
Nationaal Lucht- en Ruimtevaartlaboratorium

National Aerospace Laborator y NLR

NLR TP 97286

Slot Allocation by Column Generation

J.M. van den Akker and K. Nachtigall





- 3 -
TP 97286 L

Summary

A slot allocation policy assigns a time slot for departure to each of a number of flights in order

to avoid overload in control sectors and on runways. We present a new solution method for

a basic version of the European slot allocation problem. The approach is based on an integer

linear programming model, where for each flight there is a set of 0-1 variables each associated

with one of its possible departure slots. First, column generation is used to solve the LP-

relaxation. This results in the construction of a reasonable set of departure slots for each of

the flights. Then, the resulting integer linear program is solved. We also present a rounding

heuristic to derive feasible integral solutions from fractional solutions after each iteration of the

column generation algorithm. Computational results for real-world problems are encouraging,

because they indicate that compared to existing exact optimisation algorithms our method generates

solutions of approximately the same quality but requires only a fraction of the computation time.

Moreover, they indicate that the rounding heuristic performs well.

Keywords: Air Traffic Flow Management, Slot Allocation, Integer Linear Programming, Column

Generation.



- 4 -
TP 97286 L

Contents

List of tables 5

1 Introduction 7

2 The basic model and general assumptions 11

3 Column Generation 14

3.1 The LP-based method 14

3.2 The Pricing Problem 16

3.3 A Rounding Heuristic 18

3.4 Connected Flights 18

4 Computational results 21

5 Conclusions 27

5 Tables

4 Figures

(29 pages in total)



- 5 -
TP 97286 L

List of tables

Table 1 Notation 11

Table 2 Traffic scenarios used for the experiments. 21

Table 3 Computational results of Maugis compared to column generation. 22

Table 4 Computational results of column generation for � = 1. 22

Table 5 Results of rounding heuristic for Thu-2-June-1994 and � = 1. 24



- 6 -
TP 97286 L

This page is intentionally left blank.



- 7 -
TP 97286 L

Fig. 1 French Airspace

1 Introduction

In the last decade, air traffic has increased extensively and has exceeded all forecasts. The result

has been a considerable increase of delays. For example, Duytschaever [9] mentions that on

Fridays in July 1992, 57 % of the flights in Western Europe were delayed and that the average

delay of these flights was 25 minutes. The situation is expected to get worse; an ATAG study [4]

expects the number of flights in Western Europe to increase by 54% between 1990 and 2000 and

by 110% between 2000 and 2010, which will amount to more than 11 million flights per year.

On the short-term, the only way to deal with the increasing amount of traffic is to use the existing

airspace capacity more efficiently. This capacity is characterized as follows. The European

airspace is divided into different control sectors; Figure 1 depicts the division of the French

airspace. In each sector a certain number of controllers are responsible for maintaining safety. To

guarantee that the controllers are able to do this, overload of the sector should be avoided. This is

reflected in the so-called sector capacity. In literature the sector capacity is either defined by the

maximum number of aircraft which during a given time period are allowed to enter the sector, or

by the maximum number of aircraft which during a given time period are allowed to be within



- 8 -
TP 97286 L

the sector. Airports have an arrival and a departure capacity which indicate the maximum number

of aircraft which during a given time period are allowed to land at and to depart from the airport,

respectively.

A way to make more efficient use of the existing airspace capacity is slot allocation. A slot

allocation policy assigns a time slot for departure to each of a number of flights. The idea is as

follows. Suppose that, if an aircraft departs at a certain time, it encounters overloaded sectors or

cannot land immediately at its arrival airport because of congestion. This leads to airborne delay,

i.e., the aircraft has to fly in circles in a holding area or has to reduce its speed. Since airborne

delays are more expensive and less safe than delays which are incurred on the ground, it can be

more beneficial to delay the departure of the flight, i.e., select another time slot for departure of

the flight.

Summarizing, the slot allocation problem is to assign a time slot for departure to each of a number

of flights in such a way that for each sector and each airport the capacity is not exceeded and that

the costs are minimal.

If the departure slot of a flight falls later than its scheduled departure time, then allocating the

slot amounts to imposing a ground-holding delay. Therefore, slot allocation is also known as

ground-holding.

Currently, slot allocation for flights in Western-Europe is performed by the CASA system of

Eurocontrol (see Philipp and Gainche [15]). CASA is based on a first-come-first-served heuristic,

i.e., departure slots are assigned to flights in the order of their scheduled departure time.

In the literature different models for the slot allocation or ground-holding problem have been

presented. The first were models for the so-called Single Airport Ground-Holding problem, in

which a number of flights heading for one given congested airport are considered. We refer to

Andreatta, Odoni, and Richetta [3] for an overview. For the problem involving a complete set of

airports with limited departure and arrival capacities, but no restrictions on the capacities of the

control sectors, different optimisation methods have been proposed. Integer linear programming

formulations have been studied by Vranas [17], Vranas, Bertsimas, and Odoni [6], and Bertsimas

and Stock [7], and have been compared by Andreatta and Brunetta [1]. Heuristics based on

priority rules have been proposed by Andreatta, Brunetta, and Guastella [2] and Navazio and

Romanin-Jacur [14].

