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Summary

A dlot alocation policy assigns atime slot for departure to each of a number of flightsin order
to avoid overload in control sectors and on runways. We present a new solution method for
a basic version of the European dot alocation problem. The approach is based on an integer
linear programming model, where for each flight there is a set of 0-1 variables each associated
with one of its possible departure slots. First, column generation is used to solve the LP-
relaxation. This results in the construction of a reasonable set of departure slots for each of
the flights. Then, the resulting integer linear program is solved. We also present a rounding
heuristic to derive feasible integra solutions from fractiona solutions after each iteration of the
column generation agorithm. Computational results for real-world problems are encouraging,
becausethey indicatethat compared to existing exact optimisation algorithms our method generates
solutions of approximately the same quality but requires only afraction of the computation time.
Moreover, they indicate that the rounding heuristic performs well.

Keywords: Air Traffic Flow Management, Slot Allocation, Integer Linear Programming, Column
Generation.
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Fig. 1 French Airspace

1 Introduction

In the last decade, air traffic has increased extensively and has exceeded all forecasts. The result
has been a considerable increase of delays. For example, Duytschaever [9] mentions that on
Fridays in July 1992, 57 % of the flights in Western Europe were delayed and that the average
delay of these flights was 25 minutes. The situation is expected to get worse; an ATAG study [4]
expects the number of flightsin Western Europe to increase by 54% between 1990 and 2000 and
by 110% between 2000 and 2010, which will amount to more than 11 million flights per year.

On the short-term, the only way to deal with the increasing amount of traffic isto use the existing
airspace capacity more efficiently. This capacity is characterized as follows. The European
airspace is divided into different control sectors, Figure 1 depicts the division of the French
airspace. In each sector acertain number of controllers are responsible for maintaining safety. To
guarantee that the controllers are able to do this, overload of the sector should be avoided. Thisis
reflected in the so-called sector capacity. In literature the sector capacity is either defined by the
maximum number of aircraft which during a given time period are allowed to enter the sector, or
by the maximum number of aircraft which during a given time period are allowed to be within
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the sector. Airportshave an arrival and adeparture capacity which indicate the maximum number
of aircraft which during a given time period are allowed to land at and to depart from the airport,
respectively.

A way to make more efficient use of the existing airspace capacity is slot alocation. A sot
allocation policy assigns atime slot for departure to each of a number of flights. The ideais as
follows. Supposethat, if an aircraft departs at a certain time, it encounters overloaded sectors or
cannot land immediately at itsarrival airport because of congestion. Thisleadsto airborne delay,
i.e, the aircraft has to fly in circles in a holding area or has to reduce its speed. Since airborne
delays are more expensive and less safe than delays which are incurred on the ground, it can be
more beneficial to delay the departure of the flight, i.e., select another time slot for departure of
the flight.

Summarizing, the slot alocation problemisto assign atime slot for departure to each of a number
of flightsin such away that for each sector and each airport the capacity is not exceeded and that
the costs are minimal.

If the departure dlot of a flight falls later than its scheduled departure time, then alocating the
slot amounts to imposing a ground-holding delay. Therefore, dlot allocation is also known as
ground-holding.

Currently, slot alocation for flights in Western-Europe is performed by the CASA system of
Eurocontrol (see Philipp and Gainche [15]). CASA isbased on afirst-come-first-served heuristic,
i.e., departure dots are assigned to flightsin the order of their scheduled departure time.

In the literature different models for the slot alocation or ground-holding problem have been
presented. The first were models for the so-called Single Airport Ground-Holding problem, in
which a number of flights heading for one given congested airport are considered. We refer to
Andresatta, Odoni, and Richetta [3] for an overview. For the problem involving a compl ete set of
airports with limited departure and arrival capacities, but no restrictions on the capacities of the
control sectors, different optimisation methods have been proposed. Integer linear programming
formulations have been studied by Vranas [17], Vranas, Bertsimas, and Odoni [6], and Bertsimas
and Stock [7], and have been compared by Andreatta and Brunetta [1]. Heuristics based on
priority rules have been proposed by Andreatta, Brunetta, and Guastella [2] and Navazio and
Romanin-Jacur [14].

