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Problem area 
For closely spaced targets, the main 
issue is that the probability of 
resolution typically is worse than 
the probability of correct 
measurement association. Hence, 
the problem of possibly unresolved 
measurements plays a key role 
when two targets maneuver in and 
out of a formation flight amidst 
false measurements. If the 
possibility of unresolved 
measurements is not modeled then 
one of the tracks may diverge on 
false measurements, or the two 
tracks may coalesce. 
In order to improve this situation, 
during a series of studies we have 
developed exact and novel 
approximate Bayesian filtering 
approaches to address this problem. 
First, we developed a combination 
of a joint IMM for the joint target 
maneuver modes with an enhanced 
version of JPDA that takes coupling 
between target state estimates into 
account. We refer to this algorithm 
as Joint IMM Coupled PDA 
(JIMMCPDA) filter. Subsequently, 
for this JIMMCPDA filter we 
developed three enhanced versions.  

The first enhancement addresses 
track coalescence avoidance and 
yields the JIMMCPDA* filter, 
where the * stands for avoiding 
track coalescence. The second 
enhancement addresses possibly 
unresolved measurements from two 
closely spaced targets and yields the 
JIMMCPDA Resolution 
(JIMMCPDAR) filter. Thirdly, both 
enhancements have been combined 
into the JIMMCPDAR* filter. 
 
Description of work 
The current report evaluates the 
performance of these four novel 
JIMMCPDA type filters in 
maintaining track for scenarios 
where two targets maneuver in and 
out formation flight amidst possibly 
unresolved, missing and false 
measurements. First the 
mathematical setting of the two 
target tracking problem is specified. 
Next, the scenarios where two 
targets maneuver in and out 
formation flight are specified. This 
is followed by Monte Carlo 
simulation results for each of the 
four novel filters. And finally the 
conclusions are presented. 
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Results and conclusions 
Monte Carlo simulation results of 
the four filters for the problem of 
tracking two targets that maneuver 
in and out formation flight, show a 
significant advantage of the 
JIMMCPDAR* filter which takes 
both limited resolution and track 
coalescence avoidance into account. 

Applicability 
The applicability of the work 
comprises the implementation of 
the JIMMCPDAR* filter in a 
multitarget tracker, in particular 
ARTAS, yielding a significant 
performance improvement for 
tracking targets that maneuver in 
close approach situations. 
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Summary 

The paper evaluates four recently developed advanced  target tracking algorithms on their 
performance in maintaining tracks of two targets that maneuver in and out formation flight, 
whereas the sensor and measurement extraction chain produces false and possibly unresolved or 
missing measurements. The baseline algorithm uses a Joint IMM for the joint maneuver modes 
of the two targets, in combination with an enhanced version of JPDA that takes the coupling 
between target state estimates into account. The other three algorithms have been developed as 
further enhancements over this baseline algorithm. The first incorporates a track coalescence 
avoidance approach, the second takes unresolved measurements into account, and the third 
incorporates both enhancements. The effectiveness of the four advanced filters is evaluated 
through Monte Carlo simulations. 
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1 Introduction 

