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Abstract 

I. Introduction 

Optimal Control For Power-Off Landing Of A Small-Scale Helicopter
A Pseudospectral Approach

Skander Taamallah, Xavier Bombois and Paul Van den Hof

Abstract— We derive optimal power-off landing trajectories,
for the case of a small-scale helicopter UAV. These open-loop
optimal trajectories represent the solution to the minimization
of a cost objective, given system dynamics, controls and states
equality and inequality constraints. The plant dynamics features
a 3-D nonlinear helicopter model, including dynamics from the
rigid body, the main rotor Revolutions Per Minute (RPM), and
the actuators. The novel part of this paper is threefold. First,
we provide a new cost functional which, during the flight,
maximizes helicopter performance and control smoothness,
while minimizing roll-yaw cross-coupling. Second, and aside
from the standard state and control bounds, we provide a
trajectory constraint on tail rotor blade tip, to avoid ground
strike when the helicopters pitches up, just before touch-down.
Third, we apply the pseudospectral collocation discretization
scheme, through a direct optimal control method, to solve
our problem. The advantage of the pseudospectral method,
compared to other direct optimal control approaches, lies in
its exponential convergence, implying increased computational
efficiency, provided the functions under considerations are
sufficiently smooth. Finally, we conclude by a discussion of
several simulation examples.

I. INTRODUCTION

Helicopter power-off flight, or autorotation, is a condition
in which no power plant torque is applied to the main
and tail rotors, a flight condition which is somewhat
comparable to gliding for a fixed-wing aircraft. During
an autorotation, the main rotor is not driven by a running
engine, but by air flowing through the rotor disk bottom-up,
while the helicopter is descending. An autorotative flight is
entered when the engine fails on a single-engine helicopter,
or when a tail rotor failure requires engine shut down.
Our goal is to find optimal autorotative trajectories, that
maximize flight performance and control smoothness, while
minimizing cross-coupling effects. Hence, for a range of
initial conditions for which feasible solutions do exist, i.e.
in the form of safe landing, optimal autorotative trajectories
can be computed off-line by a Trajectory Planner (TP), and
stored as lookup tables, on-board a flight control computer.
By so doing, these trajectories provide both the optimal
states to be tracked by a feedback Trajectory Tracker (TT),
and the feedforward nominal controls needed to track the
trajectory. In this paper, we present the design of such a TP,
in the case of a continuous-time, deterministic, nonlinear,

Skander Taamallah is with the National Aerospace Laboratory (NLR),
Anthony Fokkerweg 2, 1059 CM, Amsterdam, The Netherlands, email:
staamall@nlr.nl

Skander Taamallah, Xavier Bombois, Paul Van den Hof are with the Delft
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P.M.J.VandenHof}@tudelft.nl

and constrained framework; solved through a direct optimal
control method. Here the continuous-time formulation is
first discretized, using a pseudospectral numerical scheme,
known to provide exponential convergence, provided the
functions under considerations are sufficiently smooth.
Pseudospectral techniques have widely been used in space
and launch/reentry applications. However, they have so far
only seen limited use in other aeronautical or (helicopter)
UAV applications. Next, our problem is transcribed to a
NonLinear Programming problem (NLP), and this latter
is solved numerically by a well known and efficient
optimization technique, in our case a Sequential Quadratic
Programming (SQP) method.

Over the last four decades, researchers have addressed
the optimal autorotative flight problem through several
optimization techniques. We start by mentioning the
successful autorotative flight demonstration in the case of a
small-scale helicopter, through the use of an apprenticeship
learning method [1]. Next, for the case of first principles
based models, we briefly review the different optimization
strategies that have been researched. Indirect optimal control
methods have been employed [2], [3], [4], whereas direct
collocation optimal control methods have been explored
[5], [6], [7], [8], and a direct multiple shooting optimal
control method has been outlined [8]. Aside from these
optimal control strategies, three other methods have also
been investigated: (i) nonlinear, neural-network augmented,
model-predictive control [9], (ii) a parameter optimization
scheme, repeatedly solved, to find a backwards reachable
set leading to safe landing [10], and (iii) a parameter
optimization scheme generating segmented routes, selecting
a sequence of straight lines and curves [11].

