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Summary 

The paper describes the application of boundary integral equation methods to solve two problems 

in acoustic and electromagnetic aerospace research. The first problem is concerned with the 

structural-acoustic analysis of solar arrays of satellites. This analysis involves the solution of a 

boundary integral equation for determining the acoustic pressure jump across the solar panels. 

The solar panels are geometrically modelled as screens (i.e. open surfaces in three dimensional 

space). The second problem is related to the radar cross section prediction of engine inlets of 

fighter aircraft. The prediction requires the calculation of the scattered electromagnetic field when 

the inlet is illuminated by a radar beam. Engine inlets are modelled as three-dimensional perfectly 

conducting cavity-like screens. The scattered electric field is obtained by solving the Electric 

Field Integral Equation. 
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1 Introduction 

In aerospace research, boundary integral equation methods are frequently used in various fields of 

applied mechanics for solving problems around thin obstacles. Geometrically, these thin obstacles 

are modelled as screens, i.e. open surfaces in three dimensional space. Since about 1950 many 

investigations have been performed to analyse the aerodynamic flow about (parts of) aircraft. 

In particular, lifting surface theory has been applied extensively to predict lift distributions on 

wings and propeller blades. Appropriate boundary integral equations were derived, and suitable 

numerical methods to solve these equations were developed. 

Before the event of the digital computer, boundary integral equations were solved using basis 

functions with support on the whole boundary. Such global basis functions were advantageous 

from the point of view that the number of unknown coefficients was limited, so that the equations 

could be solved by the computational tools which were available at that time. In 1950 an important 

method for predicting the lift distribution on wings in the subsonic speed regime was presented 

by Multhopp (Ref. 1). In this method the wing is approximated by a plane sheet extending 

over the wing-platform. The mathematical problem is formulated in terms of an integral equation 

which relates the prescribed normal velocity on the wing surface with the pressure distribution 

over the wing surface. The pressure distribution is approximated by trigonometric basis functions 

satisfying the correct behaviour at the leading and trailing edges. The coefficients of the basis 

functions are determined by means of a collocation method. When digital computers became 

available, the convergence of this method was investigated by Zandbergen et al. in the 1960's. 

Lack of convergence was observed due to poor modelling of the singular behaviour of the kernel 

function. The method was improved by Zandbergen et al. in reference 2. Also, the range of 

applicability was extended to kinked wings (Ref. 3). The extension of this method to complex 

aircraft configurations (e.g. configurations with extended slats and flaps consisting of several 

segments) is, however, far from trivial because the global basis functions are defined on a single, 

simply connected domain that can be mapped onto a simple rectangular sheet. Instead, numerical 

methods were developed that use basis functions with local support. These so-called panel 

methods appear to be more tractable for treating complex geometries. Since the mid 1960's 

panel methods have been developed to the extent that they are routinely used in the aerospace 

industry. A drawback of these panel methods is that the computational cost is proportional 

to N 3 ,  where fV is the number of panels. However, due to the steady increase in computing 

power the limits on IV move up every decade. On the currently available computers about 5000 

panels are allowed. The major drawback of boundary integral equation methods in aerodynamics 

is that their range of applicability is restricted to linear inviscid potential flow, i.e. nonlinear 



compressibility effects cannot taken into account. As a consequence, transonic flows with shock 

waves cannot be treated by boundary integral equation methods. Therefore, from one of the major 

fields in aerospace research, viz. the analysis of aerodynamic flow around aircraft, there seem to 

be no pushing factors for further development of boundary integral equation methods. Instead, 

since about the mid 70's the investigations in this field have been addressed to the development of 

computational methods for the solution of non-linear flows governed by the full-potential equation, 

Euler equations and Navier-Stokes equations. However, new challenges have appeared for the 

development and application of boundary integral equation methods in other fields of aerospace 

research. In the present paper the following problems are discussed: 

Structural-acoustic analysis of solar arrays on satellites 

Modem spacecraft are equipped with large light-weight solar arrays. A solar array consists of 

a stack of solar panels, which is unfolded in orbit flight. During the launching phase the solar 

panels are folded into small packages and the distance between the panels is small. Then the 

solar array is exposed to severe dynamic loads which may affect the dynamic behaviour of the 

satellite. Therefore it is a prerequisite to analyse the dynamic behaviour of the solar arrays with 

the main structure of the satellite and to assess the effects of the vibrating air. The coupled 

structural-acoustic analysis of the solar array and the surrounding air involves the solution of 

a hyper-singular integral equation for determining the acoustic pressure jump across the solar 

panels. The panels are geometrically modelled as screens. The hyper-singular integral equation 

is numerically solved by a boundary element method, approximating the acoustic pressure jump 

by piecewise linear functions on a triangular surface grid. 

Radar Cross Section (RCS) calculations 

The development of prediction techniques for radar cross sections of aerospace platforms is 

motivated by the need to have tools available for both radar analysis and design of military 

aerospace vehicles. The vulnerability of fighter aircraft in several types of missions is among others 

determined by their detectability by radarsystems of which the frequency can vary typically from 

0.1 to 94 GHz, corresponding with wavelengths of 3 meters to 3 millimeters. RCS predictions of 

aerospace platforms require the calculation of the fields scattered by the platform when illuminated 

by a plane electromagnetic wave (the radar beam). When illuminated nose-on, the engine inlets 

of aircraft account for approximately 90 % of the radar signature due to multiple reflections in 

these inlets. The interior surface of engine inlets is modelled as a three-dimensional perfectly 

conducting cavity-like screen. The scattered electric field is obtained by solving the Electric Field 

Integral Equation (EFIE) by applying the method of moments. In this method the local basis 

functions are defined by the classical Glisson-Rao vector functions on a triangular surface grid. 