The assumption that capacities of control sectors do not pose a restriction, may hold for the situation



- 9 -
TP 97286 L

in the USA, but certainly not for that in Europe. The models including sector capacities are special

cases of models for the Generalized Traffic Flow Management Problem (TFMP), in which optimal

ground-holding as well as airborne delays are computed. Integer linear programming models for

the TFMP have been proposed by Helme [11], Lindsay, Boyd, and Burlingame [12], Bertsimas

and Stock [7], and Maugis [13]. Vranas and Psaraftis [18] performed computational experiments

for the slot allocation problem with the model in [7] and proposed another model for this problem.

The common characteristic of the models in [12], [7], and [13] is that they use time-indexed

variables, such as for example binary variables uft indicating that flight f departs at time t. Such

models are often very strong in the sense that the LP-relaxation provides a very good bound
a). An important disadvantage is the large number of decision variables b), which leads to large

computation times. Experiments in [18] show that for real-world examples with at least 6000

flights solving the LP-relaxation requires already an hour on a SGI Power Challenge and finding

an integral solution turns out to be impractical. On the other hand, they indicate that for certain

instances the solution provided by the first-come-first-served heuristic, i.e., the type of heuristic

that is used in the CASA system, is 40 % above the optimum.

In this paper, we consider the integer linear programming model which was studied by Maugis

[13]. We present an LP-based solution method in which we solve the LP-relaxation by column

generation to deal with the large number of variables. It consists of the following steps:

(1) Use a heuristic to find a feasible solution of the problem.

(2) Solve the LP-relaxation by column generation.

(3) Solve the resulting integer linear program, i.e., the integer linear program consisting of the

variables generated in the previous step.

Since we solve the integer linear program restricted to the set of variables which are generated

by the column generation algorithm, our method is a heuristic. The idea is that the column

generation algorithm will generate for each flight a set of good departure slots. Our computational

experiments indicate that for real-world examples the LP-based method provides nearly optimal

solutions, while requiring significantly less computation time than finding the optimal solution by

solving the complete integer linear programming problem.

In each iteration of the column generation algorithm a fractional solution is found. We have im-

plemented a rounding heuristic to derive feasible integral solutions from these fractional solutions.

The same type of heuristic has shown to work very well for single-machine scheduling problems

a)For example, Maugis [13] reports that for all tested real-world examples the integrality gap did not exceed 0.07 %.
b)For a problem instance with approximately 4500 flights the model contains about 1.000.000 binary variables (see

Section 4).



- 10 -
TP 97286 L

(see Van den Akker [16] and Hall, Schulz, Shmoys, and Wein [10]). It turns out that this heuristic

enables us to find rather good solutions quickly, which is interesting from a practical point of view.

Moreover, we extend our model to handle connections between flights. Two flights can be

connected because they have to be performed by the same aircraft, or because an airline wants

to guarantee that passengers can change from one flight to the other. Connected flights are also

studied in [6], [7], [13], and [18]. We show that our LP-based method can be applied in this

situation, too.

This paper is organized as follows. In Section 2, we present the integer linear programming

formulation. In Section 3, we discuss our LP-based method, especially the column generation

algorithm and the rounding heuristic. Moreover, we treat connected flights. Section 4, we report

on computational results for real-world examples. Finally, in Section 5 we give our conclusion.



- 11 -
TP 97286 L

2 The basic model and general assumptions

Notation Symbol

Decision Variables

xfd indicates if flight f departs at time d

Sets

Set of sectors S

Set of time periods for capacity definition T

Set of flights F

Set of flights crossing sector s F(s)

Set of sectors crossed by flight f S(f)

Set of all possible departure slots of flight f D�(f)

Set of generated departure slots of flight f D(f)

Times

Length of period for sector capacity constraints �

Time period induced by number t for capacity definition T := [t � �; (t+ 1) � � )

Length of period between two consecutive departure slots �

Maximum delay for one flight G

Scheduled departure time of flight f d
f
0

Duration after departure at which f enters sector s dfs;in

flight time of flight f Df

Other symbols

Costs if flight f has departure time d !fd

Capacity of sector s during period T Cs(T )

Table 1 Notation

We consider a set F of n flights. For each flight f 2 F are given: a departure and an arrival

airport, and a scheduled departure time d
f
0 . Our task is to find for each flight a departure time

d � d
f
0 such that at any time the sector and airport capacities are not exceeded, and the total costs

are minimal. The notation that is used throughout the paper is summarized in Table 1.

To define sector capacity we apply time discretization, i.e., time is divided into periods of a given

length � . Time period T , induced by t, is given by the interval T := [t � �; (t+ 1) � �). Recall

that in the literature two definitions of sector capacities occur. The capacity Cs(T ) of sector s in

period T can either be

(1) the maximum number of flights which are allowed to enter s during T; or

(2) the maximum number of flights which are allowed to be present within s during (a part of)

T:

We consider the first definition. The main reason is that this definition is used in current practice by



- 12 -
TP 97286 L

Eurocontrol. Moreover, when the second definition is used, the LP-relaxation is very weak, which

makes the problem much harder to solve. In our model we will consider arrival and departure

capacities of airports as a special type of sector capacities, so it is not necessary to introduce

separate notation for these capacities, here.

