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ABSTRACT
A two-dimensional solution-adaptive grid generation method based on mesh movement is presented. As
explained in Ref. 1, each simply connected domain D in 2D physical space which is bounded by four edge-
curves, can be mapped one-to-one onto a square parameter space Pst. This harmonic map only depends on
the shape of the domain. Using this map, an initial grid in domain D can be mapped into the parameter
space and yields a corresponding initial grid in that space. In parameter space, the solution vector is
considered as a monitor surface and the Laplace-Beltrami equation is used to cover the monitor surface
with a uniform distribution of grid points. The projection of these points on the (s, t) plane define the
adapted grid in parameter space Pst. After that, the harmonic map can then be used to map the adapted grid
from parameter space into the physical space.
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Summary

A two-dimensional solution-adaptive grid generation method based on mesh movement is pre-

sented. As explained in Ref. 1, each simply connected domain D in 2D physical space which is

bounded by four edge-curves, can be mapped one-to-one onto a square parameter space Pst. This

harmonic map only depends on the shape of the domain. Using this map, an initial grid in domain

D can be mapped into the parameter space and yields a corresponding initial grid in that space. In

parameter space, the solution vector is considered as a monitor surface and the Laplace-Beltrami

equation is used to cover the monitor surface with a uniform distribution of grid points. The pro-

jection of these points on the (s; t) plane define the adapted grid in parameter space Pst. After that,

the harmonic map can then be used to map the adapted grid from parameter space into the physical

space.
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1 Introduction

The theory of harmonic maps is becoming increasingly popular for the construction of adaptive

grids. The popularity of the use of harmonic maps for grid adaptation comes from the fact that the

adaptive meshes are continuous and differentiable with non-vanishing Jacobian. This very impor-

tant property guarantees one-to-one mapping.

In Refs. 6, 7, the grid was adapted in a domain in physical space by prescribing a special metric in

it. Even more closely related to this investigation is the work of Ivanenko (Ref. 8), who obtained

adaptive grids by projecting harmonic coordinates constructed on the surface of graph of the mon-

itor surface on the given domain in physical space. A variational approach has been used, based

on the approximation of the harmonic functional (Dirichlet’s functional) itself rather then the Euler

equations.

In this paper, the problem of grid adaptation in a domain in physical space is broken into two sub-

problems. First the grid adaptation is formulated in parameter space (a simple unit square), by using

the harmonic map between the domain in physical space and the parameter space (see Ref. 1). The

harmonic map only depends on the shape of the domain and can therefore be considered as a prop-

erty of the domain. The harmonic map is used to map the initial grid from the physical domain into

the parameter space. In parameter space, the solution vector is considered as a monitor surface (see

Ref. 2). The solution of the Laplace-Beltrami equation yields an harmonic map from the graph of

the monitor surface onto the computational space (a unit square supplied with a uniform mesh).

The inverse mapping from computational space to the monitor surface defines harmonic coordi-

nates on the surface which are then projected onto the (s; t) plane. The projection of these points

define the adapted grid in parameter spacePst. The inverse map is easily obtained by numerical in-

version instead of interchanging dependent and independent variables which is the more common

approach. Finally the harmonic map between the parameter space and the physical domain can be

used to map the adapted grid from parameter space into the physical space.
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2 The Laplace-Beltrami operator

Consider a bounded surface S with a prescribed geometrical shape in three dimensional physical

space with Cartesian coordinates ~x = (x; y; z)T . Assume that S is parametrized by a differentiable

one-to-one mapping ~x : Pst 7! S , where Pst is the unit square in two dimensional space with

Cartesian coordinates ~s = (s; t)T . Let (E1; E2) and (E3; E4) be the two pairs of opposite edges

of surface S . Assume that s � 0 at edge E1, s � 1 at edge E2, t � 0 at edge E3, t � 1 at edge

E4. Introduce the two covariant base vectors

~a1 =
@~x

@s
= ~xs ; ~a2 =

@~x

@t
= ~xt: (1)