2 Structural-acoustic analysis of solar arrays 

In this section a computational model is described to estimate the acoustic effect of the surrounding 

air on the harmonic vibration of a single solar panel (see figure 1) and an array of two parallel 

solar panels in close proximity (see figure 2). The sound pressure of the vibrating air is modelled 

by a boundary integral formula. The vibrating panel and the vibrating air are coupled by the 

acoustic coupling equation. The coupled analysis involves the solution of a hypersingular integral 

equation. For low frequencies, it will be shown that the vibrating air behaves as virtual mass 

which can be added to the mass of the panel. For the case of two parallel solar panels in close 

proximity, a stmctural-acoustic analysis is presented which is based on the modal analysis of a 

single solar panel. The acoustic energy of the vibrating air on the panels is estimated in terms of 

the small distance h between the two panels. The consequences of these energy estimates on the 

values of the lowest eigenfrequencies of two vibrating panels are discussed. 

2.1 Mathematical formulation 

The solar panels are modelled as plates (i.e. screens), smooth open surfaces in R3. The dynamics 

of a single harmonically vibrating panel is assumed to be governed by the weak formulation: find 

a displacement field tG such that 

for all possible displacement fields v'. Here, I<(G, 6) and M ( K  6) denote respectively the first 

variation of the strain energy and the kinetic energy. In numerical calculations these bilinear forms 

will be modelled by four-noded finite shell elements (see section 2.5)). Furthermore, p denotes 

the density of the solar panels and X the angular frequency. The right-hand side of (1) represents 

the the acoustic work due to the virtual normal displacement 1Z. v'and the acoustic pressure jump 

with pf ( p-) denoting the pressure on the upper (lower) side of the solar panel. Hence, 



where Q is the domain of the plate. When the solar array consists of multiple panels, equation (1) 

has to hold for all panels. 

First consider the single solar panel (Fig. 1). If the panel vibrates in vacuum, { L  = 0. In this 

case (1) corresponds with a classical eigenvalue problem. The solution of this problem yields the 

vibration modes and the eigenfrequencies of the panel in vacuum. However, if the panel vibrates 

in air, the pressure jump { L  does not in general vanish. Below, an expression for p in terms of 6. tC 

is derived, which changes (1) in a perturbed eigenvalue problem. The acoustics is governed by 

the Helmholtz equation. The sound pressure of the vibrating air satisfies the following boundary 

integral formula 

where G represents the fundamental solution of the Helmholtz equation in an infinite domain, 

with k the wave number (I;  = X/c with c the speed of sound), 

The vibrating panel and the vibrating air are coupled by the acoustic coupling equation 

where w, = 6. 6 and p, is the density of the air. 

Application of this boundary condition to the boundary integral formula (4) yields the hypersingular 

integral equation 



or in operator notation 

In equation (7), the integral f is defined as a finite part integral in the sense of Hadamard. 

The mathematical aspects of the integral equation (7), as defined on screens in R ~ ,  have been 

studied in detail by Stephan (Ref. 4). In that paper it has been proved that the operator T 

defines a continuous mapping from HS(C) onto HS-'(Q) for any real numbers. Here HS(n) is 

defined as in reference 4: if I/ is a bounded domain with smooth boundary r a n d  C c r, then 

BS(C) = { u  E H S ( r )  : supp ?L C C}.  The inverse of the operator T exists as a continuous 

mapping from H - ' / ' ( C ~ )  onto B'l2(C2), (see Ref. 4, theorem 2.7), so that (8) yields the following 

expression for the pressure jump in terms of w, 

2 - 1  
11 = p,X T w,. (9) 

When this expression is substituted into (1) the following coupled differential boundary integral 

equation is obtained 

Note that 6 has no physical dimension. For metallic plates E is so small that the last term in (10) 

may be neglected in the structural-acoustic analysis. For solar panels, however, c is of the order 

of 0.01, and it will be shown in this paper that then the vibrating air does have a non-negligible 

effect on the values of the eigenfrequencies. 

Equation (10) defines a compactly perturbed eigenvalue problem. The problem depends in a 

nonlinear way on X2, due to the occurrence of X in T by the Green function G via k = X/c. 

Equation (10) can be solved by using an iteration process for each eigenfrequency: solve for 

i = 1,2 ,3 , . . .  



The dependence of T on X is stressed by the notation TA. Initial values for the eigenmodes and 

eigenfrequencies are obtained by solving (10) in vacuum by taking 6 = 0. The eigenfrequencies in 

vacuum are used to evaluate T,,,,. The convergence of this iteration process has been investigated 

in reference 5 for the lower eigenfrequencies, for which fast convergence was observed. 

The numerical calculations are based on the simultaneous solution of differential equation (1) 

and boundary integral equation (8) using the following weak formulation: find non-trivial G € 

( ~ ' ( f i ) ) ~ ,  / L  E 8 ' I 2 ( f 2 )  and X E R' such that 

for all G E ( H ' ( f 2 ) ) 3 ,  E E a ' I 2 ( f 2 ) .  The bilinearform ( 6 ,  T p )  in (13) reads 

Equation (12) is discretized by finite elements and equation (I 3) by boundary elements. 

The hypersingular integral operator is regularised through integration by parts, using the boundary 

conditions that LL and vanish along the edges of the plates (i.e. no pressure jump along DQ) and 

the fact that G is the fundamental solution of the Helmholtz operator. According to reference 6, 

this leads to the following expression, 

where (d, c) denotes the in-product between dand 6. Note that (15) contains only weakly singular 

integrals. 