The most natural framework for addressing trajectory
planning problems is through optimal control theory [12].
Besides, any strategy that does not rely on the combined
use of both realistic 3-D first principles based models, and
optimal control, results at best in sub-optimal solutions,
since the full dynamics of the vehicle are neither exploited
from a vehicle flight performance viewpoint, nor from a
control-optimization viewpoint. Further, for the definition
of the cost functional, most of the here-above listed
contributions have focused solely upon the minimization of
vehicle kinetic energy at the instant of touch-down. Some
have considered using a running cost over time, which
includes criteria involving either (i) the minimization of
control rates [6], [8], or (ii) the minimization of main rotor
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RPM deviations from its nominal value, while limiting
the excessive build-up of vehicle kinetic energy during
the descent [7], [4]. None of the previous results have
considered the definition of a cost functional that includes
all of these criteria, while also adding minimization of
vehicle sidewards flight, and maximization of flight into the
wind. Indeed, this represents the first novel contribution of
our paper. The second contribution is characterized by a
trajectory constraint on tail rotor blade tip, to avoid ground
strike when the helicopters pitches up, just before touch-
down. The third is the application of the pseudospectral
discretization, to solve our optimal control problem.

The remainder of the paper is organized as follows. In
Section II, the general case optimal problem is defined. In
Section III, direct optimal control and the pseudospectral
method are reviewed. In Section IV, simulation results are
analyzed. Finally, conclusions and future directions are pre-
sented in Section V.

II. PROBLEM STATEMENT

We consider the following general problem, consisting in
minimizing the Bolza cost functionalJ(x(t),u(t), To, Tf),
with the state vector of the systemx(t), and control input
u(t), both defined on compact setsx(t) ∈ X (t) ⊆ R

nx ,
u(t) ∈ U(t,x(t)) ⊆ R

nu , denoting the feasible state and
control spaces respectively. Here, for the purpose of general-
ity, the control setU(t,x(t)) is allowed to be state-dependent
to accommodate for considerations of aerospace applications.
Further, the independent time variablet is defined over the
time domainΩ = (To, Tf ), where the final timeTf may be
free or fixed.

J(x(t),u(t), To, Tf ) , Φ(x(To), To,x(Tf ), Tf )
+

∫

Ω Ψ(x(t),u(t), t)dt
(1)

In the general problem formulation, the cost functionalJ

has contributions from a fixed costΦ(x(To), To,x(Tf ), Tf ),
and a running cost over time

∫

Ω
Ψ(x(t),u(t), t)dt. Addition-

ally, this cost functionalJ is subject to the system dynamic
constraints, where the usual representation is given by a set
of Ordinary Differential Equations (ODEs) of the form

ẋ = f(x(t),u(t), t) t ∈ Ω (2)

The initial and final-time boundary inequality conditions
are given by

Bo(x(To),u(To), To) ≤ 0
Bf (x(Tf ),u(Tf ), Tf) ≤ 0

(3)

Conjointly the algebraic trajectory inequality constraints
are given by

T (x(t),u(t), t) ≤ 0 t ∈ Ω (4)

For generality, the boundary and trajectory constraints (3)
(4) have been expressed as inequality constraints, equality
constraints can simply be enforced by equating upper and

lower bounds. Further, in (1)-(4) the functionsΦ, Ψ, f , Bi,
and T are assumed to be sufficiently smooth, i.e. at least
C2. The solution to the trajectory planning gives the control
input, which minimizes the cost functional, while enforcing
the constraints

u
∗(t) , arg min

u(t)∈U(t,x(t))
J(x(t),u(t), To, Tf ) (5)

For our optimal autorotative trajectory, the following
thirteen-state and four-input vectors are considered

x =
(

xN xE xZ φ θ ψ u v w

p q r ΩMR

)T

u =
(

θ0 θTR θ1c θ1s

)T

(6)

With the ensuing state vector nomenclature:(xN , xE , xZ)
represent the 3-D position of the vehicle Center of Gravity
(CG), in inertial frameFI given by (xI , yI , zI), see Fig. 1;
(φ, θ, ψ) represent the vehicle angular orientations in roll-
pitch-yaw respectively, with respect toFI ; (u, v, w) and
(p, q, r) represent the CG linear and rotational velocities
respectively, with respect toFI , and projected in the he-
licopter body frameFb given by (xb, yb, zb), see Fig. 1;
ΩMR represents the Main Rotor (MR) angular velocity, also
called MR Revolutions Per Minute (RPM). The control input
vector consists ofθ0, the MR blade collective pitch, primarily
controlling vertical helicopter motion and MR RPM;θTR the
Tail Rotor (TR) blade collective pitch, primarily controlling
directional (yaw) helicopter motion;θ1c the MR blade lateral
cyclic pitch, primarily controlling lateral and roll motion; and
finally θ1s the MR blade longitudinal cyclic pitch, primarily
controlling longitudinal and pitch motion.