The two covariant base vectors span the tangent plane of S at the corresponding point P . The two

contravariant base vectors ~a1 and ~a2 are also lying in the tangent plane of S at the corresponding

point P , and obey

(~ai;~aj) = �ij i = f1; 2g ; j = f1; 2g; (2)

where �ij is the Kronecker symbol. Define the covariant metric tensor components aij = (~ai;~aj),

and the contravariant metric tensor components aij = (~ai;~aj). The covariant and contravariant

metric tensor components are related to each other according to

0
@ a11 a12

a12 a22

1
A
0
@ a11 a12

a12 a22

1
A =

0
@ 1 0

0 1

1
A : (3)

Furthermore, ~a1 = a11~a1 + a12~a2 and ~a2 = a12~a1 + a22~a2. Introduce the determinant J2 of the

covariant metric tensor: J2 = a11a22�a212. Note that J is equal to the area spanned by the vectors

~a1 and ~a2 i.e. J =k ~a1 ^ ~a2 k, where ^ is the vector product operator.

Now consider an arbitrary function � = �(s; t). Then � is also defined on surface S and the gra-

dient of � is equal to

r� = grad � = �s~a
1 + �t~a

2 (4)
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and the Laplace-Beltrami operator 4� is equal to

4� = div ( grad �) =
1

J

n�
Ja11�s + Ja12�t

�
s
+
�
Ja12�s + Ja22�t

�
t

o
; (5)

which may be found in every textbook on Tensor Analysis and Differential Geometry (for example

see Ref. 4, section 77, page 225). According to the RHS of Eq.(5), the Laplace-Beltrami equation

4� = 0 can be written in vector notation as

div (M grad �) = 0 (6)

where the matrix M = M(s; t) is defined as

M = J

0
@ a11 a12

a12 a22

1
A =

1

J

0
@ a22 �a12

�a12 a11

1
A : (7)

In Eq.(6), the div and grad operator are now operators in parameter space Pst.

Consider the generalized Dirichlet integral

I(�) =

Z Z
Pst

(r�;r�)Jdsdt =

Z Z
Pst

(a11�2s + 2a12�s�t + a22�2t )Jdsdt: (8)

The associated Euler equation for the minimization of I is given by

�
Ja11�s + Ja12�t

�
s
+
�
Ja12�s + Ja22�t

�
t
= 0: (9)

Thus the Laplace-Beltrami equation is the Euler equation of the generalized Dirichlet integral.

Introduce the parameter space P�� as the unit square in a two dimensional space with Cartesian

coordinates ~� = (�; �)T . Require that the parameters � and � obey the following boundary condi-

tions: � � � 0 at edge E1 and � � 1 at edge E2, � � obeys natural boundary conditions at edges

E3 and E4, � � � 0 at edge E3 and � � 1 at edge E4, � � obeys natural boundary conditions at
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edges E1 and E2. Furthermore, require that

div (M grad �) = 0 ; div (M grad �) = 0: (10)

The natural boundary condition for � = �(s; t) along edge E1 (E2), is obtained as follows. Con-

sider a curve �(s; t) = �0 = constant in parameter space Pst. Assume that this curve can be

parametrized, i.e. s = s(�), t = t(�), so that �(s(�); t(�)) = �0. Differentiation w.r.t. � gives

�ss�+�tt� = 0. The corresponding curve on surface S is defined as ~x(�) = ~x(s(�); t(�)). Hence

~x� = ~xss� + ~xtt�. The natural boundary condition along edge E1 (E2) requires that the curve

~x(�) = ~x(s(�); t(�)) is orthogonal at edge E1 (E2) on surface S . Thus (~x�; ~xt) = 0. This yields

(~xs; ~xt)s� + (~xt; ~xt)t� = 0. Using this relation, together with �ss� + �tt� = 0, yields the natural

boundary condition for � = �(s; t) along edge E1 (E2):

�s =
(~xs; ~xt)

(~xt; ~xt)
�t: (11)

In the same way, the natural boundary condition for � = �(s; t) along edge E3 (E4) is

�t =
(~xs; ~xt)

(~xs; ~xs)
�s: (12)