Slot allocation only deals with fixing departure times of flights, and not with routing flights.

Therefore, we assume that for each flight the route is fixed. This means, that for each flight f we

have a list of sectors S(f) that are crossed by f and for each sector we know the time interval

during which flight f crosses sector s if it departs at time d, especially we know the time d+ dfs;in

at which flight f enters sector s if it departs at time d.

To keep our model tractable, we also discretize the set of possible departure times: time is divided

into periods of a given length � and aircraft are assumed to depart at the beginning of such

time periods. We assume that all data d
f
0 and dfs;in are integral multiples of �. Furthermore,

like most of the existing models, our model includes an upper bound G for the delay of an

individual flight. It follows that the set D�(f) of possible departure times for flight f is given by

D�(f) =
n
d : d = d

f
0 + j � � (j = 0; 1; :::;Nf)

o
, where Nf = bG� c. Note that in the definition

of sector capacities, we divided time into periods of length � . We assume that the division into

periods of length � is a refinement of the division into periods of length � , i.e., each ‘capacity’

period of length � contains an integral number of ‘departure’ periods of length �, which implies

that � is a multiple of �. The above type of discretization of departure times is used in most models

(see e.g. [13, 18]).

We obtain the following integer linear programming model (GHP) for the slot allocation problem.

For each flight f we introduce a set of decision variables xfd (d 2 D�(f)), where xfd equals 1 if

flight f has departure time d, and 0 otherwise.

(GHP) minimize
X
f2F

X
d2D�(f)

!fdxfd

s:t:

(a)
X

d2D�(f)

xfd = 1 8 f 2 F

(b)
X

f2F(s)

X
d2D�(f):d+dfs;in2T

xfd � Cs(T ) 8 s 2 S; T 2 T

(c) xfd 2 f0; 1g 8f 2 F ; d 2 D�(f):



- 13 -
TP 97286 L

The coefficient !fd is defined as the cost incurred if flight f has departure time d. Constraints

(a) guarantee that exactly one departure time is assigned to each flight and constraints (b) are the

capacity constraints. Arrival and departure capacities of airports can be included in the constraints

(b) in the following way. We consider each airport as two sectors. The first sector is used by

flights departing from the airport and the second sector by flights arriving at the airport. For the

departure sector we have dfs;in = 0 for all flights f departing from the airport, and for the arrival

sector we have dfs;in = Df for all flights f arriving at the airport, where Df is the flight time of

flight f . We assume that Df is a multiple of �. Note that it is possible to base the airport capacity

constraints on periods of length different from the length � used to define sector capacities. These

periods should however contain an integral number of periods of length �.

Observe that our model assigns departure times, instead of departure slots, which are defined as

intervals, to flights. Let d 2 D�(f); d is hence at the beginning of a period of length �. Since all

problem data df0 , dfs;in, and Df are multiples of � it follows that, if a flight f departs during the

interval [d; d+ �), then it enters each of the sectors it crosses in exactly the same period of length �

as it does when it departs exactly at time d. For this reason, feasible solutions of our model (GHP)

are still feasible if we allow a flight with departure time d to depart during the interval [d; d+ �).

Hence, in our model, assigning departure time d to a flight is equivalent to assigning departure

interval or slot [d; d+ �) to the flight. We prefer to use departure times, since this facilitates the

analysis of our LP-based method.

Observe that the number of decision variables is approximately G�jFj
� which is rather large for

real-world examples. To handle this large number of variables, we propose a column generation

scheme to solve the LP-relaxation of (GHP) which will be discussed in detail in the next section.



- 14 -
TP 97286 L

3 Column Generation

3.1 The LP-based method

In this section we describe our LP-based method in detail. Recall that the method consists of the

following steps:

(1) Use a heuristic to find a feasible solution of the problem.

(2) Solve the LP-relaxation by column generation.

(3) Solve the resulting integer linear program, i.e., the integer linear program consisting of the

variables generated in the previous step.

Moreover, after each iteration of the column generation algorithm we use a rounding heuristic

to obtain a feasible integral solution from the current fractional solution. This heuristic will be

discussed in Section 3.3

Step (1): The FCFS heuristic

Before starting the column generation algorithm, it is necessary to have a feasible solution. In the

first step of the method such a solution is derived by the following first-come-first-served heuristic

(FCFS). Recall that the CASA system of Eurocontrol also uses a FCFS heuristic. Our heuristic

proceeds as follows:

(1) Order the flights on their scheduled departure times.

(2) Handle the flights in this order: take for flight f the earliest possible departure time d � d
f
0

such that no sector capacity overload occurs.

Step (2): Solving the LP-relaxation by column generation

In the second step of the method, we use column generation to solve the LP-relaxation of (GHP),

i.e., the linear programming problem obtained from (GHP) by replacing the integrality constraints

xfd 2 f0; 1g by the simple sign constraints 0 � xfd: Note, that this and constraints (a) imply

0 � xfd � 1. Clearly, the optimal value of the LP-relaxation is a lower bound on the optimal

value of the integer programming problem. A column generation algorithm always works with

a restricted linear programming problem in the sense that only a subset of the variables is taken

into account; other variables are generated only when they are necessary to improve the current

solution. We refer to Barnhart et al. [5] for a description of column generation and its applications.

