The problem MSP is defined now as follows. 

Given a single machine and n jobs with resource dependent release times, determine (r, σ) 

that minimizes K(r, σ) defined as 

      1 1( , ) max{ ,0} β ( ),n n
j jj j jK v r r p        r  (2) 

where v ≥ p+ with p+ defined as 1: .n
jjp p

   Clearly the term after β is the sum of the job 

completion times. 

Choi et al. (2007) defined P(k) for k = 1, …, n, as a constrained version of MSP such that 

r(k) = v and P(0) is the case where r(1) = 0. They proved that P(k) can be solved as a linear 

assignment problem for each value of k, with the related cost matrices Q(k) = ((qij)) where 

pi = pσ(j), defined as follows: 

problem P(0) has cost matrix Q(0) = ((qij)) with for i = 1, …, n, 

 qij = (β(n + 1 − j) − α(n − j)) pi,   for j = 1, …, n; 

problem P(k) for k = 1, …, n has cost matrix Q(k) = ((qij)) with for i = 1, …, n, 

 qij = (α j − β( j − 1)) pi for j = 1, …, k − 1,  

  = β(n − j + 1) pi  for j = k, …, n. 

As a consequence MSP can be solved by a series of n + 1 LAP instances under the condition 

v ≥ p+, i.e., MSP can be solved by minimizing P(k), for all k = 0, 1, ..., n and taking a best 

schedule, i.e., a schedule with the lowest criterion value.  

Choi et al. (2007) concluded that MSP can be solved in O(n4), since each P(k) can be solved 

in O(n3) by a LAP algorithm, see, e.g., Burkard, Dell'Amico and Martello (2009). 

The constant terms in the criteria of P(0) and P(k) (k ≥ 1) are αnv and βnv, respectively. In 

the special case of β = 0 and given Q(k), it is clear that P(1) produces the minimal criterion 

value βnv = 0. 

In the next section we show how to solve MSP in O(n log n). 

https://webmail.uva.nl/exchweb/bin/redir.asp?URL=http://www.opt.math.tu-graz.ac.at/burkard/�
https://webmail.uva.nl/exchweb/bin/redir.asp?URL=http://www.or.unimore.it/dellamico/default.htm�
https://webmail.uva.nl/exchweb/bin/redir.asp?URL=http://www.or.deis.unibo.it/staff_pages/martello/cvitae.html�
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3  The improved algorithm 

We will show that MSP can be solved in a complexity of O(n log n). We exploit the following 

known properties of the LAP: 

Product LAP: 

If a cost matrix C of a (minimization) LAP obeys the Monge property, see, e.g., Burkard, 

Klinz and Rudolf (1996), i.e.,  

 cij + ci+1, j+1 ≤ ci, j+1 + ci+1, j  for i, j = 1, …, n – 1, 

then an optimal schedule is given by xii = 1 for i = 1, …, n, i.e., the north-west corner rule 

produces an optimal schedule. 

The case that the costs cij are given as a product cij = ωi λj, (i, j = 1, …, n) obeys the Monge 

property, if the ω- and the λ-values have been sorted (ωi from small to large and λj from large to 

small) and thus can be solved in O(n log n), the complexity of the sorting. It is easy to see that 

the P(k) problems have costs that obey the product form, so one can solve MSP in complexity 

O(n2 log n). We now derive a solution method with a further reduced complexity of O(n log n). 

As the case β = 0 was already treated in the previous section we assume β to be positive; 

for ease of presentation and without loss of generality we assume that β = 1.  

We show how to find an optimal value of k – denoted as k* – that denotes the assignment 

problem P(k*) to be solved. 

We consider first k = 0: The objective function of P(0) is: 

    0 1 1( , ) ((1 )( ) 1) (1 )( ) .n n
j jj jK nv n j p nv p n j p
              r  

Secondly k ≥ 1: The objective function of P(k) is (by convention 0
1 1

0 and 0):
n

j j n  
   

      
1 1
1 1( , ) (1 ) ( 1) .k k n

k j j j kj j jK nv jp j p n j p 
             r  

The second sum can be written as: 

      
1 1 1
1 1 1(1 ) ( 1)k k k

j j jj j jj p n j p np  
            

So we find 

      
1 1
1 1 1( , ) ( 1)k k n

k j j jj j jK nv jp n p n j p 
            r  

     
1
1 1( ) ( ) .k n

j jj jnv p j n p n j p
           

Only the first summation of the right hand side depends on k. As long as α j ≤ n this summation 

adds non-positive values to the objective function, so the minimum of Kk(r, σ) is found for the 

value k* = n if 0 ≤ α ≤ 1 and  
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   1*
1arg max ( ) 1 / / 1k

k j jk j n p k n n
            if α > 1. 