The relevance of incorporating unresolved measurements in target tracking has been well 
explained by Daum [1],[2]. For closely spaced targets, the main issue is that the probability of 
resolution typically is worse than the probability of correct measurement association. Hence, the 
problem of possibly unresolved measurements plays a key role when two targets maneuver in 
and out of a formation flight amidst false measurements. If the possibility of unresolved 
measurements is not modelled then one of the tracks may diverge on false measurements, or the 
two tracks may coalesce. In literature there are a few papers that develop resolution models and 
incorporate them into effective track maintenance filter equations. Chang & Bar-Shalom [3] 
introduces a hard measurement distance threshold model regarding yes/no resolution, and 
incorporates the corresponding error function density within JPDA for two targets. The 
scenarios considered do not involve targets that maneuver in and out formation flights. Mori et 
al. [4] incorporate this error function model within Multiple Hypothesis Tracking (MHT) for 
non-maneuvering targets. Koch and VanKeuk [5] introduces a Gaussian shaped measure for the 
probability of resolution for two targets, and shows that this combines smoothly and effectively 
with MHT for non-maneuvering targets. Koch [6],[7] combines the resolution-MHT with IMM 
for two targets that maneuver in and out formation. Koch [6] also demonstrates that, under 
appropriate hypothesis management, this approach performs significantly better than the 
standard IMM/PDA kind of hypothesis merging approximation of the exact Bayesian filter. In 
[8], particle filters have also been developed to tracking a formation of two or more targets from 
false and possibly unresolved or missing measurements, but no targets maneuver in or out the 
formation.  
In order to improve this situation, during a series of studies we have developed exact and novel 
approximate Bayesian filtering approaches to address this problem. First, we developed a 
combination of a joint IMM for the joint target maneuver modes with an enhanced version of 
JPDA that takes coupling between target state estimates into account [9],[10]. We refer to this 
algorithm as Joint IMM Coupled PDA (JIMMCPDA) filter.1) Subsequently, for this 
JIMMCPDA filter we developed three enhanced versions. The first enhancement addresses 
track coalescence avoidance [11],[10] and yields the JIMMCPDA* filter, where the * stands for 
avoiding track coalescence. The second enhancement addresses possibly unresolved 
measurements from two closely spaced targets [12] and yields the JIMMCPDA Resolution 
(JIMMCPDAR) filter Thirdly, both enhancements have been combined [12] into the 
JIMMCPDAR* filter. 

                                                      
1) Tugnait [13] develops a similar algorithm under a slightly different name (IMMJPDA-Coupled filter) and shows that it may 
outperform IMMJPDA [14] 
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The current paper evaluates the performance of these four novel JIMMCPDA type filters in 
maintaining track for scenarios where two targets maneuver in and out  formation flight amidst 
possibly unresolved, missing and false measurements. First, section 2 specifies the 
mathematical setting of the two target tracking problem considered. Next, section 3 specifies 
scenarios where two targets maneuver in and out formation flight. Section 4 presents Monte 
Carlo simulation results for each of the four novel filters. Section 5 draws conclusions. 
 

 
2 The two target track maintenance problem 

We consider two targets and assume that the state of each target is modelled as a jump linear 
system:  
 
 1( ) ( ) 1 2i i i i i i i

t t t t tx a x b w iθ θ−= + , = ,  (1) 

 
where i

tx  is the n -vectorial state of the i -th target, i
tθ  is the Markovian switching mode of the 

i -th target which assumes values from {1 }N, ..,�M  according to a transition probability matrix 
iΠ , ( )i i

ta θ  and ( )i i
tb θ  are ( )n n× - and ( )n n′× -matrices and i

tw  is a sequence of i.i.d. 
(independent identically distributed) standard Gaussian variables of dimension n′  with i

tw  and 
j

tw  independent for all i  ≠  j  and i
tw , 0 0( )i ix θ, , 0 0( )j jx θ,  independent for all i j≠ . At 0t = , the 

density of 0 0( )i ix θ, is known for each i, and in general these densities are i-variant. 

We assume that a potential measurement originating from target i  is also modelled as a jump 
linear system:  
 
 ( ) ( ) 1 2i i i i i i i

t t t t tz h x g v iθ θ= + , = ,  (2) 

 
where i

tz  is an m -vector, ( )i i
th θ  is an ( m n× )-matrix and ( )i i

tg θ  is an ( m m′× )-matrix, and i
tv  is 

a sequence of i.i.d. standard Gaussian variables of dimension m′  with i
tv  and j

tv  independent for 
all i  ≠  j . Moreover i

tv  is independent of  0
jx   and j

tw  for all i , j .  
Let 1 2Col{ }t t tx x x,� , 1 2Col{ }t t tz z z,� , 1 2Col{ }t t tθ θ θ,� , 1 1 2 2( ) Diag{ ( ) ( )}t t tA a aθ θ θ,� , 