Let D(f) be a subset of the set of possible departure times of flight f which contains for each

flight f the departure time generated by the above FCFS heuristic. Let (GHP2) be the restriction

of the LP-relaxation of (GHP) to the variables xfd with d 2 D(f). Then (GHP2) has a feasible

solution. (GHP2) is given by:



- 15 -
TP 97286 L

(GHP2) minimize
X
f2F

X
d2D(f)

!fdxfd

s:t:

(a0)
X

d2D(f)

xfd = 1 8 f 2 F

(b0)
X

f2F(s)

X
d2D(f):d+dfs;in2T

xfd � Cs(T ) 8 s 2 S; T 2 T

(c0) 0 � xfd 8f 2 F ; d 2 D(f):

From the theory of linear programming it is known that after solving the restricted problem to

optimality, each included variable has nonnegative reduced cost. The reduced cost of variable xfd

is defined in the following way. Let S(f) be the set of all sectors which are crossed by flight f .

Let uj be the dual variables corresponding to constraints (a0), and vsT those corresponding to the

constraints (b0). Then the reduced cost !̂fd of the variable xfd is given by

!̂fd := !fd � uf �
X

(s;T ):s2S(f);d+ds
f;in2T

vsT : (1)

If each variable outside the restricted problem also has nonnegative reduced cost, then we have

found an optimal solution of the original problem, i.e., of the LP-relaxation of (GHP). On the

other hand, if there exist variables with negative reduced cost, then one or more of these variables

have to be added to the restricted problem (GHP2) and the linear program has to be solved again.

After that the existence of variables with negative reduced cost is checked again, etc. The process

of identifying variables with negative reduced cost and re-optimizing the linear program is called

an iteration of the column generation algorithm.

The main property of column generation is that the existence of variables with negative reduced

cost is not checked by enumerating all variables, but in a faster way by solving an optimization

problem, which is called the pricing problem. To apply column generation successfully, it is very

important to be able to solve the pricing problem efficiently.



- 16 -
TP 97286 L

3.2 The Pricing Problem

Solving the pricing problem amounts to finding variables xfd 2 D�(f) n D(f), i.e., variables

that are not in the restricted problem (GHP2), with reduced cost !̂fd < 0. This can be done by

minimizing for each flight f the reduced cost !̂fd over all possible departure times d.

The indicator function

�
f
sT (d) =

(
1 if d+ dsf;in 2 T ,

0 otherwise,
(2)

indicates whether flight f enters sector s with s 2 S(f) during time period T if has departure

time d. Obviously, �fsT is a jump function with two jumps. Note that we assume that all problem

data df0 and dsf;in are multiples of �, and that a period T of length � contains an integral number of

periods of length �. As a result, the jumps are at points which are multiples of �. Now the function

�f(d) =
X

f(s;T ) : s2S(f);T2T g

vsT � �fsT (d) (3)

is also a jump function. We assume that the cost !fd are increasing with respect to the associated

departure time d, i.e., for d � d0 we have !fd � !fd0 . For example the cost function representing

the total amount delay has this property. Then the function g(d) := !fd��f (d) takes its minimum

at one of the finite jump points of �f . This is shown in Figures 2 and 3 for the case that the cost

function equals the total delay, i.e., !fd = d� d
f
0 :

It now follows that for a given flight f , the minimum reduced costs over all possible departure

times, i.e.,

min
d�df0

!̂fd = �uf + min
d�df0

�
!fd � �f (d)

�
(4)

can be calculated by enumerating all jump positions of �f .

If d0 is such that !̂fd0 = min
d�df0

!̂fd < 0; then xfd0 will be added to (GHP2) and after that

(GHP2) has to be solved again. For computational efficiency it is beneficial to look first for all

flights f for variables xfd0 with !̂fd0 < 0 and then put them all into the LP-relaxation (GHP2),



- 17 -
TP 97286 L

-

6

d
f
0

�f (d)

ds b

s b

s b

s

Fig. 2 Jump function �f (d)

-

6

d
f
0

g(d) = d� �f (d)

d�
�
�

s

b

��s

b

�
�
�

s

b

�
�
�
�
�
�
�

s

Fig. 3 Resulting reduced cost g(d) = d �

�f(d) with delay cost !fd = d� d
f
0

before solving it again.

The computational effort required to calculate the minimum of !̂fd depends on the number of

jumps of �f . Since every elementary jump function �fsT has exactly 2 jumps, an upper bound on

this number is given by 2 � j f(s; T ) : s 2 S(f); T 2 T ; vsT 6= 0g j. From the theory of linear

programming, it follows that from among the capacity constraints (b0) only non-trivial constraintsP
(f;d)2Q xfd � Cs(T ) with jQj > Cs(T ) can have dual variables vsT 6= 0. The computational

results show that the number of such constraints is relatively small. a) This explains why the

pricing problem can be solved very quickly and shows why column generation is much faster than

the simplex method.