Theassumption that capacitiesof control sectorsdo not posearestriction, may hold for thesituation
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inthe USA, but certainly not for that in Europe. The model sincluding sector capacities are specia
cases of modelsfor the Generalized Traffic Flow Management Problem (TFMP), in which optimal
ground-holding as well as airborne delays are computed. Integer linear programming models for
the TFMP have been proposed by Helme [11], Lindsay, Boyd, and Burlingame [12], Bertsimas
and Stock [7], and Maugis[13]. Vranas and Psaraftis [18] performed computational experiments
for the dot alocation problem with themodel in [7] and proposed another model for thisproblem.
The common characteristic of the models in [12], [7], and [13] is that they use time-indexed
variables, such as for example binary variables u ¢, indicating thet flight f departs at time¢. Such
models are often very strong in the sense that the LP-relaxation provides a very good bound
%), An important disadvantage is the large number of decision variables ®), which leads to large
computation times. Experiments in [18] show that for real-world examples with at least 6000
flights solving the L P-relaxation requires already an hour on a SGI Power Challenge and finding
an integral solution turns out to be impractical. On the other hand, they indicate that for certain
instances the solution provided by the first-come-first-served heuristic, i.e., the type of heuristic
that is used in the CASA system, is 40 % above the optimum.

In this paper, we consider the integer linear programming model which was studied by Maugis
[13]. We present an LP-based solution method in which we solve the LP-relaxation by column
generation to deal with the large number of variables. It consists of the following steps:

(1) Useaheuristic to find a feasible solution of the problem.

(2) Solve the LP-relaxation by column generation.

(3) Solvetheresulting integer linear program, i.e., theinteger linear program consisting of the

variables generated in the previous step.

Since we solve the integer linear program restricted to the set of variables which are generated
by the column generation agorithm, our method is a heuristic. The idea is that the column
generation algorithmwill generate for each flight aset of good departure slots. Our computational
experiments indicate that for real-world examples the L P-based method provides nearly optimal
solutions, while requiring significantly less computation timethan finding the optimal solution by
solving the completeinteger linear programming problem.

In each iteration of the column generation algorithm a fractional solutionis found. We have im-
plemented arounding heuristicto derivefeasibleintegral solutionsfrom thesefractional solutions.
The same type of heuristic has shown to work very well for single-machine scheduling problems

“)For example, Maugis [13] reports that for all tested real-world examplesthe integrality gap did not exceed 0.07 %.
¥)For a problem instance with approximately 4500 flights the model contains about 1.000.000 binary variables (see
Section 4).
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(see Van den Akker [16] and Hall, Schulz, Shmoys, and Wein [10]). It turns out that this heuristic
enables ustofind rather good solutionsquickly, whichisinteresting from a practical point of view.

Moreover, we extend our model to handle connections between flights. Two flights can be
connected because they have to be performed by the same aircraft, or because an airline wants
to guarantee that passengers can change from one flight to the other. Connected flights are aso
studied in [6], [7], [13], and [18]. We show that our LP-based method can be applied in this
situation, too.

This paper is organized as follows. In Section 2, we present the integer linear programming
formulation. In Section 3, we discuss our LP-based method, especialy the column generation
algorithm and the rounding heuristic. Moreover, we treat connected flights. Section 4, we report
on computational results for real-world examples. Finally, in Section 5 we give our conclusion.
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2 Thebasic model and general assumptions

Notation ‘ Symbol
Decision Variables
T 14 | indicatesif flight f departsat time d
Sets
Set of sectors S
Set of time periodsfor capacity definition T
Set of flights F
Set of flights crossing sector s F(s)
Set of sectors crossed by flight f S(fH)
Set of al possible departure slots of flight f D*(f)
Set of generated departure dots of flight f D(f)
Times
Length of period for sector capacity constraints T
Time period induced by number ¢ for capacity definition T:=[tx7,(t+1)*71)
Length of period between two consecutive departure dots 5
Maximum delay for oneflight G
Schedul ed departure time of flight f df
Duration after departure at which f enters sector s d! in
flight time of flight f Dy
Other symbols
Cogtsif flight f has departuretime d Wyd
Capacity of sector s during period 7" Cs(T)

Tablel Notation

We consider a set F of » flights. For each flight f € F are given: a departure and an arriva
airport, and a scheduled departure time dé. Our task is to find for each flight a departure time
d > dé such that at any time the sector and airport capacities are not exceeded, and the total costs
are minimal. The notation that is used throughout the paper is summarized in Table 1.

