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Problem area

We derive optimal power-off
landing trajectories, for the case of a
small-scale helicopter UAV.

Description of work

These open-loop optimal
trajectories represent the solution to
the minimization of a cost
objective, given system dynamics,
controls and states equality and
inequality constraints. The plant
dynamics features a 3-D nonlinear
helicopter model, including
dynamics from the rigid body, the
main rotor Revolutions Per Minute
(RPM), and the actuators. The novel
part of this paper is threefold. First,
we provide a new cost functional
which, during the flight, maximizes
helicopter performance and control
smoothness, while minimizing roll-
yaw cross-coupling. Second, and
aside from the standard state and
control bounds, we provide a
trajectory constraint on tail rotor
blade tip, to avoid ground strike
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when the helicopters pitches up, just
before touch-down. Third, we apply
the pseudospectral collocation
discretization scheme, through a
direct optimal control method, to
solve our problem.

Results and conclusions

The advantage of the
pseudospectral method, compared
to other direct optimal control
approaches, lies in its exponential
convergence, implying increased
computational efficiency, provided
the functions under considerations
are sufficiently smooth. Finally, we
conclude by a discussion of several
simulation examples.
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Optimal Control For Power-Off Landing Of A Small-Scale Helicopter
A Pseudospectral Approach

Skander Taamallah, Xavier Bombois and Paul Van den Hof

Abstract— We derive optimal power-off landing trajectories,
for the case of a small-scale helicopter UAV. These open-loop
optimal trajectories represent the solution to the minimization
of a cost objective, given system dynamics, controls and states
equality and inequality constraints. The plant dynamics features
a 3-D nonlinear helicopter model, including dynamics from the
rigid body, the main rotor Revolutions Per Minute (RPM), and
the actuators. The novel part of this paper is threefold. First,
we provide a new cost functional which, during the flight,
maximizes helicopter performance and control smoothness,
while minimizing roll-yaw cross-coupling. Second, and aside
from the standard state and control bounds, we provide a
trajectory constraint on tail rotor blade tip, to avoid ground
strike when the helicopters pitches up, just before touch-down.

and constrained framework; solved through a direct optimal
control method. Here the continuous-time formulation is
first discretized, using a pseudospectral humerical scheme
known to provide exponential convergence, provided the
functions under considerations are sufficiently smooth.
Pseudospectral techniques have widely been used in spac
and launch/reentry applications. However, they have so far
only seen limited use in other aeronautical or (helicopter)
UAV applications. Next, our problem is transcribed to a
NonLinear Programming problem (NLP), and this latter
is solved numerically by a well known and efficient

optimization technique, in our case a Sequential Quadratic

Third, we apply the pseudospectral collocation discretization
scheme, through a direct optimal control method, to solve
our problem. The advantage of the pseudospectral method,
compared to other direct optimal control approaches, lies in
its exponential convergence, implying increased computational
efficiency, provided the functions under considerations are
sufficiently smooth. Finally, we conclude by a discussion of
several simulation examples.

Programming (SQP) method.

Over the last four decades, researchers have addresse
the optimal autorotative flight problem through several
optimization techniques. We start by mentioning the
successful autorotative flight demonstration in the case of &
small-scale helicopter, through the use of an apprenticeshij
learning method [1]. Next, for the case of first principles
based models, we briefly review the different optimization

Helicopter power-off flight, or autorotation, is a conditionstrategies that have been researched. Indirect optimal contrc
in which no power plant torque is applied to the mainnethods have been employed [2], [3], [4], whereas direct
and tail rotors, a flight condition which is somewhatcollocation optimal control methods have been explored
comparable to gliding for a fixed-wing aircraft. During [5], [6], [7], [8], and a direct multiple shooting optimal
an autorotation, the main rotor is not driven by a runninggontrol method has been outlined [8]. Aside from these
engine, but by air flowing through the rotor disk bottom-upgptimal control strategies, three other methods have alsc
while the helicopter is descending. An autorotative flight ieen investigated: (i) nonlinear, neural-network augmented
entered when the engine fails on a single-engine helicoptghodel-predictive control [9], (i) a parameter optimization
or when a tail rotor failure requires engine shut downscheme, repeatedly solved, to find a backwards reachabl
Our goal is to find optimal autorotative trajectories, thaget leading to safe landing [10], and (i) a parameter
maximize flight performance and control smoothness, whilgptimization scheme generating segmented routes, selectin
minimizing cross-coupling effects. Hence, for a range of sequence of straight lines and curves [11].
initial conditions for which feasible solutions do exist, i.e.
in the form of safe landing, optimal autorotative trajectories The most natural framework for addressing trajectory
can be computed off-line by a Trajectory Planner (TP), anflanning problems is through optimal control theory [12].
stored as lookup tables, on-board a flight control computesesides, any strategy that does not rely on the combinec
By so doing, these trajectories provide both the optimalse of both realistic 3-D first principles based models, and
states to be tracked by a feedback Trajectory Tracker (TTgptimal control, results at best in sub-optimal solutions,
and the feedforward nominal controls needed to track thgnce the full dynamics of the vehicle are neither exploited
trajectory. In this paper, we present the design of such a Tifom a vehicle flight performance viewpoint, nor from a
in the case of a continuous-time, deterministic, nonlineagontrol-optimization viewpoint. Further, for the definition