Step (3): Solving the resulting integer linear program

The resulting integer linear programming problem, i.e., the integer linear program consisting of

the variables generated by the column generation algorithm is solved by the commercial software

package CPLEX4.0 [8]. CPLEX applies a branch-and-bound algorithm in which lower bounds

are obtained by solving linear relaxations.

a)For one of the instances with about 4500 flights the column generation generates approximately 10,000 decision

variables and between 600 and 750 capacity constraints (s; T ) for which it is possible that vsT 6= 0.



- 18 -
TP 97286 L

3.3 A Rounding Heuristic

The following heuristic can be used to obtain good integral solutions while solving the LP-

relaxation. After each iteration of the column generation algorithm we have a fractional solution.

We can use such a fractional solution in a heuristic to find a feasible integral solution of the slot

allocation problem (GHP) in the following way. Let x̃ be a fractional solution. Define the average

departure time d̄f of flight f by

d̄f =
X

d2D(f)

x̃fd � d:

For example, if xf3 =
1
2 and xf5 =

1
2 , then d̄f = 4. The heuristic consists of the following steps:

(1) Order the flights on their average departure times d̄f .

(2) Apply a FCFS heuristic based on this order.

The same type of heuristic was implemented for a time-indexed formulation for single-machine

scheduling problems by Van den Akker [16]. Her computational results showed that the heuristic

provided very good solutions. Moreover, Hall, Schmoys, Schulz, and Wein [10] derived a worst

case-ratio of 2 of the rounding heuristic for a slightly modified formulation. Our computational

results will show that this type of heuristic performs well for slot allocation, too.

3.4 Connected Flights

In this section we consider connected flights. Connected flights were also studied in [6], [7], [13],

and [18]. Assume that two flights f1; f2 have to be performed by the same aircraft, or that an airline

wants to guarantee that passengers can change from f1 to f2, for example in a hub-and-spoke

system. In such situations we say that the two flights are connected. If f1 and f2 are connected

flights, then the arrival airport of flight f1 is the departure airport of flight f2. Moreover, between

the arrival of flight f1 and departure of flight f2 there has to be a so-called turn around time q. If

the flights have to be performed by the same aircraft, this turn around time is required to unload,

clean, and then reload the aircraft. If passengers have to change from one flight to the other,

the turn around time is required to give the passengers the time get off the first aircraft, move to

another gate and get on the second aircraft.

We consider the situation where flights can only be connected in pairs, i.e., each flight can only be

connected to one other flight. We say that two connected flights f1 and f2 are consecutive flight

legs of one flight f . Now, the departure times d1 of flight f1 and d2 of flight f2 have to fulfill

d2 � d1 +Df1 +q;where Df1 denotes the flight time of f1 and q the turn around time. We assume

that, like the other problem data, q is a multiple of �. We do not handle the consecutive flight legs

by independent decision variables xf1d1 and xf2d2 , but we associate a decision variable xfd with

each pair of departure times d = (d1; d2) such that d1 � d
f1
0 , d2 � d

f2
0 , and d2 � d1 +Df1 + q.



- 19 -
TP 97286 L

If f is a flight consisting of two consecutive flight leg, then D�(f) denotes the set of all feasible

departure time pairs d = (d1; d2). Let F 0 be the subset of such flights and F 0(s) the subset of

flights in F 0 for which at least one flight leg crosses sectors s. Then the capacity constraint (b) for

sector s during period T has to be replaced by

(b̃)
X

f2F(s)nF 0(s)

0
B@ X
d2D�(f) : d+ds

f;in2T

xfd

1
CA

+
X

f2F 0(s)

0
B@ X
d=(d1;d2)2D�(f) : d1+dsf1;in

2T

xfd +
X

d=(d1;d2)2D�(f) : d2+dsf2;in
2T

xfd

1
CA � Cs(T ):

Recall that the pricing problem is solved by determining for each flight the variable xfd with

minimal reduced cost. Clearly, for flights containing a single flight leg this can be done exactly as

explained in Section 3.1. For flights consisting of two consecutive flight legs the minimal reduced

cost are given by the following minimum over the departure times d1 and d2:

�uf + min
d2�Df1

�q�d1�d
f1
0 ^d2�d

f2
0

�
!fd � �f1(d1)� �f2(d2)

�
; (5)

where uf is the dual variable corresponding to constraint (a0), !fd = !f1d1 + !f2d2 is given by

the sum of costs for both flight legs, and the functions �f1(d1) and �f2(d2) are as defined in (3).

Again, we assume that !fd is a monotonically increasing function of d;, i.e., if for d = (d1; d2)

and d0 = (d01; d
0
2) we have that d1 � d01 and d2 � d02, then !fd � !fd0 : Recall that the functions

�f1 and �f2 are jump functions. Let �k0 ; :::; �
k
mk

denote the jumps of the function �fk (for k = 1; 2).

