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Summary

Temporal integration schemes are introduced and described which are readily embedded in any

time-accurate simulation method and are aiming at an enhanced ’frequency’ domain usage of

CUA methods. The schemes are categorized as two samples per cycle and one sample per cycle

algorithms which refer to the number of samples used to describe a complete cycle. Recent expe-

rience with the embedding of one sample per cycle and two samples per cycle algorithms in the

AESIM method is presented and discussed.

Keywords Aeroelastic simulation, temporal integration
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1 Introduction

Common practice and realistic prediction of the flutter envelope including nonlinear conditions

is an increasingly important aspect of the modern multi-disciplinary aircraft design and analysis

process.

When such conditions occur, for instance at transonic flight, at high angles of attack or in case of

structural nonlinearities , aeroelastic time-accurate CFD simulation of the behavior of the flexible

aircraft is a necessary complement to conventional linear methods.

However, the deployment of time-accurate CFD methods requires additional activities to be carried

out such as (dynamic) grid generation and signal analysis and raises the issue of affordability due

to its CPU requirements.

The state-of-art in time-accurate CFD has reached a high level of maturity [Pra99] and one should

not be to optimistic in expecting much increase of efficiency for the time-accurate CFD solvers.

We have demonstrated [PHZ98] that adequate results can be obtained with the Euler equations

using 8 time steps per cycle for forced and coupled motions on a dynamic grid. Still the turn-

around-time is much higher compared to the linear panel methods and the transonic full potential

field panel methods developed in the early eighties. The latter require a few seconds running time

on current generation of PC’s.

Therefore the affordability of these methods should be increased by developing efficient strategies

with respect to their usage. In [HES97] we introduced a MIMO based analysis approach which

minimizes the number of simulations and in [PH97] we introduced efficient coupling algorithms,

e.g. the prognostic coupling.

Aeroelastic stability analysis involving the use of CUA methods is usually performed with one of

the following two strategies:

1. pk- method (eigenvalue) analysis. The aerodynamic data (generalized forces in frequency

domain) required for these methods might be supplied by:

� sinusoidal excitation in time domain.

� impulse excitation in time domain.

� frequency domain methods.

The first one is efficient when the state space is relatively small. The second one is more

efficient as compared to the first one but requires experience. The latter method is based
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on a linearized form of the equations and formulated in complex variables it is known to be

limited in frequency range. This problem can be overcome by the diverging rate formulation

which has been introduced in [Hou86] and extensively applied in subsonic, transonic and

supersonic flow [HE91, HE92].

2. Fully-coupled simulation. This method is especially useful in case of strong nonlinearities

and a large number of vibration modes. For a single point the turn-around time is always

less than the turn-around time when one of the previous methods is used for the study of

a general stability problem. For a restrictive study the previous methods might be more

efficient than method 2.

Contrary to previous methods an aeroelastic simulation requires the paradox of utilizing a

separate signal analysis procedure to determine frequency and damping information from a

microscopic overload of information. This procedure is a parameter identification process

in which the aeroelastic model is assumed to be linear and a conventional signal analysis

procedure is carried out (e.g. Prony fits, ...), like in the analysis of Ground Vibration Tests

or Flight Flutter Tests. Disadvantage is that this procedure only yields results in one point of

the flutter diagram (macroscopic underload of information) , and a large number of simula-

tions would be required to obtain sufficient information about the critical flutter boundaries.

Also one should try to reduce numerical noise by starting from a well converged flow and

geometry or by incorporating well designed low pass filters.

As an alternative to the conventional curve-fitting procedures a more sophisticated parame-

ter identification process (MIMO) has been developed and applied [HES97, EHS98], which

constructs an equivalent linear aeroelastic model having the same properties as the full non-

linear model. This linear model subsequently may be used to obtain complete flutter dia-

grams in the same way as obtained in conventional flutter analyses, by varying the param-

eters underlying the identified model, such as dynamic pressure. The combination of this

process with aeroelastic simulation reduces the computational effort needed at nonlinear

conditions and yields a close complement to conventional methods. The procedure strongly

reduces the amount of nonlinear simulations needed, for instance, at transonic flow condi-

tions, where the linear model can be used as a predictor for the critical flutter boundary of

the nonlinear system.

The conventional and the MIMO approach which ’bypasses’ the frequency domain are de-

picted in figure 1.
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Fig. 1: Conventional and MIMO approach for obtaining flutter points with a coupled time-accurate

CFD method.

Experience at NLR has shown that the approach in thek-domain, thes-domain and the time-

domain are analogous, as long as the assumption of linearity is not violated and the frequency

and time domain methods have no inherent limitations1 which impair the mapping (fitting of

generalized forces) between the separate domains. Also in applying time domain methods for

obtaining harmonic data it is important to reduce the level of ambiguity by starting from a well

convergedmean flow or by incorporating low pass filters.

Therefore the fully-coupled simulation may also be performed using a time integration approach

of the generalized forces once adequately fitted in the frequency domain. This eases applications

(e.g. in case of structural nonlinearities) and improves confidence for the coupled simulation if

based on linear aerodynamics.

The two approaches which might be followed to obtain the flutter envelope are depicted in figure

2.

1Due to program inconsistencies.
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Fig. 2: Frequency domain and time domain approach for obtaining flutter envelopes with a fre-

quency domain method.