- . of the cost functional, most of the here-above listed
Skander Taamallah is with the National Aerospace Laboratory (NLR)
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includes criteria involving either (i) the minimization of
control rates [6], [8], or (ii) the minimization of main rotor
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RPM deviations from its nominal value, while limiting lower bounds. Further, in (1)-(4) the functiots V¥, f, B;,
the excessive build-up of vehicle kinetic energy duringand 7' are assumed to be sufficiently smooth, i.e. at least
the descent [7], [4]. None of the previous results hav€?. The solution to the trajectory planning gives the control
considered the definition of a cost functional that includemput, which minimizes the cost functional, while enforcing
all of these criteria, while also adding minimization ofthe constraints
vehicle sidewards flight, and maximization of flight into the
wind. Indeed, this represents the first novel contribution of A )
our paper. The second contribution is characterized by a W (1) = arg u(t)gi}}ﬂx(t))J(X(t)>u(t)>T0>Tf) (5)
trajectory constraint on tail rotor blade tip, to avoid ground . o . )
strike when the helicopters pitches up, just before touch-_FOr our optimal auttorotatlve trajectory, the following
down. The third is the application of the pseudospectrzgh'rteen's'{""te and four-input vectors are considered
discretization, to solve our optimal control problem.
x:(xNxExZ¢9¢uvw

The remainder of the paper is organized as follows. In p g r Qur )T (6)
Section Il, the general case optimal problem is defined. In u— ( 0 Orp 01, 0y )T
Section llI, direct optimal control and the pseudospectral
method are reviewed. In Section IV, simulation results are With the ensuing state vector nomenclatutey, 2z, zz)
analyzed. Finally, conclusions and future directions are preepresent the 3-D position of the vehicle Center of Gravity
sented in Section V. (CG), in inertial frameF; given by (z1,ys, z1), see Fig. 1;
(¢,0,1) represent the vehicle angular orientations in roll-

Il. PROBLEM STATEMENT pitch-yaw respectively, with respect t67; (u,v,w) and

We consider the following general problem, consisting inp, ¢, r) represent the CG linear and rotational velocities
minimizing the Bolza cost functional (x(t),u(t), T, Ty), respectively, with respect td;, and projected in the he-
with the state vector of the systew(t), and control input licopter body frameF; given by (zy,vs, 25), See Fig. 1;
u(t), both defined on compact seift) € X(t) € R", Q,,r represents the Main Rotor (MR) angular velocity, also
u(t) € U(t,x(t)) € R™, denoting the feasible state andcalled MR Revolutions Per Minute (RPM). The control input
control spaces respectively. Here, for the purpose of genergkctor consists ofy, the MR blade collective pitch, primarily
ity, the control set/(t,x(t)) is allowed to be state-dependentcontrolling vertical helicopter motion and MR RPM;  the
to accommodate for considerations of aerospace applicatiomail Rotor (TR) blade collective pitch, primarily controlling
Further, the independent time variallés defined over the directional (yaw) helicopter motio; . the MR blade lateral
time domain(2 = (7, T¢), where the final timel’y may be cyclic pitch, primarily controlling lateral and roll motion; and
free or fixed. finally 6,, the MR blade longitudinal cyclic pitch, primarily

controlling longitudinal and pitch motion.