A. Cost Functional

In this paper, we want to find the optimal autorotative
trajectory, corresponding to an initial condition for which a
feasible solution exists, i.e. the helicopter has the capability
to effectuate a safe landing. In this case, the final cost
Φ(x(Tf ), Tf ), where in the sequel we drop the cost func-
tional dependency onTo, may equivalently be replaced by
tight bounds, adjusted for safe landing, on the final values of
vehicle kinetic energy and attitude angles. Hence, we can set
Φ(x(Tf ), Tf ) = 0. This in turn simplifies the optimization
process, and hence lowers the computational time. Next, the
cost functional is defined, from engineering judgment, as a
running cost over time s.t.

J(x(t),u(t), Tf ) :=
∫

Ω
Ψ(x(t),u(t), t)dt

=
∫

Ω

[

(θ̇20 + θ̇2TR + θ̇21c + θ̇21s)

+(ΩMR − ΩMR100%
)2

+(u2 + w2) + v2

+(ψ − ψf )2
]

dt

(7)

The input rates(θ̇20 + θ̇21c + θ̇21s + θ̇2TR) are added to (i)
minimize the battery power consumption, and (ii) encourage
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smoother control policies, hence avoidingbang-bang type
solutions, that might excite unmodeled or undesirable high
frequency dynamics or resonances.

The term(ΩMR − ΩMR100%
)2 is added to penalize any

large deviations in main rotor speed from its nominal (power-
on) value given byΩMR100%

. Indeed, a rotor over-speed
would increase, beyond acceptable values, the structural
stresses on the main rotor hub (blade centrifugal stresses) and
rotor hinges. On the other hand, a rotor under-speed would
be unsafe for the following two reasons: (i) it increases the
region of blade stall, increasing rotor drag and decreasing
rotor lift, hence resulting in a higher helicopter sink rate,
and (ii) it lowers the stored rotor kinetic energy, which is a
crucial element for a good landing flare capability.

The term(u2+w2) is added to limit the excessive build-up
of vehicle kinetic energy during the descent. Indeed, a high
kinetic energy complicates the final maneuver just prior to
touchdown, since more energy needs to be dissipated, i.e. the
timing of the controls input application becomes increasingly
critical.

The term v2, generally of low magnitude, is primarily
added to limit vehicle sideslip flight, as this latter decreases
the flight performance by increasing vehicle drag, and in-
creasing roll-yaw coupling, hence increasing the workload
of any feedback Trajectory Tracker (TT) controller.

Finally, ψf refers to the wind heading angle known
through either on-board measurement or data-uplink, from
a ground-based wind sensor. The term(ψ − ψf )2 is added
to encourage flight and landing into the wind. This enhances
flight performance and lowers kinetic energy at touchdown.

B. Helicopter Model

The plant model used here is adapted from the helicopter
model presented in [13]. This latter reproduces the flight
dynamics of a small-scale helicopter. This nonlinear model
includes the twelve-states rigid body equations of motion,
and the single-state main rotor RPM, while the higher-order
main rotor phenomena are based on their corresponding
steady-state expressions.

C. Boundary Conditions

The initial boundary conditionsBo(x(To),u(To), To) ≤ 0
describe the steady-state flight condition, at the instant prior
to the autorotative maneuver, whereas the aim of the final
boundary conditionsBf (x(Tf ),u(Tf ), Tf ) ≤ 0 is fourfold:
(i) set the vehicle on the ground (only a constraint on the
z-axis, North and East positions are free), (ii) account for
the vehicle’s inherent physical limitations (bounds on main
rotor RPM), (iii) provide additional tight bounds on the
vehicle kinetic energy and attitude angles, in accordance with
technical specifications for safe landing, and (iv) check for
the actuators range limitations.