Figure 3 show a road map for obtaining time traces with linear aerodynamics. The road map shows

the four cornerstones for obtaining generalized forces. The inner blocks denote the applied fitting

procedures.
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Fig. 3: Road map of tools to transform linear aerodynamics between frequency and time domain.
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The successful application of the aforementioned strategies with respect to the AESIM method

[HE94] were presented in [HES97, EHS98] where the applications were directed to the AGARD

standard aeroelastic test case [Yat88].

Another issue is the dependence of the results on a increased number of parameters (e.g. toler-

ances) and requirements (e.g. grid quality)2 which cannot be fully understood nor checked by the

aeroelastician and prevents black-box usage. One way to ’solve’ the affordability problem might

be the employment of coarse grids balanced with ’aeroelastic’ accuracy3.

The aforementioned problems has driven us to find alternative ways for obtaining black-box results

from time-accurate CFD (CUA) methods without redesigning them which will be introduced in

this report.

In this paper we introduce issues regarding our recent[1] sample

cycle
and [2] samples

cycle
concepts for ob-

taining harmonic and diverging data from time-simulation CFD methods.

The paper presents and discusses preliminary full potential results of applications in unsteady 2-D

and 3-D flow.

2A prerequisite for a CFD method to be used in an aeroelastic system is a reduced sensitivity to the spacing and

principal orientations employed in the grids.
3’aeroelastic’ accuracy is defined as the required accuracy for airloads in aeroelastic studies. The type of aeroelastic

study being performed sets the accuracy which in many cases is fairly tolerant.
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2 Harmonic data from sinusoidal simulation with time-simulation methods

The most common method in obtaining harmonic data is to run a time-domain method in harmonic

excitation for a couple of cycles, starting from zero or from a steady state. In general one applies

2-3 cycles and uses the last cycle for deriving the quantities of interest. A periodicity constraint is

not applied and there are no reports that the accuracy is monitored during the simulations. When

using an impulse or step response the result depends on additional parameters (pulse shape , time-

step and observation interval) which endangers a safe use in a black-box environment and requires

experimentation. Apart from grid related errors which have been hardly ever assessed from an

aeroelastic viewpoint a well designed tolerance criterium to halt inner subiterations is in most

cases bypassed by prescribing a fixed (minimal) number for the number of subiterations.

Here we present a different philosophy which can readily be embedded in any CFD method by

employing the harmonic constraintQ�Qm = A cosKt+B sinKt which approximates a time-

linearized approach since we are neglecting the higher harmonics andQm is a (mean) steady state

solution (potential, density, velocities, energy).

It is described below for a first order method.1

Suppose that the airplane performs a sinusoidal motion in one of its modal modes:

g = gm + gi sin(Kt);

with g the current geometrical state,gm the mean geometrical state,g1 a modal mode and K is the

frequency of oscillation. LetQ0; Q1 andQ2 denote the current approximation to the solution at

t = 0;�t and2�t, respectively.

Next, applying the harmonic constraint:

Q(t)�Qm
= A cos(Kt) +B sin(Kt)

andupdate2 :

1We assume thatQm is not affected by the iteration procedure. When this occurs as a result of a not well converged

steady state solution the application of low pass filter techniques for updatingQm implicitly or to model alsoQm

explicitly, which means a[3] samples

cycle
should be considered.

2Higher order temporal schemes will only require the additional update ofQ�2; Q::.
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D =
1

cos(�tK) sin(2�tK)� cos(2�tK) sin(�tK)
; (1)

D1 = (Q1
�Qm

) sin(2�tK)� (Q2
�Qm

) sin(�tK); (2)

D2 = cos(�tK)(Q2
�Qm

)� cos(2�tK)(Q1
�Qm

); (3)

AC = D1 D; (4)

BS = D2 D; (5)

Q0
= Qm

+AC; (6)

Q�1 = Qm
+AC cos(�tK)�BS sin(�tK): (7)

Then, apply two successive stages of the available time-domain method to improveQ1 andQ2.

The harmonic pressures, ..., are directly available:

D1 = (cp1 � cpm) sin(2�tK)� (cp2 � cpm) sin(�tK); (8)

D2 = cos(�tK)(cp2 � cpm)� cos(2�tK)(cp1 � cpm); (9)

AC = D1 D; (10)

BS = D2 D; (11)

cph = cmplx(BS;AC): (12)

Repeat the whole procedure until the harmonic pressures converges. The flow diagram of the

procedure is illustrated in figure 4.
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Fig. 4: Temporal flow diagram of the [2] samples

cycle
concept for sinusoidal motions.

The main advantage of this approach is that it permits a black-box usage since only the time-step

and a tolerance for convergence need to be set by the user. By this it approaches the advantage of

the linear methods without having to perform the actual linearization.

Our first calculations which update explicitly and are centered about t = 0
3 indicate that the

procedure has the advantage of being less sensitive to the employed solution methods by enforcing

directly the periodicity requirement. It seems to be more robust for larger time steps and faster to

convergence. This is probably due to the fact that the calculations are made at the mean position

and do not have to cover the extreme positions. More gains might be expected when the solution

strategy is tailored to this approach (implicit updating, time-step sequencing, ’multigrid’ in time

which requires only one additional sample for each level and projection methods [Fis]) and when

results are generated by starting from results obtained at neighboring frequencies. It might also be

beneficial to use this approach for starting up the common schemes in order to eliminate transients.

A disadvantage is that changes might effect the mean solutions. Also due the applied explicit

update convergence will decrease down with decreasing time steps.