Then

�� = min
d2�Df1

�q�d1�d
f1
0 ^d2�d

f2
0

�
!fd � �f1(d1)� �f2(d2)

�

= min
d2�Df1

�q�d1�d
f1
0 ^d2�d

f2
0

�
!f1d1 + !f2d2 � �f1(d1)� �f2(d2)

�

= min
d1�d

f1
0

0
@!f1d1 � �f1(d1) + min

d2�d1+Df1
+q^d2�d

f2
0

�
!f2d2 � �f2(d2)

�1A



- 20 -
TP 97286 L

We consider the function

�̃(d1) = min
d2�d1+Df1

+q^d2�d
f2
0

�
!f2d2 � �f2(d2)

�
:

Recall that!f2d2��
f2(d2) can be minimized overd2 by enumerating the jump points�2

0; �
2
1 : : : ; �

2
m2

of �f2(d2). If d1 increases, then the number of jump points �2
k satisfying �2

k � d1 + Df1 + q

decreases and hence �̃(d1) increases. More precisely, for any d1 = �2
k �Df1 � q+ � the function

value �̃(d1) can be larger than for the previous departure time d1 = �2
k�Df1�q. We conclude that

�̃(d1) is an increasing jump function whose value can increase just after the points �2
k �Df1 � q.

Since d1 only takes values that are a multiple of �, the minimum of �̃(d1) is achieved in one of

the points in the set f�̃0; : : : ; �̃m2g, where �̃k := �2
0 �Df1 � q + �. It now follows that also the

function �(d1) := �̃(d1) � �f1(d1) is a jump function that can be minimized by evaluating the

function in the m1 +m2 points in the set f�1
0; :::; �

1
m1
; �̃0; :::; �̃m2g: Hence

�� = min
d1�d

f1
0

�
!f1d1 + �(d1)

�

can be computed by evaluating !f1d1 + �(d1) for all m � m1 +m2 jump positions of �(d1): Since

�� can be calculated in at most m steps, the pricing problem can be solved within O(m1 +m2)

time.

In a similar way, we can handle flights with more than two consecutive flight legs.



- 21 -
TP 97286 L

4 Computational results

For our computational experiments we used the real-world data which were also used by Maugis

[13]. They are available on the Internet:

‘http://www.cenaath.cena.dgac.fr/� maugis/ghp/readme.html’,

and contain data representing the traffic in the French airspace during three days in 1994: Sunday

May 8, Wednesday June 1, and Thursday June 2. Table 2 reports the number of flights jFj and

the number of capacity constraints jCj: For more details on the instances we refer to [13]. The

experiments in [13] consisted of solving the complete integer linear programming problem (GHP)

for each of these instances.

Our computer runs have been performed on a SUN Sparc 5 workstation with 196 MB core memory.

The linear programs have been solved using the commercial software package CPLEX 4.0 [8].

Since the experiments of Maugis [13] were also performed on a SUN Sparc 5, our computation

times can directly be compared to Maugis’ computation times.

Like in [13], we set the length of the ‘capacity’ period � equal to 30 minutes. As cost function we

consider the total amount of delay, i.e., we define !fd = d� d
f
0 : Furthermore, in all instances the

maximum delay G for one flight has been set to 240 minutes.

We performed two series of experiments. In the first series we set � equal to the values that were

used by Maugis, i.e., � is equal to 5 for Wednesday June 1, and � is equal to 10 for the other two

days. In the second series we set � equal to 1.

It turns out that in the given instances, not all of the data are multiples of � for � equal to 5 or 10.

Since our solution method is based on the fact that all problem data are multiples of �, we rounded

all scheduled departure times to the nearest multiple of �. This is one of the reasons why the total

amount of delay in our integral solutions differs from the total amount of delay found by Maugis.

For the experiments with � equal to 1, we used the original data. The results for � = 5; 10 are

Day jFj jCj

Wednesday June 1 4551 1147

Thursday June 2 4753 1153

Sunday May 8 4335 1134

Table 2 Traffic scenarios used for the experiments.



- 22 -
TP 97286 L

Scenario Results of Maugis Column Generation

Date � ZFCFS Z�
I time� ZLP ZI time ncol nvar ncons

Wed 5 57920 47895 5003 47622.5 47655 490 8443 218448 614

Thu 10 59690 33580 7672 33630 33630 670 9826 114072 739

Sun 10 83920 45810 6183 46940 46940 630 10120 104040 620

Table 3 Computational results of Maugis compared to column generation.

presented in Table 3 and the results for � = 1 are presented in Table 4. In the tables we give the

following quantities:

Date: traffic scenario

ZFCFS : objective value of the solution found by the FCFS heuristic

ZLP : optimal value of the LP-relaxation

ZI : objective value of an integer solution with relative objective difference 0:05: a)

time: computation time in seconds

ncol: number of variables generated by column generation

nvar: total number of variables of the model (GHP)

ncons: number of non-trivial capacity constraints
P

(f;d)2Q xfd � c with jQj > c:

Additionally, in Table 3 we give:

Z�
I : objective value of an integer solution given in [13]

time�: computation time in seconds reported in [13]

Table 4 shows that the objective value ZI of the best integral solution that we have found is very

close to the optimal value ZLP of the LP-relaxation. This indicates that the solutions found by

our method are nearly optimal, and hence practically as good as the solutions found by Maugis.