An optimal schedule of MSP is found by minimizing P(k) over k = 0 and k*. By subtracting the 

two related objective function values one can identify the conditions under which k = 0 

respectively k* will result in an optimal schedule of MSP. The result of the subtraction K0(r, σ) – 

Kk*(r, σ) denoted as Δ(k*) is: 

    
* 1*

1 1( ) ( 1) ( ) ( ) .n k
j jj jk nv j n p n j p
              

We distinguish the cases α  1 and α > 1. 

Case α  1: write Δ(n) as: 

    
1

1 1( ) ( 1) ( ( ) ( )n n
j jj jn nv j n p n j p
              

        1 1
1 1( 1) ( 1) ( 1) .n n

j jj jnv n p n v p 
              

By assumption v ≥ p+ while α ≤ 1 and n ≥ 1 we find that Δ(n) ≤ 0. Thus it is sufficient to solve 

the assignment problem P(0). 

Case α > 1: write Δ(k*) as: 

    
* 1*

1 1( ) ( 1) ( ) ( )n k
j jj jk nv j n p n j p
             

             *( 1) ( 1) ( )n
j k jnv np j n p
           

             *( 1) ( ) ( ) 0.n
j k jn v p j n p
          

As v ≥ p+ the first term is non-negative and further, for j ≥ k*
 =  n / α + 1  we have α j > n. Thus 

the last sum is positive and it is sufficient to solve the assignment problem P(k*). 

Theorem MSP can be solved in a complexity of O(n log n). 

Proof  

Because P(0) and P(k*) are LAPs with product form costs, the complexity follows immediately. 

 The above discussion of the improved MSP algorithm can be summarized in a stepwise 

description: 

  MSP algorithm  

Step 1: if β = 0 then solve LAP P(1) and stop; 

Step 2: α:= α / β; 

Step 3: if α ≤ 1 then solve LAP P(0) by the north-west corner rule 

Step 4: else solve LAP P(k*) with k*
 =  n / α + 1  by the north-west corner rule. 
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4  Sensitivity analysis 

We show that the improved algorithm enables us to perform sensitivity analysis on a processing 

time; it can be performed in O(n log n) for all the values of a processing time. 

Without loss of generality we consider the sensitivity on the processing time p1. Note that 

the value of k* is independent of the processing times. We introduce π1 as the variable value of 

p1 in the analysis and z(π1) as the optimal criterion value. Because of the product form costs of 

the solved LAP we can write 

 1 1( ) .n
j jjz p nv p p

     

After sorting the λ-values from large to small we denote these values as λσ(j) (1 ≤ j ≤ n); then the 

job sequence {σ(1), …, σ(n)} is an optimal schedule. 

We show that z(π1) is a piecewise linear function on the following intervals: 

 0 ≤ π1 ≤ p2,  pℓ ≤ π1 ≤ pℓ+1  for ℓ = 2, ..., n – 1  and  pn ≤ π1 ≤ v + p1 – p+. 

Note that the last bound of π1 is a consequence of v ≥ p+ – p1 + π1. As long as π1 ≤ p2 an optimal 

schedule remains optimal. The function z(π1) on the interval 0 ≤ π1 ≤ p2 is found as a linear 

function in π1: 

 1 1 (1) ( )2( ) .n
j jjz nv p p

          

As soon as the value of π1 has grown to the value of p2 the jobs 1 and 2 exchange in the 

schedule, producing a new optimal schedule and the function z(π1) on the interval p2 ≤ π1 ≤ p3 is 

found as  

 1 1 (2) 2 (1) ( )3( ) .n
j jjz nv p p p

             

In general for ℓ = 3, ..., n as soon as the value of π1 has grown to the value of pℓ the place of jobs 

ℓ – 1 and ℓ in the schedule are exchanged to obtain a corresponding optimal schedule and the 

function z(π1) on the interval pℓ–1 ≤ π1 ≤ pℓ (ℓ = 3, ..., n) is found as 

 1
1 1 ( ) 1 ( ) ( )1 1( ) .n

j j j jj jz nv p p p
               
   

Because the λσ(j)-values are sorted from large to small, the growth of z(π1) diminishes when the 

value of π1 goes from an interval to the next interval.  

Theorem The complexity of the sensitivity analysis of the processing time of a job is O(n). 