3It might be expected that anticipating the phase shift, precondition of wake areas and forward prognostication of

Q2 is advantageous.
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3 Diverging data from diverging simulation with time-simulation methods

Usage of aeroelastic data for diverging motions seems to be only practiced by NLR and recently

by ONERA [Mor97]. This might be explained from the fact that many existing methods do not

have the provision for these motions.

Here we present again a different philosophy employing the exponential constraint Q � Qm =

A exp(St) which approximates a time-linearized approach and is as follows for a first order

method:

Suppose that the airplane performs an exponential motion in one of its modal modes:

g = gm + gi exp(St);

with g the current geometrical state, gm the mean geometrical state and g1 a modal mode. Let Q0

and Q1 denote the current approximation to the solution at t = 0 and �t;, respectively.

Next, applying the exponential constraint:

Q(t) = Qm
+A expSt;

update:

Q�1 = Qm
+

(Q1
�Qm

)

exp�tS2
; (13)

Q0
= Qm

+
(Q1

�Qm
)

exp�tS
: (14)

The diverging rate pressures, ..., are directly available by:

cpd =
(cp1 � cpm)

exp�tS
: (15)
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Repeat the whole procedure until the diverging pressures converge. The flow diagram of the

procedure is illustrated in figure 5.

N=0 N=1N=-1

Q

Qm

Temporal 
Integration

Mean

Step 1

Update

TIME

Exponential Continuation
Step 2

Fig. 5: Temporal flow diagram of the [1] samples

cycle
concept for diverging rate motions.

Again the main advantage of this approach is that it probably permits a black-box usage since

only the time-step and a tolerance for convergence need to be set by the user. By this it approaches

the advantage of the linear methods without having to perform the actual linearization. Again the

changes might effect the steady state solutions.
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4 Aeroelastic Accuracy and Grids

In general we notice that time-accurate CFD applications are made with relatively fine deform-

ing grids and hardly ever we have seen applications on coarse to medium grids which would suit

’aeroelastic’ accuracy. The reason seems to be that such applications try to deal with relatively

small flow features (leading, trailing edge, shock waves, boundary layer, tip vortices, .. ) which

might not have that much impact on the ’aeroelastic’ results. The other reason is that the principal

orientation of applied computational cells are not aligned with the main flow topology. The ma-

jority of the flow domain should not be sacrificed for resolving a small flow feature which is not

significant to the aeroelastic study..

The application of deforming and adaptable grids might trouble the analysis and simulation as the

underlying approaches increase the numerical noise level by adding artificial stiffness, mass and

damping and artificial non-linearities (application of limiters to mesh spacing in shock trajectories

and near edges) and need constant monitoring of grid quality. For stability problems it is probably

safer to apply transpiration conditions.

At NLR a number of methods [Hou89] have been developed which were based on bridging CFD

and panel methodology by the so-called Boundary Volume Methodology (BVM). This methodol-

ogy combines the dimension reduction property of panel methods with a zero mass-flux boundary

condition according to a finite difference (volume) full potential method in such a way that only

low order accurate aerodynamic potential influence coefficients have to be calculated. The ap-

proach requires a computational grid consisting of the body surface and one surface extending

above it. This approach has revealed[Hou90] that accurate lift and drag forces can be obtained

(thereby recovering D’Alembert’s paradox) for the flow around a flat plate up to 90 deg angle of

attack using a full1 chord spacing along the plate and half a chord spacing in normal direction!

Therefore it is fair to expect that subcritical subsonic flows and supersonic flows can be modeled

with coarse to medium fine grids provided that in a large domain of the flow the computational

cells are well aligned with the main flow direction. The latter is the reason that the AESIM

method primarily applies a HO main grid for resolving the main flow features. It has also be

noted in [FNW97] that flutter results are very sensitive to the topology of the applied grid. The

applications shown in this paper are mainly applied on coarse to medium grids to illustrate that

results with ’aeroelastic’ accuracy can be obtained on these grids.

1One computational cell.
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5 Recent AESIM developments

Apart from the integration of the aforementioned temporal schemes recently attention was given

to support dynamic loads studies.

5.1 Dynamic loads and sectional forces

Time traces of dynamic loads have to be calculated and analyzed for parts and sections of the air-

craft. The latter involves the arbitrary cutting of components and the calculation of dynamic traces

of the elastomechanical forces and aerodynamic forces on specific parts. The AESIM method

performs these activities on the basis of bounding boxes to be specified by the user of which the

starboard face performs the cutting. The sectional pressure coefficients are obtained by interpo-

lating with a 6-NNB Laplace type volume spline which employs a core-regularization borrowed

from the discrete auto influence calculation of field panels influence coefficients as reported in

[Hou85]. Sectional loads coefficients are obtained by integrating the interpolated pressures along

the interpolated contours.