For Sunday May 8 our solution even is optimal.

a)This is a parameter value used by CPLEX which forces the mixed integer optimization to ignore integer solutions

that do not improve the best integer solution found so far by at least the percentage that is given by the parameter, i.e.,

by at least 0.05 %. This limits the number of nodes in the branch-and-bound tree but has the disadvantage that the best

integer solution could be ignored (see [8]).



- 23 -
TP 97286 L

Scenario Column Generation

Date � ZFCFS ZLP ZI time ncol nvar ncons

Wed 1 55622 45968,75 45983 440 9278 1092240 634

Thu 1 52934 28486,00 28508 568 10303 1140720 763

Sun 1 76468 40522,50 40523 640 10620 1040400 671

Table 4 Computational results of column generation for � = 1.

Table 3 shows that our solution method is much faster than solving the complete integer linear

program as was done by Maugis. For the given examples our method requires about 10% of the

computation time required for solving the complete integer linear program.

Observe that the simplex method finds non-basic variables with negative reduced cost by enu-

merating all variables, whereas column generation finds these variables by solving the pricing

problem. In our algorithm the pricing problem is solved by investigating for every flight the

jumps of a specific cost function. The experiments have shown, that the average number of jumps

per cost function is approximately 30, which is relatively small. As a result, the computation

time needed to solve the pricing problem is only a fraction of the time required to enumerate all

variables, which is an important reason why our method is faster than the method of Maugis.

Moreover, the tables show that the number of variables generated by the column generation

algorithm, especially for � = 1, is relatively small compared to the number of variables of the

complete integer program (GHP). Also the number of non-trivial capacity constraints is relatively

small compared to the number of constraints in (GHP), which is about 1150 (see Table 2). Hence,

the integer linear program that is solved by CPLEX in the third step of our method is considerably

smaller than (GHP), which is another reason why our method is faster.

A comparison of the results in Tables 3 and 4 demonstrates that the use of � = 1 will significantly

improve the solution, i.e., reduce the total amount of delay in the solution. However, it does not

increase the number of generated variables by column generation nor the computation time. This

suggests that column generation can handle small numbers � which leads to good solutions.

A very interesting result is that the solutions of the FCFS algorithm are improved considerably

by the linear programming approach. The tables show that the delays of the FCFS solutions are

reduced by 17% up to 48% by using our LP-based method or by computing the optimal solution

by solving the complete integer linear programming problem. Similar results were obtained from

the experiments described in [18].



- 24 -
TP 97286 L

Iteration time Zheur ZLP

1 7.68 52934 52934

2 30.82 52934 52934

3 220.56 34975 33384

4 340.86 32216 29561.4

5 388.90 30545 28643.8

6 417.96 30315 28510

7 442.11 30080 28488.5

8 464.63 29912 28487

9 486.72 30058 28486

10 508.40 30049 28486

Table 5 Results of rounding heuristic for Thu-2-June-1994 and � = 1.

Recall that after each iteration of the column generation algorithm the rounding heuristic is applied.

For Thursday June 2 and � = 1, we present the results of this heuristic in Table 5. In this table we

give the following quantities:

time: computation time until the end of the iteration

Zheur: objective value of the solution found by the rounding heuristic

ZLP: objective value of the LP-relaxation after this iteration.

Details of the computer run for Thursday, June 2 and � = 1 are depicted in Figures 4 and 5.

The left part of Figure 4 shows the objective value of the relaxation (GHP2) and the objective

value of the solution found by the rounding heuristic after each iteration of the column generation

algorithm. The right part shows the objective value of the integer solution found by our method,

i.e., the optimal solution of the integer linear program resulting from the column generation

algorithm. Figure 5 contains the number of variables in the relaxation (GHP2) after each iteration

of the column generation algorithm. The data in both figures are presented as a function of the

computation time. For the other instances a similar table and similar figures can be given. Since

they show a similar behaviour, these are omitted.

Table 5 and Figure 4 show that the objective value of the LP-relaxation and the objective value

of the solution found by the rounding heuristic differ by only a few percent. This indicates that



- 25 -
TP 97286 L

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600

CPU [seconds]

D
el

ay
 [m

in
ut

es
]

Rounding Heuristic
Relaxation

column generation ILP

Fig. 4 Results of rounding heuristic and column generation for Thu-2-June-1994.

the rounding heuristic provides very good solutions. Moreover, the results show that most of the

reduction of delay in the solution found by the rounding heuristic is achieved during the first two

or three iterations which only require approximately half of the computation time.

A very important advantage of combining column generation with the rounding heuristic is that

after each iteration of the column generation a feasible solution is available. The results show

that after a few iterations the computation can be stopped with as result a rather good solution

being available. This is a quite important from a practical point of view. To take modified flight

data into account, slot allocation is repeated very often. Currently, Eurocontrol runs the CASA

algorithm approximately every 15 minutes. This limits the computation time available for a slot

allocation algorithm. Since the rounding heuristic often finds a good solution rather quickly from

the fractional solutions provided by the column generation algorithm, the heuristic can be very

useful in practice.