1 1 2 2( ) Diag{ ( ) ( )}t t tB b bθ θ θ,� , 1 1 2 2( ) Diag{ ( ) ( )}t t tH h hθ θ θ,� , 1 1 2 2( ) Diag{ ( ) ( )}t t tG g gθ θ θ,� , 
1 2Col{ }t t tw w w,�  and 1 2Col{ }t t tv v v,� , then (1) and (2)  yield:  

 
 1( ) ( )t t t t tx A x B wθ θ−= +   (3)  
 ( ) ( )t t t t tz H x G vθ θ= +   (4) 

 
with A , B , H and G  of size 2 2n n× , 2 2n n′× , 2 2m n×  and 2 2m m′×  respectively, with { }tθ  
assuming values from 2M  according to transition probability matrix η θ

⎡ ⎤
⎢ ⎥,⎣ ⎦

Π = Π , which is a 
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function of 1Π and 2Π . Several types of mode switching dependencies between two targets can 
be modelled. If target modes are independent of each other, i.e. 1 2Prob{ , }t tθ θ θ η= =  = 

1 2Prob{ }Prob{ }t tθ θ θ η= = , then 

 
 2 2 2

1
 , for  and . i i

i
iη θ η θ

η θ, ,=
Π = Π ∈ ∈∏ M M  (5.a) 

 
If the target modes are equal, i.e. 2 1

t tθ θ=  for all t, then  

 

 1 1
1 2 1 2 1, for  and 

       0       , else.

 η θ η θ
η η θ θ, ,

Π = Π = =

=
 (5.b) 

 
Between equality and independence of target modes, a spectrum of partial mode dependency 
models exists. The choice of a specific model from this spectrum is a matter of tracking design. 
Best would be if a tracking algorithm that assumes (5.a) also works well for targets flying 
according to (5.b). In that case (5.a) can be used as the default design.  
If two targets come nearby each other, then there is a non-zero probability of merging. This 
event of merging or not is represented by a zero-one-valued process tκ , where 1tκ =  refers to 
merging, and 0tκ =  refers to non-merging. This implies  

 
 (0 ) 1 (1 )

t t t t t tx xp x p xκ θ κ θθ θ| , | ,| , = − | ,  (6) 

 
The probability, that two targets are resolved or not, depends on the distance between the 
targets. For zero distance the probability of merging equals unity, whereas for increasing 
distance the probability of merging converges to zero. In between these two extremes, the 
precise behaviour of the probability of merging will depend on the specifics of the sensor and of 
the signal processing applied. In order to capture a large variety of combined sensor/processing 
characteristics, [5] suggested a Gaussian shape for the merging probability the parameters of 
which are clearly related to the coefficients in the measurement model. Taking into account the 
mode dependency of these coefficients in (2), the state-mode conditional merging probability 
then becomes: 
 

 

1 1 1 2 2 2 1 1 1 1 2 2 2

1

1(1 ) exp{ ( ) ( ) ( ) . ( ) ( ) }
2
1exp ( ) ( ) [ ] ( )
2

t t t

T

x

T T

p x h x h x R h x h x

I
x H R I I H x

I

κ θ θ θ θ θ θ θ

θ θ θ

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟| , ⎝ ⎠ ⎝ ⎠

−

| , = − − − =

⎧ ⎫⎡ ⎤⎪ ⎪= − −⎨ ⎬⎢ ⎥−⎪ ⎪⎣ ⎦⎩ ⎭
M

 (7) 
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where ( )R θ  is an m m×  resolution capability matrix:  

 

 
1 1 1 1 2 2 2 2( ) ( ) ( ) ( ) ( )

[ ] ( ) { , } ( ) [ ]

T T

T T

R g rg g rg

I I G Diag r r G I I

θ θ θ θ θ

θ θ

⎛ ⎞
⎜ ⎟
⎝ ⎠

= + =

= M M
 (8) 

 
with 1 '{ ,.., }mr Diag r r=  resolution capability scaling parameters; one for each of the 'm  

independent measurement error directions.   
We also have to specify the measurement model as a function of tκ . For this we adopt the sub-
model in [3] for two targets of equal strength. For 0tκ = , we assume that with a non-zero 
detection probability, i

dP , the potential measurement i
tz  of equation (2) is observed at moment 

t ,  independently per target. For 1tκ = , we assume that with probability 0
dP  the merged 

potential measurement 1 2( ) / 2t tz z+  is observed at moment t, with i
tz  satisfying equation (2). 