To define sector capacity we apply time discretization, i.e., timeis divided into periods of a given
length 7. Time period 7', induced by ¢, is given by theinterval 7" := [t « 7, (¢ + 1) * 7). Recall
that in the literature two definitions of sector capacities occur. The capacity C's(1") of sector s in
period T’ can either be
(1) the maximum number of flights which are allowed to enter s during 7', or
(2) the maximum number of flights which are allowed to be present within s during (a part of)
T.

We consider thefirst definition. Themainreasonisthat thisdefinitionisused in current practice by
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Eurocontrol. Moreover, when the second definition isused, the L P-relaxation is very weak, which
makes the problem much harder to solve. In our model we will consider arrival and departure
capacities of airports as a special type of sector capacities, so it is not necessary to introduce
separate notation for these capacities, here.

Slot alocation only deals with fixing departure times of flights, and not with routing flights.
Therefore, we assume that for each flight the routeis fixed. This means, that for each flight f we
have a list of sectors S( f) that are crossed by f and for each sector we know the time interval
during which flight f crosses sector s if it departs at time d, especialy we know thetime d + diin
a which flight f enters sector s if it departsat timed.

To keep our model tractable, we also discretize the set of possible departuretimes: timeisdivided
into periods of a given length é and aircraft are assumed to depart at the beginning of such
time periods. We assume that al data dé and dgﬂm are integral multiples of 6. Furthermore,
like most of the existing models, our model includes an upper bound G for the delay of an
individua flight. It followsthat the set D*( f) of possible departure times for flight f is given by
D(f)={d:d=d}+j+6(j=01.Ny} where N; = £]. Notethat in the definition
of sector capacities, we divided time into periods of length 7. We assume that the division into
periods of length ¢ is a refinement of the division into periods of length 7, i.e., each ‘capacity’
period of length = contains an integral number of ‘ departure’ periods of length ¢, which implies
that 7 isamultipleof . Theabovetypeof discretization of departure timesisused in most models
(seeeg. [13, 18]).

We obtain the following integer linear programming model (GHP) for the dlot allocation problem.
For each flight f we introduce a set of decision variablesz ;4 (d € D*( f)), where z ¢4 equals 1 if
flight f has departure time d, and O otherwise.

(GHP)  minimize Y > wprgq

FEF dED*(F)
s.t.
(a) Z vpg=1 VfeF
deD*(f)
(b) Z Z wdeCS(T) VSES,TET

JeF(5) deD*(f):d+dl jneT
(c) vra € 10,1} VfeF,deD(f)



-13-
TP 97286

The coefficient w4 is defined as the cost incurred if flight f has departure time d. Constraints
(a) guarantee that exactly one departure timeis assigned to each flight and constraints (b) are the
capacity constraints. Arrival and departure capacities of airports can beincluded in the constraints
(b) in the following way. We consider each airport as two sectors. The first sector is used by
flights departing from the airport and the second sector by flights arriving at the airport. For the
departure sector we have dg,in = Ofor al flights f departing from the airport, and for the arrival
sector we have dgﬂm = Dy for dl flights f arriving at the airport, where D is the flight time of
flight f. We assumethat D, isamultipleof 6. Notethat it is possible to base the airport capacity
constraints on periods of length different from the length ~ used to define sector capacities. These
periods should however contain an integral number of periods of length ¢.

Observe that our model assigns departure times, instead of departure slots, which are defined as
intervals, to flights. Let d € D*( f); d ishence at the beginning of aperiod of length . Sinceall
problem data dé, dgm, and D, are multiples of ¢ it followsthat, if aflight f departs during the
interva [d, d 4 ¢ ), then it enters each of the sectorsit crossesin exactly the same period of length 7
asit doeswhen it departsexactly at timed. For thisreason, feasible solutionsof our model (GHP)
are still feasible if we alow aflight with departure time d to depart during theinterval [d, d + §).
Hence, in our model, assigning departure time d to aflight is equivalent to assigning departure
interval or dlot [d, d + 6) to theflight. We prefer to use departure times, since this facilitates the
analysis of our LP-based method.

Observe that the number of decision variables is approximately % which is rather large for

real-world examples. To handle this large number of variables, we propose a column generation
scheme to solve the L P-relaxation of (GHP) which will be discussed in detail in the next section.
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3 Column Generation

3.1 TheLP-based method
In this section we describe our L P-based method in detail. Recall that the method consists of the
following steps:

(1) Useaheuristic to find a feasible solution of the problem.

(2) Solve the LP-relaxation by column generation.