Joc(t),ult) Lo Ty) - = (Lo, To, X(Ty), Ty) (1) A. Cost Functional

+ Jo U(x(t),u(t), t)dt . . : :

) ) In this paper, we want to find the optimal autorotative

In the general problem formulation, the cost functiodal aiectory, corresponding to an initial condition for which a
has contributions from a fixed co#t(x(75), T,,x(T7), Ts),  feasible solution exists, i.e. the helicopter has the capability
and a running cost over timg, ¥(x(t), u(t), t)dt. Addition- 5 effectuate a safe landing. In this case, the final cost

ally, this cost functional/ is subject to the system dynamic g, x(Ty),Ty), where in the sequel we drop the cost func-

constraints, where the usual representation is given by a $gfnal dependency off,, may equivalently be replaced by
of Ordinary Differential Equations (ODEs) of the form tight bounds, adjusted for safe landing, on the final values of
vehicle kinetic energy and attitude angles. Hence, we can se

x = f(x(t),u(t),t) te (2)  ®(x(Ty), Ty) = 0. This in turn simplifies the optimization
The initial and final-time boundary inequality conditionsProcess, and hence lowers the computational time. Next, the
are given by cost functional is defined, from engineering judgment, as a

running cost over time s.t.
B, (x(To),u(T,),T,) <0

(3)
B (x(Ty),u(Ty),Ty) <0 J(x(t),u(t),Ty) = [, U(x(t),u(t),t)dt
Conjointly the algebraic trajectory inequality constraints =/ [(ég + 02, + 63+ 63)
are given by F( Q1R — QarRyg0n ) @)

+(u? + w?) + 0?2

T(x(t),u(t),t) <0 te (4) () — wf)Q} dt

For generality, the boundary and trajectory constraints (3) _ _ _ _
(4) have been expressed as inequality constraints, equalityThe input rate(62 + 67, + 6%, + 6%5) are added to (i)
constraints can simply be enforced by equating upper amdinimize the battery power consumption, and (ii) encourage
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smoother control policies, hence avoidibgng-bangtype -
solutions, that might excite unmodeled or undesirable high
frequency dynamics or resonances. .

The term(Qarr — Qarr,q)° 1S added to penalize any of . G
large deviations in main rotor speed from its nominal (power- % - A
on) value given byQu/r,,,.,. INndeed, a rotor over-speed w¥ Z' N
would increase, beyond acceptable values, the structural ’ Hub
stresses on the main rotor hub (blade centrifugal stresses) and |2 M
rotor hinges. On the other hand, a rotor under-speed would . ‘ 0 ' -
be unsafe for the following two reasons: (i) it increases the ]’"mm
region of blade stall, increasing rotor drag and decreasing Frame / / /G“/ /

rotor lift, hence resulting in a higher helicopter sink rate, ‘
and (i) it lowers the stored rotor kinetic energy, which is a
crucial element for a good landing flare capability.

The term(u®+w?) is added to limit the excessive build-up rotor RPM), (ii) account for environmental constraints (the
of vehicle kinetic energy during the descent. Indeed, a highelicopter cannot descend below ground), (iii) check for the
kinetic energy complicates the final maneuver just prior t¢ntrinsic actuators dynamic and range limitations, and (iv)
touchdown, since more energy needs to be dissipated, i.e. #@id ground strike by the tail rotor blade tip, just before
timing of the controls input application becomes increasinglibuch-down. Here, the tail rotor radius is given BYoty s,
critical. and the smallest distance between the tail rotor blade tip

The termv?, generally of low magnitude, is primarily and the ground, see Fig. 1, is given by the distange, ...
added to limit vehicle sideslip flight, as this latter decreases F;. The F, position of the tail rotor hub is given by
the flight performance by increasing vehicle drag, and in(—gngyTR?ZTR), hence the lowest 3-D position of the blade
creasing roll-yaw coupling, hence increasing the workloagp, for a positive pitchy, is given in F}, by
of any feedback Trajectory Tracker (TT) controller.