5.2 Arbitrary gust field specification

To support general dynamic loads applications the induced velocity field of a gust is written as:

~W i

g
= qi

a
~Gi� i

x
� i
y
� i
z
; (16)

where qi
a

is the amplitude of the gust mode i and ~G denotes the directional components. The gust

mode is factored in three directions to enable a general application:

�x =

n
(1 + Ug)(�(xe � xo� � (U

1
� Ug)t)) ; (17)

�y =
n

(1 + Vg)(�(ye � yo� � (V
1

� Vg)t)) ; (18)

�z =
n

(1 +Wg)(�(ze � zo� � (W
1

�Wg)t)) : (19)

Ug; Vg;Wg denote the relative velocity components of the gust, xe; ye; ze are the coordinates of the

aerodynamic grid, xo� ; yo� ; zo� are the offsets which might be used to activate the gust at the right

time, and U
1
; V
1
;W

1
; denote the velocity of the aircraft. The functions � are user selectable.
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6 Applications

The examples here focus mainly on current ongoing activities with respect to the new temporal

schemes. Especially attention is given to the modeling of a flat plate at a relatively low Mach num-

ber using the full potential model. The latter model is more sensitive to the temporal integration

schemes as compared to Euler models.

6.1 Two-dimensional flat plate application

Calculations of unsteady airloads have been performed with AESIM using the full potential mod-

eling for a flat plate pitching about 25% chord ,M
1

= 0:5 and a reduced frequency range up to

j s j= 1:6. 1 The amplitude is 0.25 deg. The generalized forces data are compared to DOULAT

data generated with 100 panels. Two subiteration procedures to integrate within a time step have

been used:

S2U Standard 2-Newton subiterations using one AF3 sweep.

H5U Robust 5-Newton subiterations using one AF3 sweep, local time stepping and GMRES[SS86]

with AF3 preconditioning and up to 8 Krylov vectors.

The first scheme is the one most common applied. The second one aims at reducing the error

strongly in a time step to allow for coarse time steps.

The H topology grids used in the AESIM simulations are depicted in figures 6..9. Figure 6 shows

the overall fine grid and figure 7 shows a close-up near the plate. Figure 8 shows the coarse grid

obtained after reducing the fine grid with about a factor 4 and again figure 9 shows a close-up near

the plate.

The results consist of:

Figures 10..15 Coarse grid simulation using 3 cycles with 12 time steps per cycle (CY CLE

12
) at

k=0.1 with S2U updating. In figures 10 and 13 the development of the forces for the regular

scheme and the 2-sample scheme are presented. It should be noted that the latter result

show only the development of the two samples!. Both results are not converged due to a

large CFL number (400). Convergence characteristics are shown in figures 11 and 12 for

the regular scheme. LEUCR and LEUCC denote the L2 norm of the error in the equations

and the corrections, respectively. LINFR and LINFC denote the L
1

norm of the error in

the equations and the corrections, respectively.

Note the latter figure applies a log scale to the results which are also shown in the first figure.

The unscaled figures should be preferred in assessing convergence during time simulation as

1The reduced frequency is defined here as k = Im(s) = !c

2U
where c denotes the chord.
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the log scale filter might hide information. Convergence characteristics are shown in figures

14 and 15 for the 2-sample scheme.

Figures 16..21 Coarse grid simulation using 3 cycles with 12 time steps per cycle (CY CLE

12
) at

k=0.1 with H5U updating. In figures 16 and 19 the development of the forces for the regular

scheme and the 2-sample scheme are presented. Again it should be noted that the latter

result show only the development of the two samples!. Both results seem to be converged.

Convergence characteristics are shown in figures 17 and 18 for the regular scheme. Again

note the latter figure applies a log scale to the results which are also shown in the first figure.

The convergence characteristics which are shown in figures 20 and 21 for the 2-sample

scheme seem to be better.

Figures 22..27 Coarse grid simulation using 3 cycles with 12 time steps per cycle (CY CLE

12
) at

k=1.0 with H5U updating. In figures 22 and 25 the development of the forces for the reg-

ular scheme and the 2-sample scheme are presented. Both results seem to be converged.

Convergence characteristics are shown in figures 23 and 24 for the regular scheme. The

convergence at the higher frequency is better as compared to the one obtained for the lower

frequency. The convergence characteristics which are shown in figures 26 and 27 for the

2-sample scheme seem to be better. The convergence at the lower frequency is better as

compared to the one obtained for the higher frequency.

Figures 28..35 Fine grid simulation using 3 cycles with 12 time steps per cycle (CY CLE

12
) at k=0.1

with H5U updating. In figures 28 and 31 the development of the forces for the regular

scheme and the 2-sample scheme are presented. Again it should be noted that the latter

result show only the development of the two samples!. The regular scheme results on the

fine grid do not convergence while the 2-sample scheme converges. The regular scheme

is not converged due to the fact that the CFL number which approaches 2000 is too high.

The time-step and/or the number of subiterations need to be increased to get a proper result.

The Convergence characteristics are shown in figures 29 and 30 for the regular scheme.

Inspection of the convergence levels in this case (figure 30) leads to the conclusion that it is

hard to base the quality of the prediction on these figures! The convergence characteristics

which are shown in figures 32 and 33 for the 2-sample scheme seem to be better. In figures

34 and 34 the pressure distributions for the regular scheme and the 2-sample scheme are

presented. The 2-sample scheme results seem to be all right. The regulars scheme results

are wrong. They seem to lag 90 deg in phase. The 2-sample approach seems to be more

tolerant to the solver.

Figure 36 Convergence study with respect to the sectional forces of the 2-sample scheme versus

number of iterations on the coarse grid at k=0.1 with 2-sample scheme and H5U updating

(note the scales). In this case the time step was chosen fixed to CY CLE

12
and the number
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of cycles was varied (1,2,4,8 and 16 cycles). About 20 iterations seem to be necessary for

obtaining adequate results.