Proof 

– the z-value on the first interval and a related optimal schedule is computed in O(n); 

– each next z-value is obtained by a O(1) operation from the previous value;  

– each corresponding optimal schedule is also obtained by a O(1) operation from the previous 

optimal schedule. 
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5  Example 

We illustrate the improved MSP algorithm by an example on 3 jobs, see Choi et al. (2007), with 

v = 10, α = 2, β = 1, p1 = 2, p2 = 1 and p3 = 4, so p+ = 7 and nv + p+ = 37. As a result 

k* = 3 / 2 + 1 = 2, and an optimal schedule follows from solving P(2) by the north west corner 

rule. 

For ease of presentation we renumber the jobs such that p1 = 1 < p2 = 2 < p3 = 4. It is easy 

to check that λ1 = 1, λ2 = 1 and λ3 = 0. Thus an optimal schedule with no intermittent idle time is 

(J1, J2, J3) with r*(1) = 10. As λ1 = λ2 the schedule (J2, J1, J3) is also optimal. In the original 

indices of the jobs the optimal schedules are (J2, J1, J3) and (J1, J2, J3). To easily compare it with 

the solution method of Choi et al. (2007), we note that the cost matrix 

2 2 1

(2) 4 4 2

8 8 4

Q

 
   
 
 

 is 

after reduction 

1 1 0

2 2 0

4 4 0

 
 
 
 
 

 + reduction sum 7. 

We illustrate the sensitivity analysis on p1:  

The optimal schedules can be given on the intervals 0 – 2 (= p2), 2 – 4 (= p3), 4 – 4 (the value 10 

of v limits the value of π1 in the analysis). The values of z(π1) on an interval, say ℓ, are: 

 1
1 1 11 1( ) .n

j j j jj jz nv p p p
            

   

The λ-values are λ1 = 1, λ2 = 1 and λ3 = 0. We have  

 0 ≤ π1 ≤ 2:    z(π1)  = 36 + 2π1 + 1  2 = 2π1 + 38; 

 the optimal schedule is (J1, J2, J3); 

 2 ≤ π1 ≤ 4:   z(π1)  = 36 + π1 + 1  2 + 1  π1 = 2π1 + 38; 

 the optimal schedule is (J2, J1, J3). 

Because λ1 = λ2 there are alternative optimal schedules, found by exchanging the first two jobs 

in the schedules. 

It is easy to check that for another job, say job 3, the analysis is: 

0 ≤ π3 ≤ 1:   z(π3) = 33 + π3 + π3 + 1  1 = 2π3 + 34; the optimal schedule is (J3, J1, J2); 

1 ≤ π3 ≤ 2:   z(π3) = 33 + π3 + π3 + 1  1 = 2π3 + 34; the optimal schedule is (J3, J1, J2); 

2 ≤ π3 ≤ 7: z(π3) = 33 + π3 + 1  1 + 1  2 = π3 + 36; the optimal schedule is (J1, J2, J3). 
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6  Final remarks and conclusions 

We make some remarks and conclusions: 

1. We did some computations on problem instances with α = 2, β = 1 and integer p-values 

randomly generated from the interval [1, 10]. We used the LAP algorithm of Jonker and 

Volgenant (1987) in Delphi Pascal on a personal computer (Intel Core 2 Duo CPU P7350, 

Windows Vista 64 bit, 4 Gb RAM). We found average computing times of about 1 sec for the 

Choi et al (2007) algorithm on test instances of 100 jobs and about 0.1 sec for the improved 

algorithm on instances of 10,000 jobs. 

2. Choi et al (2007) introduced also a related problem to (2) defined as (E a threshold value) 

    1 1min ( ) max{ ,0}n n
j jj jf r v r      (3a)  

subject to  

    1( ) .n
j j jr p E     (3b) 

They proved that it is NP-hard. If one introduces the Lagrangean function of this problem, with 

β as the Lagrangean multiplier, then the problem to minimize this function is just the problem 

(2) with α = 1 and a constant term –βE, see, e.g., Ahuja, Magnanti and Orlin (1993). The 

minimal criterion value is a lower bound for the optimum of (3). In a branch-and-bound 

algorithm such a bound can be useful, given the low complexity order of the algorithm derived 

in the previous sections. 

3. It is still open whether sensitivity analysis on the value of α can be done in O(n log n). 

We conclude that we can solve MSP in O(n log n); sensitivity analysis of a processing time 

can be performed in the same complexity. This complexity can be reduced if one applies the 

sorting algorithm in O(n log log n) as described by Han (2004). 
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