Fig. 1. Tail Rotor Ground Clearance (Longitudinal View)

Finally, ¢y refers to the wind heading angle known TR — Ryotyp-sind
through either on-board measurement or data-uplink, from XTRBT = YTR (8)
a ground-based wind sensor. The tefth— ¢¢)? is added 2rR + Rrotyy- cos0

to encourage flight and landing into the wind. This enhances

Accordingly, the z-axi iti f the blade ti i
flight performance and lowers kinetic energy at touchdown. ccordingly, the z-axis position of the blade tip 1y s

T
B. Helicopter Model 8 T 9
The plant model used here is adapted from the helicopter Tarppr = T2 1 Lob XTRET ©)

model presented in [13]. This latter reproduces the flight

dynamics of a small-scale helicopter. This nonlinear model With T, the transformation matrix fromy to the vehicle-
includes the twelve-states rigid body equations of motiorgarried normal earth framéj,, andz; the z-axis position
and the single-state main rotor RPM, while the higher-ordef the CG in F;. Note that both the z-axis of framés,
main rotor phenomena are based on their correspondiagd F; are oriented positive downwards. Finally, we have
steady-state expressions. T Zrrpr < Zsafety < 0, With Zsqrer, @ safety margin.

C. Boundary Conditions 1. DIRECT OPTIMAL CONTROL AND THE

The initial boundary condition8, (x(T,), u(1y), T,) <0 PSEUDOSPECTRAL DISCRETIZATION
describe the steady-state flight condition, at the instant prior We solve our problem, through a direct optimal control
to the autorotative maneuver, whereas the aim of the finalethod. In this context, the continuous-time optimal control
boundary conditions3;(x(Ty),u(Ty),Ty) < 0 is fourfold:  problem is first discretized and the problem is transcribed to
(i) set the vehicle on the ground (only a constraint on tha NLP, without formulating an alternate set of optimality
z-axis, North and East positions are free), (ii) account fotonditions as done through indirect methods. The result-
the vehicle’s inherent physical limitations (bounds on maiing NLP can be solved numerically, by well known and
rotor RPM), (iii) provide additional tight bounds on theefficient optimization techniques, such as SQP methods ol
vehicle kinetic energy and attitude angles, in accordance withterior Point (IP) methods. These methods in turn attempt
technical specifications for safe landing, and (iv) check foto satisfy a set of conditions called the Karush-Kuhn-Tucker

the actuators range limitations. (KKT) conditions. Now regarding the discretization of the
i i continuous-time optimal control problem, the three most
D. Trajectory Constraintd'(x(¢), u(t),t) <0 t€Q common approaches are Single-Shooting (SS) [14], Multiple-

The goal of the trajectory constraints is also fourfoldShooting (MS) [15], and State and Control Parameterization
(i) account for the vehicle’s inherent physical and fligh{SCP) [16]; this latter sometimes known as transcription in
envelope limitations (bounds on speeds, attitude, and matime aerospace community, or as simultaneous strategy in th
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chemical and process community. Briefly summarized, theolynomials. In our case, we useld*"-degree Legendre
advantage of direct SS is that it generates a small numbpbolynomial given by

of variables, while its main disadvantage is that a small o
change in the initial condition can produce a very large Py(r) & 1 47
change in the final conditions [17]. On the other hand, 2M MY drM
direct MS breaks the problem into shorter steps [17], greatly Note that Lagrange polynomials are helpful for colloca-
enhancing the robustness of the shooting method, at the ctisn; it is straightforward to show thatk € {1,..., M}
of having a larger number of variables. It is then primor- )

dial to exploit matrix sparsity to efficiently solve the NLP Li(7) = 6 = { Lk =J
equations. An additional difficulty exists with the shooting 0 k#j
techniques, namely the necessity of defining constrained andHencexM(Tk) = ay, on ¢, satisfying (11). In a similar
unconstrained subarcs a priori, when solving problems witlyay, the input control vector is approximated with a basis
path inequality constraints [17]. This issue however does ngf Lagrange polynomials, although not necessarily identical
exist with SCP methods. In the realm of direct SCP, Globab the previous ones. Besides the choice¢pfanother set
Orthogonal Approaches (GOA), or spectral methods, haw K points Q;, defined by = {Qrlk € {1,..,K}},
received much attention in the last decade, since they haierequired for the discretization of the cost functional (1)
the advantage of providing exponential convergence, for théhd the (ODEs) in (2). Her is chosen s.t. the quadrature

approximation of analytic functions. This is an importanpproximation of an integral is minimized. We have
aspect since the efficiency and even convergence of NLPs

improves for a problem of smaller size. In a GOA, the state 1
vector is expressed as a truncated series expansion

(72 =)™ (13)

(14)