Figure 37 Convergence study with respect to the sectional forces of the 2-sample scheme versus

number of iterations on the coarse grid at k=0.1 with two sample scheme and S2U updating

(note the scales). In this case the time step was chosen fixed toCY CLE

12
and the number of

cycles was varied (1,2,4,8 and 16 cycles). About 300 iterations seem to be necessary for

having adequate results.

Figure 38 Convergence study with respect to the sectional forces of the 2-sample scheme versus

time step on the coarse grid at k=0.1 with 2-sample scheme and H5U updating (note the

scales). Two types of results are depicted. The first set fixes the number of cycles to 3 and

the number of time steps per cycle varies ( CY CLE

2;4;8;16;32and48
). The second set is run with a

sufficient number of cycles to obtain converged data. The imaginary part seem to be much

dependent on the time-step. The results demonstrate that starting at 12 time steps per cycle

adequate result might be obtained. A disadvantage due to the explicit nature of the current

2-sample scheme implementation is that 3 cycles are no longer sufficient at smaller time

steps. The latter problem might be easily cured by coarse to fine time-step sequencing.

Figure 39 A comparison between several methods. The figure shows results of DOULAT, results

of the 2-sample scheme and the regular scheme on both the fine and the coarse grid. The

CFD results were generated with the afore mentioned strategy. The following observations

can be made2:

� The DOULAT results compare reasonably well with both CFD results on the coarse

grid over the entire frequency range, except for the real part of the moment coefficient.

� The CFD results on the fine grids reveal that the 2-sample scheme is the better choice

when a coarse time-stepping is applied. At the lower frequencies the regular scheme

is too much effected by convergence problems.

� The 2-sample scheme requires a time step of CY CLE

24
for an adequate accuracy over

the frequency domain.

� The CFD results on the fine grids reveal that the regular scheme is the better choice

when a fine time-stepping is applied. At the higher frequencies the 2-sample scheme

is too much effected by the current explicit implementation.

Figures 40..42 Fine grid diverging simulation using 3 x 12 time steps at k=0.1 with H5U up-

dating. Nice convergence characteristics are shown in figures 40 and 41 for the 1-sample

scheme. 42 shows the pressure distributions for the 1-sample scheme which seem to be all

right.
2One should hold in mind that the CFD methods solve the full potential equation on a finite domain while DOULAT

solves the Prandl-Glauert equation on an infinite domain.
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*AESIM*V1.00B plate                                                                 
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Fig. 6: Fine H grid around flat plate.
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Fig. 7: Fine H grid around flat plate (close-up).
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Fig. 8: Coarse H grid around flat plate.
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Fig. 9: Coarse H grid around flat plate (close-up).
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Fig. 10: Dynamic forces on flat plate at M
1

= 0:5 and k = 0:1 on the coarse grid with S2U

updating.
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Fig. 11: Convergence characteristics during dynamic simulation on flat plate at M
1

= 0:5 and

k = 0:1 on the coarse grid with S2U updating.
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Fig. 12: Convergence characteristics during dynamic simulation on flat plate (log scale) at M
1

=

0:5 and k = 0:1 on the coarse grid with S2U updating.
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Fig. 13: Convergence of dynamic forces on flat plate with the 2-sample scheme at M
1

= 0:5 and

k = 0:1 on the coarse grid with S2U updating.
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Fig. 14: Convergence characteristics during dynamic simulation on flat plate with the 2-sample

scheme at M
1

= 0:5 and k = 0:1 on the coarse grid with S2U updating.
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Fig. 15: Convergence characteristics during dynamic simulation on flat plate (log scale) with the

2-sample scheme at M
1

= 0:5 and k = 0:1 on the coarse grid with S2U updating.
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Fig. 16: Dynamic forces on flat plate at M
1

= 0:5 and k = 0:1 on the coarse grid with H5U

updating.
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Fig. 17: Convergence characteristics during dynamic simulation on flat plate at M
1

= 0:5 and

k = 0:1 on the coarse grid with H5U updating.
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Fig. 18: Convergence characteristics during dynamic simulation on flat plate (log scale) at M
1

=

0:5 and k = 0:1 on the coarse grid with H5U updating.
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Fig. 19: Convergence of dynamic forces on flat plate with the 2-sample scheme at M
1

= 0:5 and

k = 0:1 on the coarse grid with H5U updating.
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Fig. 20: Convergence characteristics during dynamic simulation on flat plate with the 2-sample

scheme at M
1

= 0:5 and k = 0:1 on the coarse grid with H5U updating.
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Fig. 21: Convergence characteristics during dynamic simulation on flat plate (log scale) with the

2-sample scheme at M
1

= 0:5 and k = 0:1 on the coarse grid with H5U updating .
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Fig. 22: Dynamic forces on flat plate at M
1

= 0:5 and k = 1:0 on the coarse grid with H5U

updating.
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Fig. 23: Convergence characteristics during dynamic simulation on flat plate at M
1

= 0:5 and

k = 1:0 on the coarse grid with H5U updating.
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Fig. 24: Convergence characteristics during dynamic simulation on flat plate (log scale) at M
1

=

0:5 and k = 1:0 on the coarse grid with H5U updating.
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Fig. 25: Convergence of dynamic forces on flat plate with the 2-sample scheme at M
1

= 0:5 and

k = 1:0 on the coarse grid with H5U updating.
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Fig. 26: Convergence characteristics during dynamic simulation on flat plate with the 2-sample

scheme at M
1

= 0:5 and k = 1:0 on the coarse grid with H5U updating .
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Fig. 27: Convergence characteristics during dynamic simulation on flat plate (log scale) with the

2-sample scheme at M
1

= 0:5 and k = 1:0 on the coarse grid with H5U updating.
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TIMEe=94.25        
Rad.f=.2000        
Red.f=.2000        
Ref.A=.4363E-02    
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Full Pot. model    
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Fig. 28: Dynamic forces on flat plate at M
1

= 0:5 and k = 0:1 on the fine grid with H5U

updating.