(3) Solvetheresulting integer linear program, i.e., theinteger linear program consisting of the

variables generated in the previous step.

Moreover, after each iteration of the column generation algorithm we use a rounding heuristic
to obtain a feasible integral solution from the current fractiona solution. This heuristic will be
discussed in Section 3.3

Step (1): The FCFSheuristic
Before starting the column generation algorithm, it is necessary to have afeasible solution. Inthe
first step of the method such asolutionis derived by thefollowing first-come-first-served heuristic
(FCFS). Recal that the CASA system of Eurocontrol also uses a FCFS heuristic. Our heuristic
proceeds as follows:

(1) Order theflights on their scheduled departure times.

(2) Handletheflightsinthisorder: takefor flight f the earliest possible departuretimed > dé

such that no sector capacity overload occurs.

Step (2): Solving the LP-relaxation by column generation
In the second step of the method, we use column generation to solve the LP-relaxation of (GHP),
i.e., thelinear programming problem obtained from (GHP) by replacing the integrality constraints
zsq € {0,1} by the simple sign constraints 0 < z;,. Note, that this and constraints (a) imply
0 < zyq < 1. Clearly, the optimal value of the LP-relaxation is alower bound on the optimal
value of the integer programming problem. A column generation agorithm always works with
arestricted linear programming problem in the sense that only a subset of the variablesis taken
into account; other variables are generated only when they are necessary to improve the current
solution. Werefer to Barnhart et a. [5] for adescription of column generation and its applications.

Let D(f) be a subset of the set of possible departure times of flight f which contains for each
flight f the departure time generated by the above FCFS heuristic. Let (GHP2) be the restriction
of the LP-relaxation of (GHP) to the variables = ;; withd € D(f). Then (GHP2) has afeasible
solution. (GHP2) is given by:
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(GHP2)  minimize > > wpgzsq

fEF deD(f)
st.
() 2 wa=1  V[eF
deD(f)
(1) Z Z zrq < Co(T) VseS, TeT
FEF(5) deD(f):d+df jneT
(C’) ngfd VfEfadED(f)‘

From the theory of linear programming it is known that after solving the restricted problem to
optimality, each included variable has nonnegative reduced cost. The reduced cost of variable z 4
is defined in the following way. Let S(f) be the set of all sectors which are crossed by flight f.
Let u; be the dua variables corresponding to constraints (& ), and v,7 those corresponding to the
constraints (b'). Then the reduced cost &, of the variable z 4, is given by

@fd =W — U — Z VT - (1)
(5,T):s€8(f),d+ds . €T

f,in

If each variable outside the restricted problem also has nonnegative reduced cost, then we have
found an optimal solution of the original problem, i.e., of the LP-relaxation of (GHP). On the
other hand, if there exist variables with negative reduced cost, then one or more of these variables
have to be added to the restricted problem (GHP2) and the linear program has to be solved again.
After that the existence of variables with negative reduced cost is checked again, etc. The process
of identifying variables with negative reduced cost and re-optimizing the linear programis called
an iteration of the column generation agorithm.

The main property of column generation is that the existence of variables with negative reduced
cost is not checked by enumerating all variables, but in a faster way by solving an optimization
problem, which is called the pricing problem. To apply column generation successfully, it isvery
important to be able to solve the pricing problem efficiently.
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3.2 ThePricing Problem

Solving the pricing problem amounts to finding variables = ;4 € D*(f) \ D(f), i.e, variables
that are not in the restricted problem (GHP2), with reduced cost &4 < 0. This can be done by
minimizing for each flight f the reduced cost & ¢4 over all possible departure times d.

The indicator function

1 ifd+ds e,
plr(d) = S )
0 otherwise,
indicates whether flight f enters sector s with s € S(f) during time period 7" if has departure
time d. Obviously, pr isajump function with two jumps. Note that we assume that all problem
datadg and d% ;,, are multiplesof ¢, and that aperiod 7" of length 7 contains an integral number of
periodsof length é. Asaresult, thejumpsare at pointswhich are multiplesof 6. Now thefunction

pl(d) = > vsr - ply(d) €)

{(s,T):s€S(f),T€T}

is aso ajump function. We assume that the cost w,; are increasing with respect to the associated
departuretimed, i.e, for d < d’ wehavew;q < wy .. For example the cost function representing
the total amount delay hasthisproperty. Thenthefunction g(d) := w4 — p/ (d) takesitsminimum
at one of the finite jump points of p/. Thisis shown in Figures 2 and 3 for the case that the cost
function equals the total delay, i.e., wsy = d — dj.