The field equations div (M grad �) = 0 and div (M grad �) = 0, supplied with the boundary

conditions, define the mapping ~� : Pst 7! P��. Now, suppose that the parameter space P�� is

covered by a uniform mesh. Inversion of the mapping ~� : Pst 7! P�� yields a corresponding mesh

in parameter space Pst, which can be mapped onto surface S . This mesh will cover surface S with

a Laplace mesh, i.e. a smooth mesh with slowly varying mesh-line density. This observation will

be the basis for our grid adaptation algorithm.
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3 Grid adaptation in parameter space Pst

Consider a simply connected bounded domain D in two dimensional space with Cartesian coor-

dinates ~x = (x; y)T . Let (E1; E2) and (E3; E4) be the two pairs of opposite edges as shown in

Fig.1. Suppose that domain D is covered by an initial grid. Let this grid be given by the mapping

~xI : P�� 7! D which maps a uniform grid in computational space P�� into D. Assume that this

mapping is such that � � 0 at edge E1, � � 1 at edge E2, � � 0 at edge E3, � � 1 at edge E4.

We wish to adapt the grid to a given solution vector ~Q
D
= ~Q

D
(~x) of some initial-boundary value

problem for flow equations. For this purpose, we use the same parameter space Pst as introduced in

Ref. 1 for elliptic grid generation. As in Ref. 1, the parameter space Pst is defined as the unit square

in a two dimensional space with Cartesian coordinates~s = (s; t)T . The parameters s and t obey the

following boundary conditions: � s � 0 at edge E1 and s � 1 at edge E2, � s is the normalized

arc length along edges E3 and E4, � t � 0 at edge E3 and t � 1 at edge E4, � t is the normalized

arc length along edges E1 and E2. The mapping ~s : @D 7! @Pst is defined by these requirements.

In the interior ofD, the parameters s and t are harmonic functions of x and y, thus obey the Laplace

equations 4s = sxx + syy = 0 and 4t = txx + tyy = 0. The two Laplace equations 4s = 0

and 4t = 0, together with the above specified boundary conditions, define the harmonic mapping

~s : D 7! Pst. Note that this mapping only depends on the shape of domain D and may thus be

considered as a property of domain D. It is well known that this mapping is differentiable and one-

to-one, so that the inverse mapping also exist. The inverse mapping ~x : Pst 7! D is called the

elliptic transformation.

Due to the fact that there is an initial grid in domain D, presented by the mapping ~xI : P�� 7! D,

the corresponding grid in parameter space Pst can be easily computed by solving, inD, the Laplace

equations supplied with the Dirichlet boundary conditions. Let this grid be given by the mapping

~sI : P�� 7! Pst. The idea is to adapt mapping ~sI , i.e. the initial grid in parameter space Pst.

Grid adaptation in parameter space Pst has several useful properties (see Ref. 3). The solution

vector ~Q
D

at a grid point of the initial grid in D, can be transfered to the corresponding grid point

of the initial grid in Pst. Let ~Q
Pst

represent the solution vector in Pst. One of the problems in

grid adaptation is the scaling of the solution vector. The components of ~Q
D

may have different

dimensions and represent quantities like density, velocity, pressure etc. A natural way to scale ~Q
Pst

is to normalize each component such that it is dimensionless and has range [�1; 1].

Because parameter spacePst can be considered as the normalized arc length scaled space of domain
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D, the initial grid inD and the corresponding initial grid in Pst will share the same properties. For

example, when the initial grid inD has a refined structure in a boundary-layer or a shock, then these

refined structures will also exist in the corresponding initial grid in Pst.

4
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Fig. 1 Transformation from computational space P�� , via parameter space Pst, to domain D in

Cartesian (x; y) space.

After adaptation in Pst, the adapted grid in Pst must be mapped into domain D. The elliptic grid

generation method, presented in Ref. 1, can be used to generate the adapted grid in domain D.