D. Trajectory ConstraintsT (x(t),u(t), t) ≤ 0 t ∈ Ω

The goal of the trajectory constraints is also fourfold:
(i) account for the vehicle’s inherent physical and flight
envelope limitations (bounds on speeds, attitude, and main

Fig. 1. Tail Rotor Ground Clearance (Longitudinal View)

rotor RPM), (ii) account for environmental constraints (the
helicopter cannot descend below ground), (iii) check for the
intrinsic actuators dynamic and range limitations, and (iv)
avoid ground strike by the tail rotor blade tip, just before
touch-down. Here, the tail rotor radius is given byRrotTR

,
and the smallest distance between the tail rotor blade tip
and the ground, see Fig. 1, is given by the distancexZT RBT

in FI . The Fb position of the tail rotor hub is given by
(xTR, yTR, zTR), hence the lowest 3-D position of the blade
tip, for a positive pitchθ, is given inFb by

xTRBT =





xTR −RrotTR
. sin θ

yTR

zTR +RrotTR
. cos θ



 (8)

Accordingly, the z-axis position of the blade tip inFI is

xZT RBT
= xZ +





0
0
1





T

.Tob.xTRBT (9)

With Tob the transformation matrix fromFb to the vehicle-
carried normal earth frameFo, andxZ the z-axis position
of the CG inFI . Note that both the z-axis of framesFo

and FI are oriented positive downwards. Finally, we have
xZT RBT

≤ Zsafety < 0, with Zsafety a safety margin.

III. DIRECT OPTIMAL CONTROL AND THE
PSEUDOSPECTRAL DISCRETIZATION

We solve our problem, through a direct optimal control
method. In this context, the continuous-time optimal control
problem is first discretized and the problem is transcribed to
a NLP, without formulating an alternate set of optimality
conditions as done through indirect methods. The result-
ing NLP can be solved numerically, by well known and
efficient optimization techniques, such as SQP methods or
Interior Point (IP) methods. These methods in turn attempt
to satisfy a set of conditions called the Karush-Kuhn-Tucker
(KKT) conditions. Now regarding the discretization of the
continuous-time optimal control problem, the three most
common approaches are Single-Shooting (SS) [14], Multiple-
Shooting (MS) [15], and State and Control Parameterization
(SCP) [16]; this latter sometimes known as transcription in
the aerospace community, or as simultaneous strategy in the
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chemical and process community. Briefly summarized, the
advantage of direct SS is that it generates a small number
of variables, while its main disadvantage is that a small
change in the initial condition can produce a very large
change in the final conditions [17]. On the other hand,
direct MS breaks the problem into shorter steps [17], greatly
enhancing the robustness of the shooting method, at the cost
of having a larger number of variables. It is then primor-
dial to exploit matrix sparsity to efficiently solve the NLP
equations. An additional difficulty exists with the shooting
techniques, namely the necessity of defining constrained and
unconstrained subarcs a priori, when solving problems with
path inequality constraints [17]. This issue however does not
exist with SCP methods. In the realm of direct SCP, Global
Orthogonal Approaches (GOA), or spectral methods, have
received much attention in the last decade, since they have
the advantage of providing exponential convergence, for the
approximation of analytic functions. This is an important
aspect since the efficiency and even convergence of NLPs
improves for a problem of smaller size. In a GOA, the state
vector is expressed as a truncated series expansion

x(t) ≈ xM (t) =

M
∑

k=1

ak.Ok(t) t ∈ Ω = (To, Tf) (10)

characterized by thetrial functionsOk(t), or BAsis (BA),
andak the Expansion Coefficients (EC) determined fromtest
functions, which attempt to ensure that the (ODEs) are opti-
mally satisfied. The choice of BA is what distinguishes GOA
methods from finite-difference or finite-element methods. In
both finite-type methods, the BA is local in character, while
for GOA methods the BA consists of infinitely differentiable
global functions, such as orthogonal polynomials or trigono-
metric functions [18]. Further, the EC distinguish the three
most common types of GOA methods, namely Galerkin, Tau,
and collocation. In the sequel, and due to space limitations,
we only briefly review the GOA collocation method, or
pseudospectral, used for the discretization of our continuous-
time problem. In the collocation approach, the EC are Dirac
delta functions centered atM support pointsPk, defined by
the setC = {Pk|k ∈ {1, ...,M}}. The EC are determined s.t.
(i) the boundary conditions (3) are met, and (ii) the (ODEs)
given by (2) are exactly satisfied onC by

ẋM (tk) − f(x(tk),u(tk), tk) = 0 ∀k ∈ {1, ...,M} (11)

In addition, the BA is described onC by Lagrange
interpolating polynomialsLk(τ) [19], s.t.

xM (τ) =
∑M

k=1 ak.Lk(τ)

Lk(τ) ,
∏M

j=1,j 6=k

τ−τj

τk−τj
= h(τ)

(τ−τk) d
dτ

h(τ)