2.2 Low frequency analysis 

For low frequencies, the Green function G can be approximated by 

1 j k  
G(F, F') = - - + (3(k2).  

4 F 4s 



When this approximation is substituted into equation (1 5), it follows that 

Similarly, the operator T may be approximated by, compare (7) and (8), 

where To and Do are defined by the bilinear forms in the right hand side of (17). It can be proved 

that the operator To is positive definite on l i 1 / 2 ( ~ ) .  The inverse of this approximation for T reads 

Upon using this, equation (10) becomes 

Note that the first term of (19) can be seen as virtual mass (of the vibrating air), which is added to 

the mass of the solar panel. The second term of (19) induces the last term in equation (20), which 

is proportional to X3. For low frequencies the contribution of this term to the perturbation of the 

eigenfrequencies is small. 

2.3 Two parallel solar panels 

For the case of two parallel solar panels (modelled as two rectangular plates Q1 and R2), at a 

small distance h apart from each other (see figure 2), the mathematical formulation is adjusted by 

simply putting Q = QI U Q2. When the acoustic coupling equation (6) is applied to both plates 

01 and Q2 the following system of boundary integral equations is obtained, 



where pi and ziii (i = 1,2) denote respectively the jump in the acoustic pressure and the displace- 

ment field on Qi. The boundary integral operators Tij are given by 

8% 
Tij{lj(77 = - # y ( F ,  F 1 ) { l j ( F 1 ) d s  I ,  F 'E Qi. 

n, dndn  

Observe that the integral operators T I  I and T22 correspond with the operator T of (8). Hence 

The operators TI? and T ~ I  model the acoustic effects that the plates have upon each other. The 

weak formulation (13) is used for the solution of (21). The bilinear form related to TI? is, see (15), 

These integrals are of regular type, but their evaluation by means of numerical integration mles has 

to be carried out carefully, because the Green function G behaves as I / h  if IF- F'1 is minimal (i.e. 

when Fand F' are opposite to each other). Appropriate quadrature formulas have been presented 

in reference 7. Obviously, the above formulation can be extended to a solar array consisting of an 

arbitrary number of panels. 

2.4 Estimates of acoustic energy 

For a single vibrating panel the acoustic energy of the vibrating air on a solar panel is proportional 

to 

A G ~ L ~ s ,  with p = v a i 2 ~ - ' f i d .  (25) 

Similarly, for two vibrating panels the acoustic energy is related to 

, = g Mi. p (1s. , unz 



with 

7 r - I  - and j? = p,X-L I~V,  
ii . G2 

where Z corresponds with the matrix of operators on the left-hand side of equation (21), 

When the distance between the panels is large, there is no interaction between the panels (TI? = 

T21 = 0 in equation (21) ). Then, pl = p,X' T-I n' . Gl and p2 = p,X2 T-I 2. I&. As a 

consequence, the acoustic energy corresponds with the energy of two single solar panels, i.e. 

For panels in close proximity, a first order expansion of TI? in terms of h has been derived in 

reference 8. It was shown that T12 may be approximated up to first order in h by 

where the operator V is related to the weak formulation of the Helmholtz equation, i.e., 

with t = = 0 on the edge of f i r .  A similar relation holds for TZ1. Equations (21), (23) and 

(30) can now be used to estimate the acoustic effects of in-phase vibration of the panels (given by - 
W I  = 6 2  = G) and out-of-phase vibration (given by S l  = - 6 2  = G). 



If the panels are vibrating in-phase, the pressure jumps over the panels can be approximated by 

Then, the acoustic energy $12 becomes for small values of h, compare (25), 

Comparison of this expression with (29) shows that, when the distance h between the panels tends 

to zero, the acoustic energy tends to half the value for two single solar panels (without interaction). 

For small values of h, the acoustic energy of two in-phase vibrating panels thus corresponds with 

the acoustic energy of a single solar panel with air on both sides but with half the value of the air 

density. 

When the panels are vibrating out-of-phase it follows From (21), (23) and (30) that 

Then the acoustic energy A2 becomes for small values of h, 

which differs completely from the relation (33) for in-phase vibrating panels. Now the acoustic 

effects are dominated by the vibrating air between the panels, and the acoustic energy is inversely 

proportional to the distance h. When the panels vibrate out-of-phase, the air is pumped in and 

out of the gap between the panels, which causes a large energy transfer from the panels to 

the air in the gap. So far it has been assumed that the air could be treated as inviscid. For 

narrow gaps, however, the viscosity of the air cannot be neglected for out-of-phase vibration. 

A more sophisticated model (including effects of inertia, viscosity, compressibility and thermal 

conductivity) has been presented in reference 9. It was shown that the viscosity of the air results 

in a significant amount of damping when the distance between the panels becomes small. 



2.5 Numerical solution 

The structural analysis of the solar panels is based on Reissner-Mindlin theory for moderately 

thick plates. This theory assumes that the in plane displacements pol and w2 have the form 

and that the normal displacement to3 has the form 

The strain energy and the kinetic energy associated with this displacement field have been given 

in reference 10. The strain energy reads 

where 

in which v is the Poisson ratio, D the flexural rigidity, x the shear modulus and K the shear 

correction factor. The kinetic energy, including the effect of rotary inertia, is given by 

7 1 {Sw- + -S3(/3? t ~ 2 2 ) )  (15, 
12 

(40) 

in which S is the thickness of the plate. The bilinear forms Ii(v',G) and i\il(v', 6) of equation (1) 

follow from the first variation of U and V, respectively. The cross-sectional rotations PI, P 2  and 

the normal displacement w are approximated by the four-noded C0 elements of Ref. 11. This 



finite element approximation of equation (12) yields the following system of algebraic equations 

The matrices K and JM are respectively the stiffness and mass matrix of the solar array. The vector 

G contains the nodal displacements. The load vector due to the pressure jump hi, is given by 

in which C is the matrix which couples the displacement degrees of freedom with the pressure 

jump degrees of freedom. The vector fcontains the nodal pressure jumps. 