Let the mapping ~sA : P�� 7! Pst, with components s = sA(�; �) and t = tA(�; �), represent

the adapted grid in Pst. Then it is found in Ref. 1 that the adapted grid in D, represented by the

mapping ~xA : P�� 7! D, obeys the Poisson system:

b22~x
A
�� � 2b12~x

A
�� + b11~x

A
�� +

�
b22P

1

11 � 2b12P
1

12 + b11P
1

22

�
~xA�

+
�
b22P

2

11 � 2b12P
2

12 + b11P
2

22

�
~xA� = 0; (13)

where b11; b12; b11 are the covariant tensor components defined by

b11 = (~xA� ; ~x
A
� ) ; b12 = (~xA� ; ~x

A
� ) ; b22 = (~xA� ; ~x

A
� ); (14)

and where

~P11 = �T�1

0
@ sA��

tA��

1
A ; ~P12 = �T�1

0
@ sA��

tA��

1
A ; ~P22 = �T�1

0
@ sA��

tA��

1
A ; (15)
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with the matrix T is defined as

T =

0
@ sA� sA�

tA� tA�

1
A : (16)

The six coefficients of the vectors ~P11 = (P 1
11; P

2
11)

T ; ~P12 = (P 1
12; P

2
12)

T and ~P22 = (P 1
22; P

2
22)

T

are so called control functions. These six control functions are completely defined by the adaptation

mapping ~sA : P�� 7! Pst.

The adapted grid in domain D is computed by first mapping the adapted boundary grid points at

@Pst to the boundary ofD. Next, the interior adapted grid inD is computed by solving the Poisson

system given by Eq.(13) with the already computed adapted grid points at the boundary of D as

Dirichlet boundary conditions.

Grid adaptation in Pst may be based on solving the Laplace-Beltrami equations on a monitor sur-

face given by

~Q(s; t) = (s; t;Q1

Pst

(s; t); : : : ; Qn
Pst

(s; t))T ; (17)

where (Q1

Pst

(s; t); : : : ; Qn
Pst

(s; t))T = ~Q
Pst

are the n components of the normalized solution vec-

tor in Pst. Let ~�A : Pst 7! P�� be the inverse of the adaptation mapping ~sA : P�� 7! Pst. The

two components of ~�A : Pst 7! P�� , given by � = �A(s; t) and � = �A(s; t), must obey

div (M grad �A) = 0 ; div (M grad �A) = 0; (18)

where the matrix M = M(s; t) is defined by Eq.(7). The two covariant base vectors are given by

~a1 =
@ ~Q

@s
= ~Qs = (1; 0;

@Q1

Pst

@s
; : : : ;

@Qn
Pst

@s
)T ; (19)

~a2 =
@ ~Q

@t
= ~Qt = (0; 1;

@Q1

Pst

@t
; : : : ;

@Qn
Pst

@t
)T : (20)

According to Eq.(11) and Eq.(12), the natural boundary conditions at edge E1 (E2) and edge E3
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(E4) become respectively

�As =
( ~Qs; ~Qt)

( ~Qt; ~Qt)
�At ; �At =

( ~Qs; ~Qt)

( ~Qs; ~Qs)
�As : (21)

Natural boundary conditions are such that the adapted grid is orthogonal at the boundary of the

monitor surface. Sometimes it is desired that the adapted grid is orthogonal at the boundary of

the domain D itself. Especially for Navier-Stokes computations, the orthogonality of the grid in a

boundary-layer is often desired. The boundary conditions for grid orthogonality at the boundary

of domain D, which we call Neumann boundary conditions, is given by Eq.(21) with ~Q replaced

by ~x where ~x : Pst 7! D is the elliptic transformation.
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4 Numerical aspects

Eq.(18), supplied with the boundary conditions, can be solved on a non-uniform mesh in parameter

space Pst to find ~�A : Pst 7! P�� . However, from a numerical point of view this is not the easiest

way to do. The solution of the Laplace-Beltrami equation on a monitor surface, only depends on

the shape of the surface and the boundary conditions, but is independent of the parametrization

of the surface. Thus the only information needed to compute the discrete solution of the Laplace-

Beltrami equation, supplied with the boundary condition, are the locations of the grid points on the

monitor surface. Thus, in practice, for a grid of (N + 1)� (M + 1) points on a monitor surface,

point index coordinates f(i; j) j i = 0 : : : N; j = 0 : : : Mg are used as parametrization.

Consider the initial non-uniform grid in parameter space Pst, given by the mapping ~sI : P�� 7!