- 26 -
TP 97286 L

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600

CPU [seconds]

N
um

be
r 

of
 V

ar
ia

bl
es

column generation ILP

Fig. 5 Number of generated variables for Thu-2-June-1994 and � = 1.



- 27 -
TP 97286 L

5 Conclusions

In this paper we presented a heuristic LP-based solution method for a basic version of the European

slot allocation problem. The most important step of the method is solving the LP-relaxation by

column generation.

We performed computational experiments with real-world examples. They showed that the

method provides solutions which are very close to the optimum while requiring only a fraction

of the computation time of an exact optimisation algorithm. Moreover, they showed that the

LP-relaxation of the integer linear programming model is very strong, which was also observed in

[13] and [18]. For the tested instances, the solutions found by a first-come-first-served heuristic,

which is the type of heuristic which is used in current practice, can be reduced by 17 % up to 48

% by using our method.

After each iteration of the column generation algorithm we applied a rounding heuristic to derive

a feasible solution from the current fractional solution. Our experiments indicate that the rounding

heuristic provides rather good solutions quickly, i.e., already after a few iterations of the column

generation algorithm. This is very interesting from a practical point of view, since in practice the

slot allocation algorithm has to be run quite often to deal with modified flight data.

We conclude that column generation in combination with the rounding heuristic is a very promising

approach for solving the European slot allocation problem.



- 28 -
TP 97286 L

References

1. G. Andreatta and L. Brunetta. Multi-Airport Ground Holding Problem: A Computational

Evaluation of Exact Algorithms. Technical report, Department of Pure and Applied mathe-

matics, University of Padova, Padova, Italy, 1995.

2. G. Andreatta, L. Brunetta, and G. Guastella. Multi-Airport Ground Holding Problem: A

heuristic Approach Based on Priority Rules. Technical report, Department of Pure and

Applied mathematics, University of Padova, Padova, Italy, 1995.

3. G. Andreatta, A.R. Odoni, and O. Richetta. Models for the Ground-Holding Problem. In

L. Bianco and A.R. Odoni, editors, Computation and Information Processing in Air Traffic

Control. Springer-Verlag, Berlin, 1993.

4. ATAG. European Traffic Forecasts. Geneva, August, 1992.

5. C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelbergh, and P.H. Vance. Branch-

and-price: Column Generation for Solving Huge Integer Programs. Operations Research, to

appear.

6. D. Bertsimas, A.R. Odoni, and P.B. Vranas. The Multi-Airport Grounnd-Holding Problem in

Air Traffic Control. Operations Research, 42(2):249–261, 1994.

7. D. J. Bertsimas and S. Stock. The Air Traffic Flow Management Problem with En-Route

Capacities. Technical report, Alfred P. Shool for Management, Massachusetts Institute of

Technology, 1994.

8. CPLEX Opimization, Inc. Using the CPLEX Callabale Library. Manual, 1995.

9. D. Duytschaever. The Development and Implementation of the EUROCONTROL Central

Flow Management Unit (CFMU). Technical report, Eurocontrol, 1993.

10. L.A. Hall, A.S. Schulz, D.B. Shmoys, and J. Wein. Scheduling to Minimize Average Com-

pletion Time: Off-line and On-line Approximation Algorithms. Technical Report Preprint

516/1996, Department of Mathematics, University of Technology, Berlin, Germany, 1996.

11. M.P. Helme. Reducing Air Traffic Delay in a Space-Time Network. In Proceedings of the 1992

IEEE International Conference on Systems, Man and Cybernatics, pages 236–242, Chicago,

1992.

12. K.S. Lindsay, E.A. Boyd, and R. Burlingame. Traffic Flow Management Modeling with the

Time Assignment Model. Air Traffic Control Quarterly, 3(1):255–276, 1993.

13. L. Maugis. Mathematical Programming for the Air Traffic Management Problem with En-

Route Capacities. Technical Report CENA/R95-022, CENA Orly Sud 205, 94542 Orly

Aerograre Cedex, France, June, 1995.

14. L. Navazio and G. Romanin-Jacur. Multi Connections Multi-Airport Ground Holding Prob-

lem: Models and Algorithms. Technical report, Department of Electronics and Informatics,

1995.



- 29 -
TP 97286 L

15. W. Philipp and F. Gainche. Air Traffic Flow Management in Europe, pages 64–106. in H.

Winter and H.G. Nűsser: Advanced Technologies for Air Traffic Flow Management, Springer-

Verlag, Berlin, 1994.

16. J.M. Van den Akker. LP-based Solution Methods for Single-Machine Scheduling Problems.

PhD thesis, Eindhoven University of Technology, 1994.

17. P.B. Vranas. The Multi-Airport Ground Holding Problem in Air Traffic Control. PhD thesis,

Operations Research Center, MIT, Cambridge, MA, 1992.

18. P.B. Vranas and H.N. Psaraftis. Work package 2: Evaluation of Tactical En-route Strategies,

Workstream 1: Define ATFM Optimisation Criteria, Models and Trial Scenarios. Technical

report, Final report of the NOAA project (European Union), 1996.