The boundary integral equation (13) is solved by a boundary element method on a triangular 

surface grid of which the nodes correspond with the nodes of the quadrilateral mesh of the 

structural four-noded C0 elements. The computational aspects of this boundary element method 

have been described in reference 7, where special attention has been given to the evaluation of 

singular and nearly singular integrals. For (1 3) the discrete system of equations becomes 

Substitution of (43) into equations (41) and (42) yields 

with JM, = 6 C T 7 - ' C .  The direct solution of equation (44) has the disadvantage that the 

boundary element method annihilates the sparseness of the finite element matrices. This increases 

computational cost considerably. The number of degrees of freedom of the coupled structural- 

acoustic analysis can be reduced by introducing the structural eigenmodes of (41) in vacuum as 

a new basis. Let & be the i-th structural eigenmode in vacuum. Then the displacement field is 



approximated by 

where @ denotes the reduced basis of eigenmodes. Then equations (41) and (43) become 

where k = Q~ICCD, JG = ( D ~ J M @  and c = C@. Eliminate f f r o m  equations (46)-(47) to obtain 

with 

This approach leads to a reduced system of equations with dimension n, the number of eigenmodes 

in the reduced basis @. This number must be taken sufficiently large to obtain accurate results for 

the lowest modes of the coupled analysis. 

Inspection of (49) reveals that it is sufficient to determine the pressure jumps due to the eigenmodes 

in vacuum, i.e. to determine the matrix = 7 - ' C @ .  

For low frequencies the matrix JU, can be approximated by, compare equation (20), 

When the second term of (50) is neglected, the lowest eigenfrequency of equation (44) reads 



- 
where UI is the eigenmode belonging to the lowest eigenfrequency and represents the first 

term of (50). By the bijectivity ofToand itspositivedefiniteness, it follows that (~bf,,oi?l, GI)  > 0. 

From (51) it follows that the lowest eigenfrequency of the problem in air (44) will be smaller than 

the corresponding eigenfrequency of the problem in vacuum. 

2.6 Applications 

The computational model of the previous section has been applied to representative flat solar array 

panels. The solar panels are sandwich panels with different core and fairing properties. For the 

analysis the panels are modelled as monolithic plates having the same mass per unit area and 

bending stiffness. The basic properties of the panels and the surrounding air are given in table 1. 

Table 1 Properties of solar panel and air 

The panels are simply supported supported along the short edges. The large edges are free. The 

computational mesh on a single panel consists of 16 x 16 quadrilateral elements. The triangular 

grid for the numerical solution of equation (13) is obtained by subdividing each quadrilateral 

element into two parts. 

Length 

Width 

Thickness 

Elasticity modulus 

Poisson's ratio 

Density 

Density of air 

Speed of sound 

The first and second eigenmode of the solar panel (with the above properties) in vacuum are 

displayed in figure 3. The eigenfrequencies of the first five eigenmodes in vacuum are given in 

the second column of table 2. The eigenfrequencies of the solar panel in air are computed using 

the iterative procedure as discussed in equation (1 I). The eigenfrequencies in vacuum are used 

as starting frequency for the evaluation of the matrix I in equation (47). The first approximation 

(obtained with i = 1 in (1 1)) and the converged values of the first five frequencies are given in 

the third and fourth column of table (2). It is observed that the first approximations are already 

very close to the converged values; for most frequencies an error less than one percent is obtained. 

Comparing the in-vacuum and in-air frequencies it is observed that for this configuration the air 

has a large influence on the dynamic behaviour of a single panel. The eigenfrequencies are shifted 

1.675 m 

1.25 m 

0.001 m 

4.5444 EtI3 ~ / m '  

0.3 

1 122.2 kg/m3 

1.2 kg/m3 

340 m/s 



downwards significantly, as could be expected since the panel experiences the air as an added 

mass (see equation (51) ). 

Table 2 Eigenfrequencies (in Hz) of a sin: 

33.25 25.20 25.30 

68.58 59.05 59.14 

136.67 

182.3 1 

192.25 

:panel in vacuum and in air 

When two solar panels are in close proximity (Figure 2), an acoustic wave radiated from one 

panel will hit the other and therefore influences its dynamic behaviour. From equations (33) and 

(35) it follows that the influence will increase if the distance between the panels decreases. This 

is confirmed by figures 4 and 5, where the effects on the eigenfrequencies are shown for the first 

and second pair of eigenmodes. A pair of eigenmodes consists of the two cases where the panels 

vibrate in-phase and out-of-phase, in each case with the same eigenmode per panel. It appears 

from figures 4 and 5 that the panels do not influence each other when the distance is large. Both 

in-phase and out-of-phase they have the same frequency, which is equal to the eigenfrequency 

of the single panel in air (see the fourth column of table (2)). This could be expected from the 

mathematical formulation (see equation (29) ). 