Hence, our model does not use the additional parameter of [5] for the covariance of the error in 
the merged measurement. 
Let tF  denote the number of false measurements at moment t , we assume tF  to be Poisson 

distributed:  
 

 
( )( ) exp( ) 0 1 2

0 else

t

F

F
Vp F V F
F
λ λ= − , = , , , ...

!
= ,

  (9.a) 

 
where λ  is the spatial density of false measurements and V  is the volume of the observed 
region. Thus Vλ  is the expected number of false measurements in the observed region. We 
assume that the false measurements are uniformly distributed in the observed region, which 
means that a column-vector tf of tF  i.i.d. false measurements has the following density:  

 
 

|
( )

t t

F
f F

p f F V −| =  (9.b) 

 
Furthermore we assume that the process { , }t tF f  is a sequence of independent vectors, which 
are independent of { } { } { }t t tx w v, ,  and of the merging and detection.  At moment 1, 2,..,t T= , a 
vector observation ty  is made, the components of which consist of tF  false measurements  and 

tD  detected (merged) potential measurements, in an arbitrary order. The total number tL  of 

measurements is: 
 
 t t tL D F= + .  (9.c) 

 
The multi-target track maintenance problem considered is to estimate ( )t tx θ,  from observations 

{ ;0 }t sY y s t≤ ≤� , where 0y  represents the initial density of 0 0( )x θ, . A full derivation of exact 
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recursive equations for this Bayesian filter is in [15]. Early versions of these exact filter 
equations appear in [9]-[12] as a means to develop the four filter JIMMCPDA type algorithms 
that we evaluate next. 
 
 
3 Two target scenarios 

We consider scenarios of two targets that maneuver in and out a formation flight. The 
corresponding 2D trajectory patterns are pictured in Figure 1 and in Figure 2.  
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Fig. 1.  2D trajectories from [14] 
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Fig. 2.  Trajectories of jointly maneuvering targets 

  

The trajectory pattern in Figure 1 is from [14]. We refer to this as scenario R0. In addition to 
this we consider the jointly maneuvering target scenarios from [11], as depicted in Figure 2. 
Here, from 0 to 20s, targets 1 and 2 fly at a speed of 400 m/s in a straight line in south and north 
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direction respectively. From 20 to 35s, both targets make a coordinated turn to the east. From 35 
s to 55s, both targets fly in a straight line to the east. From 55s to 70s, targets 1 and 2 make a 
coordinated turn to the north and to the south respectively. From 70s to 90s, targets 1 and 2 fly 
in a straight line to the north and to the south respectively. Of the jointly maneuvering target 
trajectories we consider seven scenarios, which differ in the initial position of Target 1 only:  
 
Scenario R1: Target 1 starts at (0,11820m) and target 2 starts at (0,-11820m).  
Scenario R2/R2’: Same as R1 but initial position of target 1 is shifted 200/100m to the south.  
Scenario R3/R3’: same as R1 but initial position of target 1 is shifted 200/100m to the north.  
Scenario R4/R4’: Same as R1 but initial position of target 1 is shifted 200/100m to the east.  
 
For each of the scenarios, Monte Carlo simulations containing 100 runs have been performed 
for each of the tracking filters. In order to make the comparisons more meaningful, for all 
tracking filters the same random number streams were used.  
For each of the tracking algorithms, we assume three possible modes, i.e. iθ  ∈  {1 2 3}, , , with: 

 
Mode 1 (i.e. iθ =1): nearly constant velocity with zero mean perturbation in acceleration. The 
standard deviation of the process noise is 2(1) 5i

a m sσ = / .  

Mode 2 (i.e. iθ =2): Wiener process acceleration (nearly constant acceleration motion). The 
standard deviation of the process noise is 2(2) 7 5i

a m sσ = . / .  