It now follows that for a given flight £, the minimum reduced costs over all possible departure

times, i.e,,

mindfd: —uf+ min (wfd—pf(d)) (4)
d>df d>df

can be calculated by enumerating all jump positions of p/.

If d’ issuch that &y = min,_ ¢ &pq < 0, then ay Will be added to (GHP2) and efter that
Z%

(GHP2) has to be solved again. For computational efficiency it is beneficia to look first for all

flights f for variables =, with &y < 0 and then put them all into the LP-relaxation (GHP2),
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pl(d) g9(d) = d - p'(d)
o—o
o * d d
i dg 7
Fig. 2 Jump function pf(d) Fig. 3 Resulting reduced cost g(d) = d —

p!(d) with delay costw;y = d — dé

before solving it again.

The computational effort required to calculate the minimum of &, depends on the number of
jumpsof p/. Since every elementary jump function pr has exactly 2 jumps, an upper bound on
this number isgivenby 2- | {(s,7) : s € S(f),T € T, vsr # 0} |. From the theory of linear
programming, it follows that from among the capacity constraints(b’) only non-trivial constraints
Y(rdeqrra < Cs(T) with|Q] > C(T') can have dual variables v,y # 0. The computational
results show that the number of such constraints is relatively small. * This explains why the
pricing problem can be solved very quickly and showswhy column generation is much faster than
the simplex method.

Step (3): Solving theresulting integer linear program

The resulting integer linear programming problem, i.e., the integer linear program consisting of
the variables generated by the column generation agorithm is solved by the commercial software
package CPLEX4.0 [8]. CPLEX applies a branch-and-bound a gorithm in which lower bounds
are obtained by solving linear relaxations.

)For one of the instances with about 4500 flights the column generation generates approximately 10,000 decision
variables and between 600 and 750 capacity constraints (s, T') for whichit is possiblethat v.7 # 0.
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3.3 A Rounding Heuristic
The following heuristic can be used to obtain good integral solutions while solving the LP-
relaxation. After each iteration of the column generation agorithm we have afractiona solution.
We can use such afractional solutionin a heuristic to find a feasible integral solution of the slot
allocation problem (GHP) in thefollowing way. Let # be afractional solution. Define the average
departure ti med_f of flight f by
d_f = Z Tpqd.
deD(f)

For example, if ;3 = 3 and 245 = 3, then d; = 4. The heuristic consists of the following steps:

(1) Order theflights on their average departure times c@c

(2) Apply aFCFS heuristic based on this order.
The same type of heuristic was implemented for a time-indexed formulation for single-machine
scheduling problems by Van den Akker [16]. Her computational results showed that the heuristic
provided very good solutions. Moreover, Hall, Schmoys, Schulz, and Wein [10] derived a worst
case-ratio of 2 of the rounding heuristic for a slightly modified formulation. Our computational
results will show that this type of heuristic performswell for slot allocation, too.

34 Connected Flights

In this section we consider connected flights. Connected flightswere also studied in [6], [7], [13],
and [18]. Assumethat twoflights f1, fo haveto be performed by the same aircraft, or that an airline
wants to guarantee that passengers can change from f1 to f», for example in a hub-and-spoke
system. In such situations we say that the two flights are connected. If f; and f» are connected
flights, then the arrival airport of flight f; isthe departure airport of flight f,. Moreover, between
the arrival of flight f; and departure of flight f, there hasto be a so-called turn around time g. If
the flights have to be performed by the same aircraft, this turn around time is required to unload,
clean, and then reload the aircraft. If passengers have to change from one flight to the other,
the turn around time is required to give the passengers the time get off the first aircraft, move to
another gate and get on the second aircraft.

We consider the situation where flights can only be connected in pairs, i.e., each flight can only be
connected to one other flight. We say that two connected flights f; and f, are consecutive flight
legs of one flight f. Now, the departure times d1 of flight f; and d» of flight f, have to fulfill
dp > di1+ Dy, + q, where Dy, denotestheflight timeof f1 and ¢ theturn around time. We assume
that, like the other problem data, ¢ isamultipleof é. We do not handle the consecutiveflight legs
by independent decision variables z 7,4, and z ¢,4,, but we associate a decision variable z ;4 with
each pair of departure timesd = (dy, dy) such that dy > df}, d» > di?, and dy > dy + Dy, + q.
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If fisaflight consisting of two consecutive flight leg, then D*( f) denotes the set of all feasible
departure time pairs d = (d1,d2). Let F' be the subset of such flights and F'(s) the subset of
flightsin F’ for which at least oneflight leg crosses sectors s. Then the capacity constraint (b) for
sector s during period T' has to be replaced by

(b) > > Z

JEF(\F'(s) \dED*(f)1dtds €T

+ Z Z Tpg + rpq | < Cs(T).