K
lg(T)dT%Zwk-f(Tk) Tel[-11 (15
=1

M with wy, the quadrature weights. Now, it is well known that

x(t) ~ xp(t) = Zak~0k(t) teQ= (T, Ty (10) the highest accuracy quadrature approximation, for a giver
b1 1, is the Gauss quadrature. In this caQeis defined by the

roots of aK*"-degree Legendre polynomidt (1), where

characterized by theial functionsOy(t), or BAsis (BA), the corresponding Gauss weights are given from [19] as

anday, the Expansion Coefficients (EC) determined frtast
functions, which attempt to ensure that the (ODES) are opti-

mally satisfied. The choice of BA is what distinguishes GOA wy 2 2
methods from finite-difference or finite-element methods. In (1 — 72)(LLelre) ya
both finite-type methods, the BA is local in character, while IV. SIMULATION RESULTS
for GOA methods the BA consists of infinitely differentiable . _ . :
global functions, such as orthogonal polynomials or trigono- The simulation software uses the helicopter UAY flight

metric functions [18]. Further, the EC distinguish the thregynamlcs model, presented in Section I, and implementec

i ® - i
most common types of GOA methods, namely Galerkin, Tal! MATLAB , for the case of a small-scale helicopter UAV

and collocation. In the sequel, and due to space limitation ,'th a mass of 8.35 kg and a rotor diameter of 1.87 m.

we only briefly review the GOA collocation method, or urther, the pseudospectral discretization method is madt
pseudospectral, used for the discretization of our continuou@-""’l"ableGIn a 'l\AéTLAS enwrtonlmce)rFl)tt,. thﬁOUththle Som'
time problem. In the collocation approach, the EC are Dira OF%CF? ® ?I'nheera:thiriZlIJ ccc))snrt)reoﬁ L)Ziroblerrlmn?usf?i?s:obe roeforarE
delta functions centered &t support pointsP, defined b ; ; )
pportp k y mulated into a GPOPS format, as a set of m-files [21], and

the set® = {P;|k € {1,..., M}}. The EC are determined s.t. X )

(i) the boundary conditions (3) are met, and (ii) the (ODEs he mo_del must be expres_sed na vectorl_zed sf[ructure. Onc

given by (2) are exactly satisfied ahby |scret|zeq, our problem is the_n tran_scrlbed into a _Iarge-
scale, static, sparse, and finite-dimensional NLP optimization
problem. To solve this NLP, we use SNOPTa SQP based

X (te) — f(x(tk),u(te), tx) =0 Vk e {l,..,M} (11) solver. The simulations are set to compare our cost functiona

to costs from previous research, as outlined in Section I, se¢

Table I, with the following initial conditions: steady-state

hover, at 40 m altitude, and in a zero-wind environment.

In these examples, the discretization of the optimal problem

Vke{l,..K}  (16)

In addition, the BA is described o by Lagrange
interpolating polynomiald.,(7) [19], s.t.

xu(r) = SM ap.Li(r) 12 uses 29 nodes, yielding a NLP having 607 variables and
Sy M T—T; __ h(T) i iNi i i
Lp(t) 2 HJ_:L#k Tk.Jj ol e v 506 constraints. Further, finite differencing has been usec

to estimate the objective gradient and constraint Jacobian
where the time variablé has been mapped to the pseuin this case, the computational time for a single trajectory,
dospectral intervat € [—1, 1], via the affine transformation on a legacy computer hardware, is in the range of one to
T = Tf2fTo - ;;f; We also defineh(7) = (1+7).Pym(7) two hours. Here for the analysis of each cohtVj €
[20], whereP,, (7) is often related to Legendre or Chebyshe\{1, ..., 4}, we consider the following power metri€,;, Vi €