Mode 3 (i.e. iθ =3): Wiener process acceleration (with large acceleration increments, for the 
onset and termination of maneuvers). The standard deviation of the process noise is 

2(3) 40i
a m sσ = / .  

 
The initial mode probabilities for each initial track are assumed to be: [0.8, 0.1, 0.1]. The mode 
switching probability matrix is assumed to satisfy equation (5.a) with:  
 

 
0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

i

⎡ ⎤
⎢ ⎥Π = ⎢ ⎥
⎢ ⎥⎣ ⎦

,  for  i = 1,2. 

 
We adopt this parameterisation in order to assure that none of the trackers uses any advantage of 
the fact that in scenarios R1/R1’ through R4/R4’ the targets start and stop maneuvering at the 
same moments in time.    
The target motion model used by the tracking algorithms is from [16]. In each mode the motion 
dynamics are modelled in Cartesian coordinates, where the state of the target is position, 
velocity and acceleration in each of the two Cartesian coordinates. Thus i

tx  in (1) has dimension 
2 6n = , and the matrices ( )i ia θ  and ( )i ib θ satisfy,  
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 1

2

( ) 0
( )

0 ( )

i i
i i

i i

a
a

a
θ

θ
θ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

,  1

2

( ) 0
( )

0 ( )

i i
i i

i i

b
b

b
θ

θ
θ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

 

 
1 0

(1) 0 1 0
0 0 0

s
i
j

T
a

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,   

211
2

(2) (3) 0 1
0 0 1

s s

i i
j j s

T T

a a T

⎡ ⎤
⎢ ⎥
⎢ ⎥

= = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 21( ) ( ) { , , 0}
2

i i i i
j a s sb Col T Tθ σ θ= ⋅ . 

 
The initial track state conditions used are: 
 
 0 0ˆ ( ) ,    {1,2,3},  {1,2}i i i ix x iθ θ= ∈ ∈  

 1 1 2 2
0 0 0
ˆ ˆ ˆ( ) { ( ), ( )}P Diag P Pθ θ θ=  

 2 2 2
0 1 2 2
ˆ ( ) { , ( ) , ( ) }i i i iP Diagθ σ σ θ σ θ=  

 
with: 1 2 2 220 / 3,  (1) 5 / 3,  (2) 2.5,  (3) 40 / 3σ σ σ σ= = = =  

 
Both for the simulated measurements and the tracking filters, the potential sensor measurements 
for target i  are assumed to satisfy equation (2) with the same coefficients for each iθ , i.e. 
 

 1

2

( ) 0
( )

0 ( )

i i
i i

i i

h
h

h
θ

θ
θ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 1

2

( ) 0
( )

0 ( )

i i
i i

i i

g
g

g
θ

θ
θ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

 
 [ ]( ) 1 0 0i i

jh θ = ,  ( )i i
j mg θ σ= , { }1, 2j∈  

 
The standard deviation mσ  of the measurement error is 20mσ = m. The sensor is assumed to be 
located at the coordinate system origin. The sampling interval 1sT =  s and the probability of 
detection 0 997dP = . . False measurements are simulated at a high density of  

6 2 21 10 /m 1/ kmλ −= × = . The resolution parameter value is 1 2 10.r r= =  The gates for setting up 

the measurement validation regions are based on the threshold 25ν = .  
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4 Monte Carlo simulations 

For scenarios R0-R4’, Monte Carlo simulations have been executed for the JIMMCPDA, 
JIMMCPDA*, JIMMCPDAR and JIMMCPDAR* filters (500 simulation runs per filter). We 
consider maintenance of confirmed tracks only, and no track initialisation, confirmation or 
termination. 
For each simulation run, we counted track i  "O.K.", if  
 
 ˆ 9i i i i

T T mh x h x σ− ≤   

 
where | |⋅  denotes the 2l -norm. We counted track i  "Swapped", if track i  is not "O.K." and 

 
 ˆ 9i i j j

T T mh x h x σ− ≤     for j i≠ . 