FEF!(s) \ d=(d1,d2)€D*([f):d1+ds, . €T d=(d1,d2)€D*(f):do+ds_ . €T

f1,in f2,in

Recall that the pricing problem is solved by determining for each flight the variable x ;4 with
minimal reduced cost. Clearly, for flights containing asingleflight leg this can be done exactly as
explained in Section 3.1. For flights consisting of two consecutive flight legs the minimal reduced
cost are given by the following minimum over the departure times d; and da:

—uyg+ min (wfd — pi(dy) - sz(dz)) ; (5)
dp—Dy,—q>d1>di Adp>d]?

where u is the dual variable corresponding to constraint (&), wsq = wp 4, + w4, IS given by
the sum of costs for both flight legs, and the functions p/1(d;) and p/2(d,) are as defined in (3).
Again, we assume that w,; is a monotonically increasing function of d,, i.e., if for d = (da, d2)
and d' = (d,d,) wehavethat d; < d} and dy < df, thenw;; < wyy. Recall that the functions
pftand pf2 arejumpfunctions. Let ., ..., % denotethejumpsof thefunction p/x (for k = 1, 2).
Then

& = mn (o= p"(dy) = p(d2)
dz—Dfl—qulzdol/\dZZdoz
= min (wfldl + Wppy — p7H(d1) ~ sz(dz))

dp—Dyg, —q>di>di ndp>df2

min (wfldl - pli(d1) + min (wfzdz —p’ 2(dz)))

d1>d; i d2>d1+D g, +eAda>dy?
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We consider the function
pldr) = min - (wps, = p(d2)
ddel-l-Dfl-I-q/\ddeo2

Recall that w4, — p/2(d2) can beminimized over d, by enumerating thejumppoints 3, 12 . . .., p2,,
of p/2(dy). If dy increases, then the number of jump points x? satisfying u2 > di + Dy, + ¢
decreases and hence 5(d; ) increases. More precisaly, for any dy = 2 — Dy, — ¢ + 6 thefunction
value 5(d;) canbelarger than for the previousdeparturetimed; = u2 — D, — q. We conclude that
p(d1) isan increasing jump function whose value can increase just after the pointsu2 — Dy, — q.
Since dy only takes values that are a multiple of ¢, the minimum of p(d1) is achieved in one of
the pointsin the set {io, . . ., fim, }, Where iy, := p3 — Dy, — q + 6. It now followsthat also the
function £(dy) = 5(d1) — pf1(d1) isajump function that can be minimized by evaluating the
function in the my + my pointsin the set {3, ..., 2, . fio, ..., fim, }. Hence
¢ = min (W, + &(d1))
di>dyt

can be computed by evaluatingw 7,4, + £(d1) for al m < m1 + mo jump positionsof £(d1). Since
£* can be calculated in at most m steps, the pricing problem can be solved within O(my 4+ m2)
time.

In asimilar way, we can handle flights with more than two consecutive flight legs.
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4 Computational results

For our computational experiments we used the real-world data which were also used by Maugis
[13]. They are available on the Internet:

“http://www.cenaath.cena.dgac.fr/~ maugis/ghp/readme.html’,

and contain data representing the traffic in the French airspace during three daysin 1994: Sunday
May 8, Wednesday June 1, and Thursday June 2. Table 2 reports the number of flights | 7| and
the number of capacity constraints |C|. For more details on the instances we refer to [13]. The
experimentsin [13] consisted of solving the completeinteger linear programming problem (GHP)
for each of these instances.

Our computer runshave been performed on aSUN Sparc 5 workstationwith 196 M B core memory.
The linear programs have been solved using the commercia software package CPLEX 4.0 [§].
Since the experiments of Maugis[13] were aso performed on a SUN Sparc 5, our computation
times can directly be compared to Maugis' computation times.