For small gap width h the effects on the eigenvalues are completely different for in-phase vibration 

and out-of-phase vibration, as could be expected from equations (33) and (35). The in-phase 

vibrating panels will feel only the air on one side of the panel. From equation (33) it follows that 

the acoustic energy of two in-phase vibrating panels corresponds with the acoustic energy of a 

single solarpanel with air on both sides but with half the value of the density. As aconsequence, 

the value of (M.U1,  U I )  in (5 1) for two panels should converge to half the value for a single solar 

panel. According to (50) and (5 I), for small values of h, the frequencies of two in-phase vibrating 

panels should converge to the frequency of a single solar panel with air on both sides but with half 

the value of its density. The first two eigenfrequencies of the latter problem have been calculated 

to be 28.45 Hz and 63.45 Hz. Inspection of figures 4 and 5 reveals that the eigenfrequencies of 

the in-phase vibrating panels converge correctly to these limit values. 

For two out-of-phase vibrating panels (close to each other) the acoustic energy is inversely 

proportional to the distance h, as follows from equation (35). As a consequence, the value of 



(M,UI ,  UI )  for two out-of-phase panels tends to cc as h tends to zero. As follows from (51), for 

small values of h, the eigenfrequencies of two out-of-phase vibrating panels should converge to 

zero. This is established by the results of figure 4. 



3 Radar Cross Section Calculations 

Radar Cross Section (RCS) predictions of aerospace platforms are essential to assess their visibility 

under radar surveillance. This requires the calculation of the electromagnetic field scattered by 

the platform when illuminated by a plane electromagnetic wave (the incident radar beam). In 

this section, scattering mechanisms which contribute to the RCS of a typical fighter aircraft are 

discussed. These scattering mechanisms are depicted schematically in figure 6. 

The simplest scattering mechanism is single reflections. When the incident radar beam hits 

the (perfectly conducting) aircraft surface it is scattered in a narrow beam around the specular 

direction. Single reflections dominate the RCS when the direction of the incident beam is about 

normal to large parts of the aircraft surface. This usually occurs only for small intervals about 

certain specific observation angles. After a single reflection the beam can hit the object again, 

giving rise to double reflections, triple reflections or even multiple reflections. Double and triple 

reflections largely contribute to the RCS when the object contains dihedral and trihedral comers; 

they often dominate the RCS over large intervals of observation angles. In the design of the U.S. 

advanced tactical fighter aircraft, blending at the wing-fuselage intersection has been applied in 

order to remove scattering due to double reflections. As to the external aircraft surface, it usually 

suffices to take up to triple reflections into account. However, when the beam enters a large cavity, 

such as the engine inlet of the aircraft, it can be reflected manifold (multiple reflections) before it 

leaves the cavity. The number of reflections depends strongly on the angle under which the beam 

enters, and on the geometry of the inlet. This so-called resonance phenomenon is responsible for 

a very large contribution to the radar signature of an aircraft when illuminated nose on. 

The last scattering mechanism of importance is edge diffraction. When the incident radar beam 

hits a sharp edge (such as the leading or trailing edge of the wing) it is scattered in all directions. 

For specific polarizations of the incident beam, it is also possible that a wave is induced which 

runs over the aircraft surface until it is scattered by another edge. These so-called travelling waves 

can occur for example between the leading and the trailing edge of the wing. The edge diffraction 

phenomenon generally contributes less to the RCS than the aforementioned mechanisms, but for 

some angles can occasionally become the dominant contribution. 

In reference 12 a high frequency prediction model (based on physical and geometrical optics) has 

been described to determine the scattered waves reflected from the external aircraft surface. This 

model, however, is not suitable for RCS calculations of engine inlets in the resonance regime, 

where the dimension of the inlet aperture is of the same order as the wavelength (A) of the incident 



electromagnetic field. For that reason, many research investigations are going on, worldwide, to 

predict the RCS of the multiply reflected waves in the engine inlet by boundary integral equation 

methods. In the present paper the applicability of such methods is discussed. The interior surface 

of the engine inlets is modelled as a three-dimensional perfectly conducting cavity-like screen. 

The scattered electric field is obtained by numerically solving the Electric Field Integral Equation 

(EFIE), using the method of moments. 

3.1 Mathematical formulation 

The electromagnetic fields satisfy the Maxwell equations and appropriate boundary conditions. In 

a homogeneous source-free region the electromagnetic fields around a three dimensional object 

(with boundary S )  can be represented by the Stratton-Chu boundary integral formulas (Ref. 13) 

in terms of the tangential and normal components of the total electromagnetic field (denoted by 

zT, g T )  ) on the object surface. The formula for the scattered electric field & reads 

A similar formula holds for the scattered magnetic field lis, 

Here, 6 is the outward normal to S, w the angular frequency of the electromagnetic field, / L  

the permeability of the free space (/L = 47r10-') and 6 is the permittivity of the free space 

( E  = 10-~ /36a) ,  The Green function G represents the fundamental solution of the Helmholtz 

equation (see equation (5) ). The wave number k in (5) is given by k = w,,@ = 27i/X, with X 

the wavelength of the incident field. 

The integral formulations (52) and (53) can be derived from the vector Helmholtz equations using 

a vector equivalent of Green's second identity (see e.g. Ref. 14). The vector operations in (52) 

and (53) are to be performed in the source coordinates. 

For RCS calculations the electromagnetic field scattered by the object has to be determined, due 

to a plane wave (with direction vector p) illuminating the object. With the incident plane wave an 

electric field is associated with direction gi and magnitude Eo. The incident electric and magnetic 
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fields are specified as: 

The total electromagnetic field in the domain outside the scattering object is written as the sum of 

the incident field and the scattered field. 