 
We counted track i  and j  as "Coalescing Tracks" if at three or more consecutive observation 

moments:  
 
 ˆ ˆ9i i j j i i j j

t t m t t mh x h x h x h xσ σ− > ∧ − ≤   

 
Using these criteria, the results of the Monte Carlo simulations for the scenarios are depicted in 
four Tables:  

• The percentage of Both tracks "O.K.", in Table 1.  
• The percentage of Both tracks "O.K." or "Swapped", in Table 2.  
• The percentage of "Coalescing" tracks, in Table 3. 
• The average CPU time per scan in Table 4.  

 
The results in Tables 1 and 2 show a significant impact of un-modelled sensor resolution on the 
tracking results for all scenarios, with the largest impact for scenarios where the two targets 
reach each other at 100m distance or less, i.e. R1 (0m), R2’ (100m), R3’ (100m) and R4’ 
(100m). Tables 1 through 3 show that JIMMCPDAR* performs much better than JIMMCPDA 
for all scenarios. The improved performance of JIMMCPDAR* over JIMMCPDA is partly 
caused by the track coalescence avoidance and partly by taking unresolved measurements into 
account. Moreover, by comparing the difference with the individual improvements of 
JIMMCPDA* and JIMMCPDAR over JIMMCPDA, it becomes clear that the two 
enhancements show to enforce each other for the most demanding scenarios (R1, R2’, R3’ and 
R4’).  
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Table 1 also show that both tracks ‘O.K.’ performance of all four filters varies significantly with 
the geometry of how aircraft maneuver in and out a formation flight. JIMMCPDAR* 
performance varies least to these variations.  
We also investigated if the novel filters could perform well in case of perfect sensor resolution 
scenarios. The results of these Monte Carlo simulations are given in Tables 5 through 7. As 
expected, JIMMCPDA and JIMMCPDA* are now doing much better than in Tables 1 through 
3. However, JIMMCPDAR and JIMMCPDAR* also perform significantly better on the perfect 
resolution scenarios than on the scenarios with unresolved measurements. 
 
 
Table 1   % Both tracks ‘O.K.’ 

Scenario JIMMCPDA JIMMCPDA* JIMMCPDAR JIMMCPDAR* 
R0 94.0 94.2 99.2 99.2 
R1   0.0  0.0  1.6 11.8 
R2 27.4 34.2 28.4 40.2 

 R2’   0.6  0.2  1.8 31.6 
R3 57.2 70.6 65.2 81.4 

 R3’   1.6  2.4  3.0 40.4 
R4 51.8 72.4 63.4 89.4 

 R4’   0.8  1.6  1.6 42.0 
 
 
 
Table 2   % Both tracks ‘O.K.’ or both tracks ‘Swapped’ 

Scenario JIMMCPDA JIMMCPDA* JIMMCPDAR JIMMCPDAR* 
R0 94.0 94.2 99.2 99.2 
R1   0.0  0.2  3.8 32.0 
R2 53.8 69.0 64.8 96.8 

 R2’   0.8  0.4  3.4 72.2 
R3 81.2 89.6 87.2 98.4 

 R3’   3.0  4.8  9.4 81.6 
R4 78.0 89.8 86.2 99.0 

 R4’   1.4  3.2  3.2 79.8 
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Table 3   % Coalescing tracks 

Scenario JIMMCPDA JIMMCPDA* JIMMCPDAR JIMMCPDAR* 
R0   0.0 0.0  0.0 0.0 
R1   0.0 0.0 36.8 0.2 
R2 17.8 0.2 38.0 0.6 

 R2’   1.0 0.0 76.0 0.0 
R3 15.6 0.4 19.8 0.2 

 R3’   3.8 0.0 73.8 0.0 
R4 15.2 0.2 16.6 0.2 

 R4’   1.4 0.0 82.6 0.0 
 
 
Table 4   Average CPU time per scan (in milliseconds) 