Likein [13], we set the length of the * capacity’ period  equa to 30 minutes. As cost function we
consider the total amount of delay, i.e., wedefinewq = d — dé. Furthermore, in al instances the
maximum delay G for one flight has been set to 240 minutes.

We performed two series of experiments. In thefirst series we set 6 equal to the values that were
used by Maugis, i.e., ¢ isequa to 5 for Wednesday June 1, and ¢ is equal to 10 for the other two
days. In the second serieswe set ¢ equd to 1.

It turns out that in the given instances, not al of the data are multiples of 6 for 6 equal to 5 or 10.
Since our solution method is based on the fact that all problem data are multiplesof 6, we rounded
all scheduled departure times to the nearest multipleof 6. Thisis one of the reasons why the total
amount of delay in our integral solutionsdiffers from the total amount of delay found by Maugis.
For the experiments with 6 equal to 1, we used the origina data. The results for § = 5,10 are

Day 71 | lef
Wednesday June 1 | 4551 | 1147
Thursday June2 | 4753 | 1153
Sunday May 8 4335 | 1134

Table2 Traffic scenarios used for the experiments.



TP

-22.
97286

Scenario Results of Maugis Column Generation

Date VA deTar Z3 time* Zrp Zr time | 7ncol Nvar Tcons
Wed 5 || 57920 || 47895 | 5003 47622.5 | 47655 | 490 | 8443 | 218448 | 614
Thu 10 || 59690 || 33580 | 7672 33630 | 33630 | 670 | 9826 | 114072 | 739
Sun 10 || 83920 || 45810 | 6183 46940 | 46940 | 630 | 10120 | 104040 | 620

Table3 Computational results of Maugis compared to column generation.

presented in Table 3 and the resultsfor é = 1 are presented in Table 4. In the tables we give the
following quantities:

Date: traffic scenario
Zrors. objectivevaue of the solution found by the FCFS heuristic

Zp: optimal value of the L P-relaxation

AR objective value of an integer solution with relative objective difference 0.05. *)
time: computation time in seconds

Ngol s number of variables generated by column generation

Nvar: total number of variables of the model (GHP)

Tcons. number of non-trivial capacity constraints )= s jycq @ ra < ¢ With Q| > c.

Additionaly, in Table 3 we give:

Z3: objective value of an integer solution given in [13]
time*: computation timein seconds reported in [13]

Table 4 shows that the objective value 7 of the best integral solution that we have found is very
close to the optimal value Zrp of the LP-relaxation. This indicates that the solutions found by
our method are nearly optimal, and hence practically as good as the solutions found by Maugis.
For Sunday May 8 our solution even isoptimal.

“)Thisis a parameter value used by CPLEX which forces the mixed integer optimization to ignore integer solutions
that do not improve the best integer solution found so far by at least the percentagethat is given by the parameter, i.e.,
by at least 0.05 %. Thislimits the number of nodesin the branch-and-bound tree but has the disadvantage that the best
integer solution could beignored (see[8]).
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Scenario Column Generation
Date o || Zrcrs Zrp Zr | time| ng Tvar Tcons
Wed 1 || 55622 || 45968,75 | 45983 | 440 | 9278 | 1092240 | 634
Thu 1| 52934 || 28486,00 | 28508 | 568 | 10303 | 1140720 | 763
Sun 1 || 76468 || 4052250 | 40523 | 640 | 10620 | 1040400 | 671

Table4 Computationa results of column generation for 6 = 1.

Table 3 shows that our solution method is much faster than solving the complete integer linear
program as was done by Maugis. For the given examples our method requires about 10% of the
computation time required for solving the complete integer linear program.

Observe that the simplex method finds non-basic variables with negative reduced cost by enu-
merating all variables, whereas column generation finds these variables by solving the pricing
problem. In our algorithm the pricing problem is solved by investigating for every flight the
jumps of a specific cost function. The experiments have shown, that the average number of jumps
per cost function is approximately 30, which is relatively small. As a result, the computation
time needed to solve the pricing problem is only afraction of the time required to enumerate al
variables, which is an important reason why our method is faster than the method of Maugis.

Moreover, the tables show that the number of variables generated by the column generation
algorithm, especialy for 6 = 1, is relatively small compared to the number of variables of the
complete integer program (GHP). Also the number of non-trivia capacity constraintsisreatively
small compared to the number of constraintsin (GHP), whichisabout 1150 (see Table 2). Hence,
theinteger linear program that is solved by CPLEX inthethird step of our method is considerably
smaller than (GHP), which is another reason why our method is faster.