The tangential and normal components of the surface fields can be interpreted as electric and - - 
magnetic surface currents ( J ,  IVI) and surface charge densities ( p ,  p,) 

The electric and magnetic surface charge densities can be rewritten invoking the conservation of 

charge by using the continuity equations 

v . /+ j w p  = 0, 

V I + w p m  = 0. 

When these expressions are substituted into equations (52) and (53) it follows that 

For the special case of a metallic object (i.e. aperfect electric conductor), the tangential components 

of the total electric surface field (and thus also the magnetic surface currents) and the magnetic 



surface charge density are zero, 

Then the boundary integral formulas (60) and (61) reduce to 

Substitution of (55) and (64) in the boundary condition (62) yields the electric field integral 

equation (EFIE) 

The magnetic field integral equation (MFIE) follows from (65) and applying the boundary condi- 

tion (56), 

The last term in (67) follows from the jump relations of classical potential theory. This equation 

subsequently reduces to 

This is the general form of the MFIE, which is valid only for closed surfaces. For screens the 

EFIE has to be used. Since engine inlets of fighter aircraft are usually geometrically modelled as 

cavity-like screens, computational tools are being developed for the numerical solution of (66). 

The solution is obtained from a weak formulation of (66), which follows from multiplying (66) 

by a tangential test function v?. Then, the following weak formulation can be derived: find the 
+ 

complex surface current vector J E fIdiv --"'(s), with the solution space as presented in reference 



4, such that 

for all I@' E i?~~"(S).  Equation (69) describes the behaviour of the surface current on the object 

surface, as induced by the incident electromagnetic field 3. Once a solution of (69) has been 

found, the scattered electric field can be determined using the Stratton-Chu representation formula 

(64), or its far field asymptotic approximation. 

When the object S represents a screen, it contains a boundary edge, which is denoted by OS. Let 

u'be the unit normal along OS, in the tangent plane to S. Along OS the normal component J .  7 
may not jump. Hence, for screens it is required that 

+ 

17. J = 0, along OS. (70) 

Mathematical aspects, such as existence, uniqueness and regularity of solutions, of (69) for screen 

problems have been discussed in reference 15. 

In section 3.3 the accuracy of the numerical solutions of (69) is assessed by comparing the results 

with the outcome of two-dimensional models. To this end, consider a scatter problem in two- 

dimensional space for the case where the object has no variation in z-direction. Let r be the 

two-dimensional cross section boundary of the object. Then the Electric Field Integral Equation 

(69) can be reduced to two independent scalar equations: one for Transverse Magnetic (TI\<') 

polarization (where the direction of the incident electric field 3 is aligned with the z-axis), and 

one for Transverse Electric ( T E Z )  polarization (where the direction of the incident magnetic field 

Zi is aligned with the z-axis). 

For T M Z  polarization the weak formulation reads: find the current J E 11-'I2(r) such that 



for all $ E f1-'12(T). 

For T E 3  polarization the weak formulation reads: find J E H;"(T) such that 

for all 6 E H;"(T). 

Here ~ f )  the Hankel-function of the second kind, ?the unit tangential vector along the boundary 

T, p'a points on the boundary T ,  E; the z-component of the incident electric field, and E: the 

tangential component of the incident electric field. 

When the boundary T is not closed, the magnetic current J in equation (72) has to vanish at the 

end-points of the boundary. This criterion corresponds with requirement (70) for screens in three 

dimensional space. 

3.2 Numerical solution 

To obtain a solution of the electric field integral equation (69) through the Method of Moments a 

finite set of basisfunctions A is defined and the current y i s  approximated by a linear combination 

of them: 

where I, are constants to be determined. The basisfunctions are defined by the classical Glisson- 

Rao vector functions on a triangular surface grid (see Ref. 16). By inserting the representation 

(73) into the EFIE (69) and taking the testfunctions equal to the basisfunctions, a system of linear 

equations is obtained of the form 

The elements of the impedance matrix Z are given explicitly by 

Z = / / { . , G - ( d i ~ / ~ ) ( d i v ' Z )  G)dSf~1S ,  V(m, n). 
WC S S 



The voltage vector V is given by 

The Glisson-Rao basisfunctions were selected because of their applicability to a general class of 

geometries and for reasons of accuracy and efficiency (see also Ref. 16). These basisfunctions 

have local support on a pair of triangles sharing a common edge so that the inner (respectively 
+ 

outer) integration on the right-hand side of expression (75) is restricted to the support of .JA 

(respectively f m )  only. Thus the double integral in (75) involves at most four triangles. Different 

types of quadrature mles are applied to calculate (75). depending on the required integration 

accuracy. The Glisson-Rao basis-functions have a continuous normal component when crossing 

the common edge. The unknowns I, in (73) are attached to common edges. When the scattering 

object defines a screen, edges of triangular patches have no neighbouring counterpart along the 

boundary DS. At these edges I, = 0 according to (70). 

The computational model based on the above approach is called EFIE3D. For objects having 

(various) geometrical symmetries, the impedance matrix Z has a specific symmetric structure and 

only part of the matrix has to be computed. Let IV be the dimension of the impedance matrix Z 

and p the number of symmetries. The computational cost of the EFIE3D model consists of three 

contributions: 

The cost of evaluating the impedance matrix; proportional to iV21p. 

The cost of the Lower-Upper factorization; proportional to iV3/p2. 

The cost of the remaining computations; at most proportional to IV'/~.  

These estimates are valid only for large values of N. 