Scenario JIMMCPDA JIMMCPDA* JIMMCPDAR JIMMCPDAR* 
R0 265 250 361 362 
R1 638 620 625 521 
R2 375 329 449 342 

 R2’ 638 601 553 411 
R3 275 236 378 336 

 R3’ 607 598 525 365 
R4 291 226 372 335 

 R4’ 625 608 549 384 
 
 
Table 5   % Both tracks ‘O.K.’ under Perfect Resolution (PR) 

Scenario JIMMCPDA JIMMCPDA* JIMMCPDAR JIMMCPDAR* 
R0 99.0 99.0 98.8 98.8 
R1   0.6 55.0  1.0 53.2 
R2 80.6 82.2 72.8 72.2 

 R2’   9.6 43.8 7.4 43.4 
R3 94.6 97.8 91.2 97.2 

 R3’   6.6 31.2  5.4 27.2 
R4 96.6 98.2 94.8 97.6 

 R4’ 12.4 82.2 10.2 82.2 
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Table 6   % Both tracks ‘O.K.’ or both tracks ‘Swapped’ under PR 

Scenario JIMMCPDA JIMMCPDA* JIMMCPDAR JIMMCPDAR* 
R0 99.0 99.0 98.8 98.8 
R1   1.0 99.2  1.2 98.8 
R2 96.4 99.0 94.4 99.2 

 R2’ 24.8 99.0 16.4 98.2 
R3 96.6 99.2 95.4 99.2 

 R3’ 26.6 99.2 21.8 99.2 
R4 97.0 98.2 97.0 98.2 

 R4’ 18.6 98.6 15.6 98.4 
 
 
Table 7   % Coalescing tracks under Perfect Resolution 

Scenario JIMMCPDA JIMMCPDA* JIMMCPDAR JIMMCPDAR* 
R0   0.0 0  0.0 0 
R1 99.8 0 99.8 0 
R2   1.6 0  3.0 0 

 R2’ 49.8 0 61.6 0 
R3   4.6 0  6.8 0 

 R3’ 55.2 0 58.4 0 
R4   1.2 0  1.2 0 

 R4’ 69.4 0 76.4 0 
 
The results show that the two imperfect resolution filters which are based on the measurement 
model of [5] are far less sensitive to a difference between resolution model and reality than the 
two perfect resolution filter versions are. This confirms the expected robustness of the 
resolution model of [5].    
Table 4 shows that the average computational load is quite similar for all four filters, and even 
with best average values for JIMMCPDAR*.  
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5 Conclusion 

We evaluated four approximate Bayesian filters that have been developed over a series of 
studies [9]-[12]. The baseline algorithm JIMMCPDA uses a Joint IMM for the joint maneuver 
modes of the two targets, in combination with an enhanced version of JPDA that takes the 
coupling between target state estimates into account. The other three JIMMCPDA*, 
JIMMCPDAR and JIMMCPDAR* have been developed as further enhancements over this 
baseline algorithm. JIMMCPDA*’s enhancement is track coalescence avoidance, 
JIMMCPDAR’s enhancement is taking unresolved measurements into account, and 
JIMMCPDAR* incorporates both enhancements. 
Monte Carlo simulation results of these four filters for the considered example of tracking two 
targets that maneuver in and out formation flight, show a significant advantage of the filter 
which takes both limited resolution and track coalescence avoidance into account. This 
corroborates the argumentation by [1], [2] about the high relevance of limited sensor resolution. 
It also shows that the resolution model of [5] allows the filters to keep on performing well in 
case the true sensor resolution is better than assumed.  
Hence, for the considered example of tracking two targets that maneuver in and out a formation 
flight amidst unresolved, missing and false measurements, the JIMMCPDAR* filter is the 
absolute winner, whereas JIMMCPDA* and JIMMCPDAR perform second best and 
JIMMCPDA performs least. 
The nice results obtained with the JIMMCPDAR* filter for two targets forms a strong 
motivation to extend the approach to more than two targets. Follow-up research of 
complementary interest is to compare the performance of the novel filters with those of a good 
particle filter approximation of the exact recursive Bayesian filter. 
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Appendix A Acronyms 