(12)

where the time variablet has been mapped to the pseu-
dospectral intervalτ ∈ [−1, 1], via the affine transformation
τ = 2t

Tf−To
−

Tf +To

Tf−To
. We also defineh(τ) = (1 + τ).PM (τ)

[20], wherePM (τ) is often related to Legendre or Chebyshev

polynomials. In our case, we use aM th-degree Legendre
polynomial given by

PM (τ) ,
1

2MM !

dM

dτM
[(τ2 − 1)M ] (13)

Note that Lagrange polynomials are helpful for colloca-
tion; it is straightforward to show that∀k ∈ {1, ...,M}

Lk(τj) = δkj =

{

1 k = j

0 k 6= j
(14)

HencexM (τk) = ak on C, satisfying (11). In a similar
way, the input control vector is approximated with a basis
of Lagrange polynomials, although not necessarily identical
to the previous ones. Besides the choice ofC, another set
of K points Qk, defined byQ = {Qk|k ∈ {1, ...,K}},
is required for the discretization of the cost functional (1)
and the (ODEs) in (2). HereQ is chosen s.t. the quadrature
approximation of an integral is minimized. We have

∫ 1

−1

g(τ)dτ ≈

K
∑

k=1

wk.f(τk) τ ∈ [−1, 1] (15)

with wk the quadrature weights. Now, it is well known that
the highest accuracy quadrature approximation, for a given
Q, is the Gauss quadrature. In this case,Q is defined by the
roots of aKth-degree Legendre polynomialPK(τ), where
the corresponding Gauss weightswk are given from [19] as

wk ,
2

(1 − τ2
k )(dPK(τk)

dτ
)2

∀k ∈ {1, ...,K} (16)

IV. SIMULATION RESULTS

The simulation software uses the helicopter UAV flight
dynamics model, presented in Section II, and implemented
in MATLAB R©, for the case of a small-scale helicopter UAV
with a mass of 8.35 kg and a rotor diameter of 1.87 m.
Further, the pseudospectral discretization method is made
available in a MATLAB environment, through the open-
source General Pseudospectral OPtimal control Software
GPOPSR©. The optimal control problem must first be refor-
mulated into a GPOPS format, as a set of m-files [21], and
the model must be expressed in a vectorized structure. Once
discretized, our problem is then transcribed into a large-
scale, static, sparse, and finite-dimensional NLP optimization
problem. To solve this NLP, we use SNOPTR©, a SQP based
solver. The simulations are set to compare our cost functional
to costs from previous research, as outlined in Section I, see
Table I, with the following initial conditions: steady-state
hover, at 40 m altitude, and in a zero-wind environment.
In these examples, the discretization of the optimal problem
uses 29 nodes, yielding a NLP having 607 variables and
506 constraints. Further, finite differencing has been used
to estimate the objective gradient and constraint Jacobian.
In this case, the computational time for a single trajectory,
on a legacy computer hardware, is in the range of one to
two hours. Here for the analysis of each costJj , ∀j ∈
{1, ..., 4}, we consider the following power metricPij , ∀i ∈
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{1, 2, 3}, of the vector-valued discrete-time signalzi(n), s.t.
z1(n) ∈ l2([1, Nj],R

4), z2(n) ∈ l2([1, Nj ],R
3), z3(n) ∈

l2([1, Nj],R
2), ∀n ∈ {1, ..., Nj}, Nj ∈ Z

+, with

Pij := 1
Nj

||zi(n)||2l2 = 1
Nj

∑n=Nj

n=1 ||zi(n)||22
z1(n) = (θ̇(n)0 θ̇(n)TR θ̇(n)1c θ̇(n)1s)

T

z2(n) = (u(n) v(n) w(n))T

z3(n) = (v(n) φ(n))T

(17)