6
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. . . TABLE |
{1, 2,3}, of the vector-valued discrete-time signa(n), s.t .
4 3 TESTCASES: COSTFUNCTIONALS
z1(n) € (1, N;],RY), 232(n) € Ia([1, N;],R?), 23(n) € Test Cost Line Color & Siyle
lo([1, N;],R?),Vn € {1,..., N;}, N; € Z*+, with Case Functional in Figures
Ji Our definition Red
1 n=N; ) as given in (7) (solid thin line)
Pij = N; Hzl(n)ng N; Zn:l ||zi(n)|]3 J2 J: oy o( j(ﬂTf) ) T2 I'dBlf?Ci i
. . ;
( ) ( (n)o e(n)TR 9(”)1c 9(”)13)T (17) ngg iv(Tf)2 +w§[“f) (solid thick line)
T 1) +a(Ty) +T( )2
z2(n) = (u(n) v(n) w(n)) Fo(1y)? +9(Tf)
z3( )= (v(n) ¢(n)T T3 T = [o (u(®))dt Green
= [,(63 + 62 + 02+ 62 )dt dashed line
Where we use the norm on the square-summable sequence—7; Lo (J — EZR X 1) ( Blie )
spacely, the discrete-time equivalent of the continuous-time =/, [ (iR — Qarrygyy)? | (dashed-dotted line
spaceL,. For each test case, these signal power metrics are e +w2)] it
reported in Table II. First, Fig. 2 and Fig. 3 show the input
control activity, where the cyan horizontal lines display hard TABLE II
bounds on model variables. We clearly see that test cases TEST CASES SIGNAL POWERS
J1 and J3 display the lowest level of activity, confirmed Test [[ Control rates]| 3-D linear motion| Lateral motion
by the power values®;; = 0.06 and P53 = 0.008, since Case L Do L)
both costs include the input rates. Further, if a running cost 2 8'23 65203 01'076
over time is to be used, versus a final-time only cdst T3 0.008 6.0 14.9
then (i) minimization of control rates ought to be included, Ja 1.87 46.2 16.5

since we haveP 4, = 1.87 much higher thanP;, = 0.27,
and (i) lateral motion should also be included, compare thidequality constraints. Our cost objective maximizes flight
high values of(Ps3, P34) to the lower Ps;. We also note peformance and control smoothness, while minimizing roll-
from test.Js, that pure control rate minimization allows for yaw coupling, hence lowering the workload of any feed-
a smoother and longer flight time, but at the expense ®fack Trajectory Tracker (TT) controller. Additionally, our
flying near the flight envelope limits, see the lateral velocityirect method provides exponential convergence, implying
v and main rotor RPM values in Fig. 4 and Fig. 6. Fronmincreased computational efficiency, provided the functions
Fig. 2 we see the MR collectivé, going full-down for test under considerations are sufficiently smooth. Hence, for a
cases(Ji, J2, J4), as soon as the maneuver initiates, and asainge of initial conditions, optimal autorotative trajectories
expected this results in minimal main rotor RPM decay, segan be computed off-line by a TP, and stored as lookup
Fig. 6. Besidesy, sharply increases as the helicopter neamables, on-board a flight control computer. By so doing, these
to the ground, to prevent rotor over-speed, while reducingajectories provide both the optimal states to be tracked by
the sink rate. We also note the gradual change of tail roter TT, and the feedforward nominal controls to track the
collectivedrg, for J; and.Js, in accordance with control rate trajectory. In this case, it would particularly be interesting
minimization. From Fig. 3, we see that our cost functionalo analyze the robustness of the obtained trajectories, witt
considerably reduces lateral control activity.. This is also respect to model uncertainties, i.e. unmodeled higher-orde
supported by the negligible sidewards velocityachieved dynamics, unmodeled static nonlinearities, and parametric
by our cost objective, see Fig. 4, and compare a9 uncertainties. Although results on static robust optimization
0 (P32, P33, P34). The benefits of reduced lateral motionhave been proven, the field of (dynamic) robust optimization,
are increased flight performance, and decreased roll-y&er high-order systems, is still in its infancy. Another exten-
coupling. Further in our case, the longitudinal cydlic is  sion concerns the robustness of the obtained trajectories, witl
mainly used to (i) manage vehicle and main rotor kinetigespect to signal uncertainties, i.e. wind disturbances anc
energies, (i) reduce forward airspeed, and (iii) level thgignal noise; problems at the heart of stochastic optimization.
attitude for a proper landing, see Fig. 3. From Fig. 4 andinally, each new helicopter configuration, modifying main
Fig. 5, we see that our cost objective results in an almosstor inertia or vehicle weight, may likely result in distinct
vertical autorotative flight path. Finally, we note that highebptimal solutions. In order to limit the on-board memory
performance can be achieved from the use of a final-tim@quirement, i.e. the storage of a large family of optimal
only cost, such ag, than from a poorly defined running reference trajectories, it would be beneficial to express thest
cost over time, such ag or Jy. optimal solutions in a non-dimensional form, independent
V. CONCLUSION of specific helicopter configurations. These aspects, togethe

with the design of a TT, have been identified as topics for
Through a direct optimal control framework, we derivefyture research.

optimal power-off landing trajectories, for the case of a

small-scale helicopter UAV. These open-loop optimal tra- REFERENCES
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