*AESIM*V1.00B plate                                                                 
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Fig. 29: Convergence characteristics during dynamic simulation on flat plate at M
1

= 0:5 and

k = 0:1 on the fine grid with H5U updating.
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*AESIM*V1.00B plate                                                                 
CONVERGENCE logarithmic                                               
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Gamma= 0.000       
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Rad.f=.2000        
Red.f=.2000        
Ref.A=.4363E-02    
Ref. Mode=       2 
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Full Pot. model    
Dt :15-Jun-99      
Time 13:35:12      

L
E
U
C
R

I TER

1.0 18.5 36.0

10-7

10-6

10-5

AESIM  

L
I
N
F
R

I TER

1.0 18.5 36.0

10-6

10-5

10-4

L
E
U
C
C

I TER

1.0 18.5 36.0

10-6

10-5

10-4

L
I
N
F
C

I TER

1.0 18.5 36.0

10-5

10-4

10-3

Fig. 30: Convergence characteristics during dynamic simulation on flat plate (log scale) at M
1

=

0:5 and k = 0:1 on the fine grid with H5U updating.

*AESIM*V1.00B plate                                                                 
- AESIM - dyn. MONITORING MODE: FORCES + Moments                      
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Rad.f=.2000        
Red.f=.2000        
Ref.A=.4363E-02    
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Fig. 31: Convergence of dynamic forces on flat plate with the 2-sample scheme at M
1

= 0:5 and

k = 0:1 on the fine grid with H5U updating.



- 33 -
NLR-TP-99256

*AESIM*V1.00B plate                                                                 
CONVERGENCE                                                           
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Red.f=.2000        
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Full Pot. model    
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Time 13:41:27      
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Fig. 32: Convergence characteristics during dynamic simulation on flat plate with the 2-sample

scheme at M
1

= 0:5 and k = 0:1 on the fine grid with H5U updating.

*AESIM*V1.00B plate                                                                 
CONVERGENCE logarithmic                                               
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Fig. 33: Convergence characteristics during dynamic simulation on flat plate (log scale) with the

2-sample scheme at M
1

= 0:5 and k = 0:1 on the fine grid with H5U updating.
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*AESIM*V1.00B plate                                                                 
HARMONIC PRESSURES: rfreq   0.2000                                    

Mach = 0.500       
Alpha= 0.000       
Beta = 0.000       
Gamma= 0.000       
TIMEe=94.25        
Rad.f=.2000        
Red.f=.2000        
Ref.A=.4363E-02    
Ref. Mode=       2 
NTS  =    36       
SEQNR=    12       
Full Pot. model    
Dt :15-Jun-99      
Time 13:47:36      
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Fig. 34: Non converged harmonic pressure coefficient distributions on flat plate at M
1

= 0:5 and

k = 0:1 on the fine grid with H5U updating.

*AESIM*V1.00B plate                                                                 
HARMONIC PRESSURES: rfreq   0.2000                                    
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Red.f=.2000        
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Full Pot. model    
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Time 13:42:08      
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Fig. 35: Harmonic pressure coefficient distributions on flat plate with the 2-sample scheme at

M
1

= 0:5 and k = 0:1 on the fine grid with H5U updating.
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Fig. 36: Convergence of sectional forces of 2-sample scheme versus number of iterations on flat

plate at M
1

= 0:5 and k = 0:1 on the coarse grid with H5U updating.

ReKb                                    
                                        

Iterations

0 288 576

1.030

1.425

1.820
ReMb                                    
                                        

Iterations

0 288 576

-0.620

-0.257

0.107

ImKb                                    
                                        

Iterations

0 288 576

-0.1500

-0.0958

-0.0416
ImMb                                    
                                        

Iterations

0 288 576

0.1020

0.1135

0.1250

Flat plate:coarse grid:Mach=0.5:K=0.1:pitching 2-sample scheme dT=1:12

16-Jun-99 10:48:31

Fig. 37: Convergence of sectional forces of 2-sample scheme versus number of iterations on flat

plate at M
1

= 0:5 and k = 0:1 on the coarse grid with S2U updating.
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Fig. 38: Convergence of 2-sample scheme versus time step on flat plate at M
1

= 0:5 and k = 0:1

on the coarse grid with H5U updating.
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Fig. 39: Comparison of lift and moment coefficients on pitching flat plate at M
1

= 0:5 .
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*AESIM*V1.00B plate                                                                 
CONVERGENCE                                                           

Mach = 0.500       
Alpha= 0.000       
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Red.f=.2000        
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Fig. 40: Convergence characteristics during dynamic diverging rate simulation on flat plate with

the 1-sample scheme at M
1

= 0:5 and k = 0:1 on the fine grid with H5U updating.
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Fig. 41: Convergence characteristics during dynamic diverging rate simulation on flat plate with

the 1-sample scheme (log scale) at M
1

= 0:5 and k = 0:1 on the fine grid with H5U updating.
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*AESIM*V1.00B plate                                                                 
HARMONIC PRESSURES: rfreq   0.2000                                    