A comparison of the resultsin Tables 3 and 4 demonstrates that the use of 6 = 1 will significantly
improve the solution, i.e., reduce the total amount of delay in the solution. However, it does not
increase the number of generated variables by column generation nor the computation time. This
suggests that column generation can handle small numbers § which leads to good solutions.

A very interesting result is that the solutions of the FCFS agorithm are improved considerably
by the linear programming approach. The tables show that the delays of the FCFS solutions are
reduced by 17% up to 48% by using our L P-based method or by computing the optimal solution
by solving the complete integer linear programming problem. Similar results were obtained from
the experiments described in [18].
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Iteration | time Zheur | ZLp
7.68 52934 | 52934
30.82 | 52934 | 52934
220.56 | 34975 | 33384
340.86 | 32216 | 29561.4
388.90 | 30545 | 28643.8
417.96 | 30315 | 28510
442.11 | 30080 | 28488.5
464.63 | 29912 | 28487
486.72 | 30058 | 28486
508.40 | 30049 | 28486

O© 00 N o o A WN P
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Table5 Results of rounding heuristic for Thu-2-June-1994 and 6 = 1.

Recall that after each iteration of the column generation a gorithm therounding heuristicisapplied.
For Thursday June2 and é = 1, we present the results of this heuristicin Table 5. In thistable we
give the following quantities:

time:  computation timeuntil the end of the iteration
Zheur-  Objective value of the solution found by the rounding heuristic
7 p.  Objectivevaue of the LP-relaxation after thisiteration.

Details of the computer run for Thursday, June 2 and é = 1 are depicted in Figures 4 and 5.
The left part of Figure 4 shows the objective value of the relaxation (GHP2) and the objective
value of the solution found by the rounding heuristic after each iteration of the column generation
algorithm. The right part shows the objective value of the integer solution found by our method,
i.e., the optimal solution of the integer linear program resulting from the column generation
algorithm. Figure5 containsthe number of variablesin the relaxation (GHP2) after each iteration
of the column generation agorithm. The datain both figures are presented as a function of the
computation time. For the other instances a similar table and similar figures can be given. Since
they show a similar behaviour, these are omitted.

Table 5 and Figure 4 show that the objective value of the LP-relaxation and the objective value
of the solution found by the rounding heuristic differ by only a few percent. This indicates that
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Fig. 4 Results of rounding heuristic and column generation for Thu-2-June-1994.

the rounding heuristic provides very good solutions. Moreover, the results show that most of the
reduction of delay in the solution found by the rounding heuristic is achieved during the first two
or three iterations which only require approximately half of the computation time.

A very important advantage of combining column generation with the rounding heuristic is that
after each iteration of the column generation a feasible solution is available. The results show
that after a few iterations the computation can be stopped with as result a rather good solution
being available. Thisisa quiteimportant from a practical point of view. To take modified flight
data into account, slot alocation is repeated very often. Currently, Eurocontrol runs the CASA
algorithm approximately every 15 minutes. This limitsthe computation time available for a slot
allocation algorithm. Since the rounding heuristic often finds a good sol ution rather quickly from
the fractional solutions provided by the column generation algorithm, the heuristic can be very
useful in practice.
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Fig. 5 Number of generated variables for Thu-2-June-1994 and 6 = 1.
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5 Conclusions

In thispaper we presented aheuristic L P-based sol ution method for abasic version of the European
dlot alocation problem. The most important step of the method is solving the LP-relaxation by
column generation.

We performed computational experiments with real-world examples. They showed that the
method provides solutions which are very close to the optimum while requiring only a fraction
of the computation time of an exact optimisation algorithm. Moreover, they showed that the
L P-relaxation of the integer linear programming model is very strong, which was a so observed in
[13] and [18]. For the tested instances, the solutions found by a first-come-first-served heuristic,
which is the type of heuristic which is used in current practice, can be reduced by 17 % up to 48
% by using our method.

After each iteration of the column generation algorithm we applied arounding heuristic to derive
afeasible solution from the current fractional solution. Our experimentsindicatethat the rounding
heuristic provides rather good solutions quickly, i.e., already after afew iterations of the column
generation agorithm. Thisisvery interesting from a practical point of view, sincein practice the
slot allocation agorithm has to be run quite often to deal with modified flight data.

We concludethat column generation in combinationwith therounding heuristicisavery promising
approach for solving the European slot alocation problem.
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