CPDA Coupled PDA 
CPDA* Track-coalescence-avoiding CPDA 
IMM Interacting Multiple Model 
IMMJPDA Interacting Multiple Model Joint Probabilistic Data Association 
IMMJPDA* Track-coalescence-avoiding IMMJPDA 
IMMPDA Interacting Multiple Model Probabilistic Data Association 
JIMMCPDA Joint Interacting Multiple Model Coupled Probabilistic Data Association 
JIMMCPDA* Track-coalescence-avoiding JIMMCPDA 
JIMMCPDAR JIMMCPDA with Resolution 
JIMMCPDAR* Track-coalescence-avoiding JIMMCPDAR 
JPDA Joint PDA 
JPDA* Track-coalescence-avoiding JPDA 
MHT Multiple Hypotheses Tracking 
PDA Probabilistic Data Association 
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Appendix B List of Symbols 

( )i ia θ  Target i’s state transition matrix of size n n×  as a function of mode iθ  
( )A θ  Joint targets state transition matrix as a function of joint mode θ  
( )i ib θ  Target i’s state noise gain matrix of size n n′×  as a function of mode iθ  
( )B θ  Joint targets state noise gain matrix as a function of joint mode θ  

tD  Total number of detected targets at moment t 

tf  Column vector of tF  i.i.d. false measurements 

tF  Total number of false measurements at moment t 

,i tφ  Detection indicator for target i at moment t 

tφ  Detection indicator vector at moment t, containing the detection indicators for all 
targets at moment t 

Φ  Matrix operator to link the detection indicator vector with the measurement model 
( )i ig θ  Target i’s measurement noise gain matrix of size m m′×  as a function of mode iθ  
( )G θ  Joint targets measurement noise gain matrix as a function of joint mode θ  

tχ%  (0,1)-matrix that is used to randomly select target measurements from the 
measurement vector ty  

tχ%  “Inflated” tχ%  matrix of proper size such that it randomly selects target measurements 
from the measurement vector ty  by means of matrix multiplication. 

( )i ih θ  Target i’s state-to-measurement transition matrix of size m n×  as a function of mode 
iθ  

( )H θ  Joint targets state-to-measurement transition matrix as a function of joint mode θ  
I  Unit-matrix 

rI  Diagonal matrix with its i-th diagonal equal to the i-th element of the vector r  

tκ  Merging indicator at moment t 

tL  The number of measurements at moment t 
λ  Spatial density of false measurements 
M  Total number of targets 
M  Set of possible modes of  target 
N  Total number of modes of a target 
ν  Measurements gate threshold 

i
dP  Detection probability of target i 

ηθΠ  Transition probability of a target switching from mode η  to mode θ  
Π  Transition probability matrix 

.i tψ  Target indicator for measurement i at moment t 

tψ  Target indicator vector at moment t, containing the target indicators for all 
measurements at moment t 
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ir  Resolution capability factor for the i-th noise component of a potential target 
measurement 

( )R θ  Resolution capability matrix of size m m×  
( )i i

aσ θ  Target i’s system noise standard deviation as a function of mode iθ  

mσ  Measurement noise standard deviation 
i
tθ  Mode of target i at moment t 

tθ  Joint targets mode at moment t 
i
tv  Sequence of i.i.d. standard Gaussian variables of dimension m′  representing the 

measurement noise for target i 

tv  Joint targets measurement noise vector 
V  Volume of the observed region 

i
tw  Sequence of i.i.d. standard Gaussian variables of dimension n′  representing the 

system noise for target i 

tw  Joint targets system noise vector 
i
tx  n-vectorial state of target i at moment t 

tx  Joint targets state vector at moment t 
k
ty  k-th measurement at moment t 

ty  Measurement vector at moment t, containing all measurements at moment t 

tY  σ -algebra generated by measurements up to and including moment t  
i
tz  m-vectorial potential measurement of target i at moment t 

tz  Joint measurements vector at moment t, containing the potential measurements of all 
targets at moment t 

tz%  Joint measurements vector at moment t, containing the potential measurements of all 
detected targets at moment t in a fixed order 
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