Mach = 0.500       
Alpha= 0.000       
Beta = 0.000       
Gamma= 0.000       
TIMEe=2.618        
Rad.f=.2000        
Red.f=.2000        
Ref.A=.4363E-02    
Ref. Mode=       2 
NTS  =    36       
SEQNR=    11       
Full Pot. model    
Dt :16-Jun-99      
Time 14:00:39      
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Fig. 42: Diverging rate pressure distributions on flat plate obtained with the 1-sample scheme (log

scale) at M
1

= 0:5 and k = 0:1 on the fine grid with H5U updating.
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6.2 Two-dimensional NACA 64A010 application

To demonstrate the applicability of the 2-sample scheme for a transonic case the NACA64A010

airfoil has been selected.

Calculations of unsteady airloads have been performed with AESIM using the full potential mod-

eling for the NACA 64A010 airfoil at M
1

= 0:8 and a reduced frequency range up to j s j= 0:8.

The oscillation was a 0.5 deg pitching about 25% chord. The H5U and the 2-sample scheme was

selected applying 72 iterations with the time step equivalent toCY CLE

18
.

The results consist of:

Figures 43..46 Fine grid simulation using 4 cycles with 18 time steps per cycle at k=0.2 with H5U

updating. In figure 43 the development of the forces for the 2-sample scheme is presented.

It should be noted that the latter result show only the development of the two samples!.

Convergence characteristics are shown in figures 44 and 45. In figure 46 the pressure distri-

butions for the 2-sample scheme are presented which seems to be all right.

Figure 47 A comparison between several methods is shown in figure 47. The figure shows results

of DOULAT, results of the 2-sample scheme up to k=0.43 and results of the regular scheme

up to k=1.0. The agreement between the CFD results is fairly good. The imaginary part

seems to be most sensitive.

*AESIM*V1.00B  NACA 64a010    GRID                                                  
- AESIM - dyn. MONITORING MODE: FORCES + Moments                      

Mach = 0.800       
Alpha= 0.000       
Beta = 0.000       
Gamma= 0.000       
TIMEe=2.618        
Rad.f=.4000        
Red.f=.4000        
Ref.A=.8727E-02    
Ref. Mode=       2 
NTS  =    72       
SEQNR=     1       
Full Pot. model    
Dt :16-Jun-99      
Time 14:40:26      
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Fig. 43: Response signals of forces during dynamic simulation on NACA64A010 airfoil with the

2-sample scheme at M
1

= 0:8 andk = 0:2 on a fine grid with H5U updating.

3Starting at k =0.8 it was not possible to obtain a converged solution with the chosen time step and H5U strategy at

the higher frequencies. This needs further investigations.
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*AESIM*V1.00B  NACA 64a010    GRID                                                  
CONVERGENCE                                                           

Mach = 0.800       
Alpha= 0.000       
Beta = 0.000       
Gamma= 0.000       
TIMEe=2.618        
Rad.f=.4000        
Red.f=.4000        
Ref.A=.8727E-02    
Ref. Mode=       2 
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Fig. 44: Convergence characteristics during dynamic simulation on NACA64A010 airfoil with

the 2-sample scheme at M
1

= 0:8 andk = 0:2 on a fine grid with H5U updating.

*AESIM*V1.00B  NACA 64a010    GRID                                                  
CONVERGENCE logarithmic                                               

Mach = 0.800       
Alpha= 0.000       
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Gamma= 0.000       
TIMEe=2.618        
Rad.f=.4000        
Red.f=.4000        
Ref.A=.8727E-02    
Ref. Mode=       2 
NTS  =    72       
SEQNR=     8       
Full Pot. model    
Dt :16-Jun-99      
Time 14:41:02      
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Fig. 45: Convergence characteristics during dynamic simulation on NACA64A010 airfoil with

the 2-sample scheme (log scale) at M
1

= 0:8 andk = 0:2 on a fine grid with H5U updating.
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*AESIM*V1.00B  NACA 64a010    GRID                                                  
HARMONIC PRESSURES: rfreq   0.4000                                    

Mach = 0.800       
Alpha= 0.000       
Beta = 0.000       
Gamma= 0.000       
TIMEe=2.618        
Rad.f=.4000        
Red.f=.4000        
Ref.A=.8727E-02    
Ref. Mode=       2 
NTS  =    72       
SEQNR=    12       
Full Pot. model    
Dt :16-Jun-99      
Time 14:41:16      
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Fig. 46: Harmonic pressure coefficient distributions on NACA64A010 airfoil with the 2-sample

scheme at M
1

= 0:8 andk = 0:2 on a fine grid with H5U updating.
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Fig. 47: Comparison of lift and moment coefficients on pitching NACA64A010 at M
1

= 0:8 .
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6.3 Wing-tail model

In order to demonstrate the ability of the 2-sample scheme to deal with a 3-D multi-surface the

unsteady AGARD planar wing-tail configuration with the tail in the plane of the wing has been

considered.

The geometry of the wing and tail consists of planar quadrilaterals and symmetric displacement

modes of the configuration which are defined in many references and also in [HE94]. The outline

of the geometries and the vibration modes are depicted in figure 48.