The two-dimensional electric field integral equations (71) and (72) have been solved numerically 

using a boundary element Galerkin method. The boundary r of the object is partitioned into 

a number of segments and the electric currents are approximated by local functions on the 

boundary. In equation (71) the basis and testfunctions are taken piecewise constant, whereas 

they are taken piecewise linear in equation (72). This numerical approach has resulted in the 

EFIE2D computational model. 



3.3 Accuracy of RCS predictions 

The RCS of an object is defined as 

where is the distance from object to observer. The unit of u is area, usually in square meters, 

or it may be non-dimensional by dividing by wavelength squared, cr/X2. When the transmitter 

and receiver are at the same location, the RCS is usually referred as monostatic. It is referred as 

bistatic when the two are at different locations. 

In order to assess the accuracy of the RCS predictions the EFIE3D model has been applied to a 

rectangular inlet with length IOX, width 2X and height 2X. The geometry of this inlet is shown in 

figure 7. The calculations have been carried out on uniform triangular surface grids using planar 

symmetry about the planes I/ = 0 and z = 0. The surface grids are obtained as follows. First, a 

uniform rectangular grid is generated with mesh-size h. Subsequently, each quadrilateral element 

is divided into two triangular elements. 

The accuracy of the computed RCS is assessed in two ways: i) by comparing the RCS results with 

the results of theEFIE2D model for an infinite rectangular inlet (cross section 10X x 2X extending 

from z = -a3 to i = too, and ii) by refining the grid. 

In figure 8 the RCS predictions of the EFIE3D model are are compared with the predictions of the 

EFIE2D model. The 3D calculations have been carried out on the uniform triangular grid with 

a characteristic meshsize of h = X/7. It is observed that the three dimensional results display 

the same scattering characteristics as do the two dimensional results. For T1Mz-polarization the 

scattering of the 3D inlet and the 2D inlet are expected to agree because the direction of the 

incident electric field is parallel to the z-axis. Therefore the horizontal plates of the 3D inlet will 

not contribute to the RCS, because the right-hand side of (66) vanishes at these plates. This is 

confirmed by figure 8, although in the interval between 4 = 10' and 4 = 60" the RCS of EFIE 

3D is slightly higher, due to the rather coarse sampling that has been used in the EFIE3D model. 

For TEZ-polarization the higher values of the 3D RCS predictions in this interval are mainly 

due to the contributions of the horizontal plates of the 3D inlet which are not present in the 2D 

computations. 



The convergence of the 3D RCS predictions is assessed in figure 9, where results are presented of 

EFIE3D calculations on uniformly triangular discretizations with meshsizes of h = X/3,h = X/5 

and h = ,417, respectively. This figure apparently reveals that the triangular discretization with 

meshsize h = X/3 is too coarse to get an accurate RCS prediction at the open side of the inlet. 

The RCS predictions of the EFIE3D model improve when the mesh is refined. For a discretization 

with meshsize h = XI7 reliable RCS results are obtained. 

3.4 Application to  a n  engine inlet 

The EFIE3D model has been applied to analyse the RCS of a curved engine inlet with a square 

entrance (Fig. 10). It has a curved axis of 4 meters length. The surface has been approximated 

by 4454 triangular patches (Fig. 10). The coordinate system (see figure 10) has been chosen such 

that one looks straight into the inlet at 4 = 0°, B = 90'. At a frequency of 1.5 GHz (wavelength 

20 cm) and an illumination angle of 4 = -25' , 6' = 90°, the scattered electric field has been 

computed. In figure 11 the bistatic RCS characteristics are displayed with the observer in the 

xy- plane (i.e. B = 90'). The maximum around 4 = 155' (the "forward lobe") arises from the 

scattered electric field compensating for the incident field. The peak near 4 = - 165' is due to 

single reflection of the incident waves. The bistatic cross section is rather small in the vicinity of 

-90' or 1-90'' as the receiver direction is perpendicular to the direction of the incident field. Thus 

the shape of the inlet is such that there is hardly any scattering in these directions. Most of the 

scattering in this scattering range is due to diffraction on the sharp edges at the top and bottom 

of the inlet entrance. In the neighbourhood of 4 = 0" the scattering cross section has a smoother 

behaviour due to the fact that waves coming out of the inlet have multiply reflected inside. The 

local maximum in the vicinity of 4 = f 25' is caused mainly by multiple reflection at the inlet 

wall and the inlet face: one can "see" the inlet face and the local maxima of the surface current 

from this point of view. 

3.5 Applicability of boundary integral equation methods 

The applicability of the computational model as described in section 3.2 is frequency limited 

because of the numerical approach involved in the model and due to computer hardware limitations. 

On the currently available supercomputers the model can be applied to engine inlets of fighter 

aircraft up to radar frequencies of about 1 GHz. Many research efforts are aimed at increasing the 

applicability of boundary integral equation methods to higher frequencies. A promising approach 

appears to be the application of entire domain functions (see e.g. Ref. 17). These functions have 

global support instead of local support on triangular patches. It is foreseen that the dimension 

of the impedance matrix will then decrease, so that the integral equation methods will become 

applicable to higher frequencies. Similar entire domain functions were used by Multhopp (Ref. 1) 



in the 1950's to predict the lift distribution on wings in the subsonic speed regime. The use of these 

functions was advantageous from the point of view that a small system of equations results, which 

could be solved by the computational means available at that time. The mathematical formulation 

of entire domain functions requires that the surface can be mapped onto a simple rectangular 

computational domain. Therefore, geometries like engine inlets have to be decomposed into 

subdomains, in such a way that each part can be represented by a continuous mapping. E.g. the 

surface of the engine inlet of figure 10 has to be decomposed into two parts, one part describing the 

circumferential boundary and a second part describing the rear face. Then, at each part appropriate 

entire domain functions are defined. Along the common edges of the subdomains the entire domain 

functions have to match. In general, this is adifficult task. Therefore, it is recommended to apply 

the classical Glisson-Rao basis functions (with local support) only in the neighbourhood of the 

edges, and to apply the entiredomain functions elsewhere. This approach involves the specification 

of so-called cut-off functions that define the region where the local basis functions are used. At 

the National Aerospace Laboratory NLR the applicability of this approach is being investigated 

for the numerical solution of the two-dimensional electric field integral equations (71) and (72). 