Where we use the norm on the square-summable sequence
spacel2, the discrete-time equivalent of the continuous-time
spaceL2. For each test case, these signal power metrics are
reported in Table II. First, Fig. 2 and Fig. 3 show the input
control activity, where the cyan horizontal lines display hard
bounds on model variables. We clearly see that test cases
J1 and J3 display the lowest level of activity, confirmed
by the power valuesP11 = 0.06 and P13 = 0.008, since
both costs include the input rates. Further, if a running cost
over time is to be used, versus a final-time only costJ2,
then (i) minimization of control rates ought to be included,
since we haveP14 = 1.87 much higher thanP12 = 0.27,
and (ii) lateral motion should also be included, compare the
high values of(P33, P34) to the lowerP32. We also note
from testJ3, that pure control rate minimization allows for
a smoother and longer flight time, but at the expense of
flying near the flight envelope limits, see the lateral velocity
v and main rotor RPM values in Fig. 4 and Fig. 6. From
Fig. 2 we see the MR collectiveθ0 going full-down for test
cases(J1, J2, J4), as soon as the maneuver initiates, and as
expected this results in minimal main rotor RPM decay, see
Fig. 6. Besides,θ0 sharply increases as the helicopter nears
to the ground, to prevent rotor over-speed, while reducing
the sink rate. We also note the gradual change of tail rotor
collectiveθTR, for J1 andJ3, in accordance with control rate
minimization. From Fig. 3, we see that our cost functional
considerably reduces lateral control activityθ1c. This is also
supported by the negligible sidewards velocityv, achieved
by our cost objective, see Fig. 4, and compare alsoP31

to (P32, P33, P34). The benefits of reduced lateral motion
are increased flight performance, and decreased roll-yaw
coupling. Further in our case, the longitudinal cyclicθ1s is
mainly used to (i) manage vehicle and main rotor kinetic
energies, (ii) reduce forward airspeed, and (iii) level the
attitude for a proper landing, see Fig. 3. From Fig. 4 and
Fig. 5, we see that our cost objective results in an almost
vertical autorotative flight path. Finally, we note that higher
performance can be achieved from the use of a final-time
only cost, such asJ2, than from a poorly defined running
cost over time, such asJ3 or J4.

V. CONCLUSION

Through a direct optimal control framework, we derive
optimal power-off landing trajectories, for the case of a
small-scale helicopter UAV. These open-loop optimal tra-
jectories, generated by a Trajectory Planner (TP), repre-
sent the solution to the minimization of a cost objective,
given system dynamics, controls and states equality and

TABLE I

TESTCASES: COST FUNCTIONALS

Test Cost Line Color & Style
Case Functional in Figures

J1 Our definition Red
as given in (7) (solid thin line)

J2 J := Φ(x(Tf ), Tf ) Black
= u(Tf )2 + v(Tf )2 + w(Tf )2 (solid thick line)
+p(Tf )2 + q(Tf )2 + r(Tf )2

+φ(Tf )2 + θ(Tf )2

J3 J :=
∫

Ω
Ψ(u(t))dt Green

=
∫

Ω
(θ̇2

0
+ θ̇2

TR
+ θ̇2

1c + θ̇2
1s)dt (dashed line)

J4 J :=
∫

Ω
Ψ(x(t))dt Blue

=
∫

Ω

[

(ΩMR − ΩMR100%
)2 (dashed-dotted line)

+(u2 + w2)
]

dt

TABLE II

TEST CASES: SIGNAL POWERS

Test Control rates 3-D linear motion Lateral motion
Case P1j P2j P3j

J1 0.06 50 0.06
J2 0.27 62.3 1.7
J3 0.008 46.2 14.9
J4 1.87 46.2 16.5

inequality constraints. Our cost objective maximizes flight
performance and control smoothness, while minimizing roll-
yaw coupling, hence lowering the workload of any feed-
back Trajectory Tracker (TT) controller. Additionally, our
direct method provides exponential convergence, implying
increased computational efficiency, provided the functions
under considerations are sufficiently smooth. Hence, for a
range of initial conditions, optimal autorotative trajectories
can be computed off-line by a TP, and stored as lookup
tables, on-board a flight control computer. By so doing, these
trajectories provide both the optimal states to be tracked by
a TT, and the feedforward nominal controls to track the
trajectory. In this case, it would particularly be interesting
to analyze the robustness of the obtained trajectories, with
respect to model uncertainties, i.e. unmodeled higher-order
dynamics, unmodeled static nonlinearities, and parametric
uncertainties. Although results on static robust optimization
have been proven, the field of (dynamic) robust optimization,
for high-order systems, is still in its infancy. Another exten-
sion concerns the robustness of the obtained trajectories, with
respect to signal uncertainties, i.e. wind disturbances and
signal noise; problems at the heart of stochastic optimization.
Finally, each new helicopter configuration, modifying main
rotor inertia or vehicle weight, may likely result in distinct
optimal solutions. In order to limit the on-board memory
requirement, i.e. the storage of a large family of optimal
reference trajectories, it would be beneficial to express these
optimal solutions in a non-dimensional form, independent
of specific helicopter configurations. These aspects, together
with the design of a TT, have been identified as topics for
future research.
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