In [HE94] results have been presented on a coarse grid with a comparable spacing to what is ac-

ceptable for lifting surface methods. The grid which is also applied in this study contains 43x20x27

nodes with 10x10 nodes on each side of the two surfaces! Unsteady calculations were performed

at M
1

= 0:8 and k=0.5 in wing twisting (tail fixed). It was also concluded that the application of

256 time steps with S2U updating during 3 periods on the current grid results in a 3 digit accuracy

and that the unsteady pressure results compared reasonably well to a panel method result.

The results consist of:

Figures 49..52 Simulation using 8 cycles with 32 time steps per cycle at k=0.5 with H5U updat-

ing. In figures 49 and 50 the development of the forces for the 2-sample scheme is presented.

The latter figure shows the generalized force Q11. It should be noted that only the devel-

opment of the two samples is shown!. The convergence is rapid. After a few iterations the

level is already set. Convergence characteristics are shown in figures 51 and 52.

Figure 53 A comparison between several methods is shown in figure 53. The figure shows re-

sults previous obtained with AESIM [HE94] and GUL and results of the 2-sample scheme

versus number of iterations and time step [2x4, 2x8, 4x16 and 8x32 (cycles x steps

CY CLE
]. The

following observations can be made (note the scales).

� The convergence is fast, About 30 iterations suffice.

� The CFD data is in agreement.

� There is a large difference between the GUL data and the CFD data which has been

discussed in [HE94].
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*AESIM*V1.00B agard wing tail                                                       
DispLacement modes  Planar Surface Spline                             

Mach = 0.800       
Alpha= 0.000       
Beta = 0.000       
Gamma= 0.000       
TIMEe=0.000        
Rad.f=.5000        
Red.f=.5000        
Ref.A=.1745E-01    
Ref. Mode=       1 
NTS  =     1       
SEQNR=     1       
Full Pot. model    
Dt :16-Jun-99      
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Fig. 48: Outline of planform and vibration modes on AGARD wing-tail configuration.

*AESIM*V1.00B agard wing tail                                                       
- AESIM - dyn. MONITORING MODE: FORCES + Moments                      

Mach = 0.800       
Alpha= 0.000       
Beta = 0.000       
Gamma= 0.000       
TIMEe=.7854        
Rad.f=.5000        
Red.f=.5000        
Ref.A=.1745E-01    
Ref. Mode=       1 
NTS  =   256       
SEQNR=     1       
Full Pot. model    
Dt :16-Jun-99      
Time 18:07:14      
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Fig. 49: Response signals of forces during dynamic simulation on wing-tail configuration with

the 2-sample scheme at M
1

= 0:8; k = 0:5 and H5U updating.
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*AESIM*V1.00B agard wing tail                                                       
- AESIM - dynamic MONITORING MODE: FORCES                             

Mach = 0.800       
Alpha= 0.000       
Beta = 0.000       
Gamma= 0.000       
TIMEe=.7854        
Rad.f=.5000        
Red.f=.5000        
Ref.A=.1745E-01    
Ref. Mode=       1 
NTS  =   256       
SEQNR=     3       
Full Pot. model    
Dt :16-Jun-99      
Time 18:08:08      
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Fig. 50: Response signals of generalized force Q11 during dynamic simulation on wing-tail con-

figuration with the 2-sample scheme at M
1

= 0:8; k = 0:5 and H5U updating.

*AESIM*V1.00B agard wing tail                                                       
CONVERGENCE                                                           

Mach = 0.800       
Alpha= 0.000       
Beta = 0.000       
Gamma= 0.000       
TIMEe=.7854        
Rad.f=.5000        
Red.f=.5000        
Ref.A=.1745E-01    
Ref. Mode=       1 
NTS  =   256       
SEQNR=    91       
Full Pot. model    
Dt :16-Jun-99      
Time 16:01:32      
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Fig. 51: Convergence characteristics during dynamic simulation on wing-tail configuration with

the 2-sample scheme at M
1

= 0:8; k = 0:5 and H5U updating.
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*AESIM*V1.00B agard wing tail                                                       
CONVERGENCE logarithmic                                               

Mach = 0.800       
Alpha= 0.000       
Beta = 0.000       
Gamma= 0.000       
TIMEe=.7854        
Rad.f=.5000        
Red.f=.5000        
Ref.A=.1745E-01    
Ref. Mode=       1 
NTS  =   256       
SEQNR=    92       
Full Pot. model    
Dt :16-Jun-99      
Time 16:01:35      
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Fig. 52: Convergence characteristics during dynamic simulation on wing-tail configuration with

the 2-sample scheme (log scale) at M
1

= 0:8; k = 0:5 and H5U updating.
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Fig. 53: Comparison of generalized forces on AGARD wing-tail configuration at M
1

= 0:8 and

k = 0:5.
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7 Conclusions

In this paper recently developed approaches to temporal integration and analysis in aeroelasticity

have been discussed.

The formulation of the [1] sample

cycle
and [2] samples

cycle
concepts for obtaining harmonic and diverging

data from time-simulation CFD methods has been presented.

Experience with the presented temporal integration methods in recent applications and ongoing

developments led to the following observations:

� The schemes have been applied with good results.

� The schemes are efficient for large time step simulations and relatively low frequencies.

� The schemes are inefficient for small time step simulations and relatively high frequencies

and need to be improved.

� The schemes have shown good promise for increasing the applicability of time-accurate

CFD methods for obtaining frequency domain data.
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