It appears that the computation of the coefficients of the impedance matrix requires the numerical 

calculation of integrals with strongly oscillating integrands. Integration techniques as developed 

in the 1960's (e.g. Ref. 18) may be useful to decrease the computational costs for the calculation 

of the impedance matrix. 

An alternative approach to increase the applicability of boundary integral equation methods to 

higher frequencies is the development of parallel algorithms for the solution of (69) and the 

implementation on parallel hardware architectures (see e.g. Ref. 19). 



4 Concluding remarks 

In the present paper two problems in aerospace research have been addressed which involve the 

numerical solution of boundruy integral equations on screens. The first problem is concerned 

with the structural-acoustic analysis of light-weight solar array panels, which are geometrically 

modelled as screens. The second problem is related to RCS predictions of engine inlets of 

fighter aircraft, where the interior surface of the engine inlet is modelled as a perfectly conducting 

cavity-like screen. 

The acoustic effects of the surrounding air on the dynamic behaviour of solar arrays have been 

analysed for two cases: a single solar panel and an array consisting of two parallel solar panels in 

close proximity. For low frequencies, the single solar panel experiences the air as an added mass. 

As a consequence, the computed eigenfrequencies are shifted downwards significantly. For two 

parallel panels, estimates for the acoustic energy of the vibrating air have been derived in terms of 

the small distance h between the two panels. For h tends to zero, the acoustic energy of two in- 

phase vibrating panels tends to half the value for two single solar panels (without interaction). For 

two out-of-phase vibrating panels the acoustic energy is inversely proportional to the distance h, 

when h tends to zero. Inspection of the computed eigenfrequencies has revealed that the behaviour 

of the lowest eigenfrequencies is consistent with these energy estimates for small values of h. 

RCS predictions of engine inlets of fighter aircraft are obtained by a boundary integral equation 

method for the solution of the electric field integral equation. The accuracy of RCS predictions 

has been assessed for a rectangular inlet with length IOX, width 2X and height 2X. From the results 

of section 3.3 it is obvious that multiple reflections inside engine inlets can only be accurately 

modelled by using surface grids with at least seven patches per wavelength in one direction (i.e. 

h = ,417). The boundary integral equation method has been applied to analyse the RCS of a 

curved engine inlet with a square entrance. At the open side the computed RCS shows broad 

smooth lobes, which are caused by multiple reflections at the inside wall of the inlet. 

The numerical methods, to solve the boundary integral equations in the above problems, use local 

basis functions on triangular surface grids. They require the generation of a complex-valued 

matrix. The dimension IV of this matrix is proportional to the square of the frequency. The 

computational cost for solving the equations is proportional to 1V3. For objects which are large 

with respect to the wavelength, the numerical methods using these local basis functions become 

intractable, because the required computational resources become too large. In particular, for 

RCS calculations the described boundary integral methods can only be applied to engine inlets of 



fighter aircraft up to radar frequencies of about 1 GHz on the currently available supercomputers. 

For higher frequencies the computation times and the required computer storage become too large. 

Therefore, many research investigations are going on, worldwide, to increase the applicability of 

boundary integral equation methods to higher frequencies. Instead of using local basis functions, 

there is renewed interest in the application of appropriate basis functions with global support, which 

were also used to solve boundary integral equations before the availability of digital computers. 

The aim of these investigations is to decrease the dimension of the matrix of influence coefficients 

and to lower the required computer storage. Integration techniques for the numerical calculation 

of integrals with strongly oscillating integrands may be useful to decrease the computational costs 

for evaluating the influence coefficients. 
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Fig. 1 Solar panel with coordinate system 

Fig. 2 Two parallel solar panels at a small distance h apart from each other 



Fig. 3 First two eigenmodes of the solar panel 



Fig. 4 Two parallelpanels: influence panel distance h on the eigenfrequencies of the first (pair of) 
eigenmodes 



out of phase 

in phase 

Fig. 5 Two parallel panels: influence panel distance h on the eigenfrequencies of the second 
(pair of) eigenrnodes 
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Fig. 6 Scattering mechanisms which contribute to the RCS of a typical fighter aircraft 



M 
Fig. 7 Rectangular inlet with length a = lOh, width d = 2h, heigth c = 2h 
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Fig. 8 Comparison of RCS calculations for rectangular inlet in Fig. 7 



G,xz Transverse Electric polarization Effects of mesh refinements 

(dB) 

30 

rp (degrees) 

Transverse Magnetic polarization 

(dB) h Effects of mesh refinements 
h = 117 
h = XI5 - - - - - - - h = 113 

Fig. 9 Assessment of accuracy of RCS calculations for rectangular inlet in Fig. 7 
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Fig. 8 Comparison of RCS calculations for rectangular inlet in Fig. 7 
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Fig. I I Calculated bistatic RCS of a curved inlet for an illumination angle $I = -254 9 = 904 and radar 
frequency 1.5 GHz 