Pst. Write this grid as f(sIij ; t
I
ij) j i = 0 : : : N; j = 0 : : :Mg. The adapted grid in Pst, given

by the mapping ~sA : P�� 7! Pst, and written as f(sAij ; t
A
ij) j i = 0 : : : N; j = 0 : : : Mg,

must be found by numerical inversion of the mapping ~�A : Pst 7! P�� . This is done as follows.

Let f(�Aij ; �
A
ij) j i = 0 : : : N; j = 0 : : : Mg be the solution of the Laplace-Beltrami equation.

Consider this grid as a non-overlapping subdivision of the computational space P�� by N �M

patches, where each patch has four corner points. For a given grid point (i; j) of the uniform grid

in P�� , given by (�ij ; �ij) = (i=N; j=M) the corresponding grid point (sAij; t
A
ij) of the adapted grid

is obtained as follows. Suppose that (�ij ; �ij) belongs to patch (p,q) as shown in Fig.26.

The local patch parameters � and � are now defined by the following two bilinear equations

�i;j = �Ap;q(1� �)(1 � �) + �Ap+1;q�(1� �) + �Ap;q+1(1� �)� + �Ap+1;q+1��;

�i;j = �Ap;q(1 � �)(1 � �) + �Ap+1;q�(1 � �) + �Ap;q+1(1� �)� + �Ap+1;q+1��:

The two parameters � and � are solved by Newton iteration. Note that 0 � � � 1 and 0 � � � 1

because (�ij ; �ij) belongs to patch (p,q). After computation of � and �, a corresponding grid point

(sAij; t
A
ij) of the adapted grid is given by

sAi;j = sIp;q(1� �)(1 � �) + sIp+1;q�(1� �) + sIp;q+1(1� �)� + sIp+1;q+1��;

tAi;j = tIp;q(1� �)(1� �) + tIp+1;q�(1 � �) + tIp;q+1(1� �)� + tIp+1;q+1��:

After one adaptation step, we obtain a new adapted grid f(sAij ; t
A
ij) j i = 0 : : : N; j = 0 : : : Mg

in parameter space Pst. This grid can be considered as a new initial grid in Pst on which a next
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adaptation step can be performed. Assume that the monitor surface function does not change dur-

ing adaptation. The components of the monitor surface are recomputed on this new grid and the

process can be repeated until convergence is reached. Convergence is obtained when f(�Aij ; �
A
ij) =

(�ij ; �ij) = (i=N; j=M) j i = 0 : : : N; j = 0 : : : Mg. In practice, about 5-10 adaptation steps

are sufficient to reach convergence.

If the solution vector ~Q
Pst

is constant, then the matrix M = M(s; t) is the unit matrix and the

Laplace-Beltrami equations, Eq.(18), simplify to the Laplace equations: 4�A = �Ass+�Att = 0 and

4�A = �Ass + �Att = 0. Thus after adaptation, we will get a uniform grid in Pst. Consequently,

the adapted grid in domain D becomes a Laplace grid so that all features of the initial grid will get

lost. From a practical point of view, this behavior is unwanted. Instead, it is much more desirable

that an initial grid remains unchanged when the solution vector is constant. This can be achieved

by redefining the monitor surface, given by Eq.(17), as

~Q(s; t) = (�I(s; t); �I(s; t); Q1

Pst

(s; t); : : : ; Qn
Pst

(s; t))T ; (22)

where ~�I : Pst 7! P�� is the inverse of the mapping ~sI : P�� 7! Pst. In that case, if ~Q
Pst

is

constant, the matrix M = M(s; t) becomes

M =
1

�Is�
I
t � �It �

I
s

0
@ (�It )

2 + (�It )
2 �(�Is�

I
t + �Is�

I
t )

�(�Is�
I
t + �Is�

I
t ) (�Is )

2 + (�Is )
2

1
A : (23)

Then M grad �I = (�It ;��
I
s )

T and M grad �I = (��It ; �
I
s )

T , so that div (M grad �I)

= 0 and div (M grad �I) = 0. Thus, in that case, the mapping ~�I : Pst 7! P�� already obeys the

Laplace-Beltrami equations and the initial grid will therefore remain unchanged during adaptation.

If Eq.(22) is used for the definition of the monitor surface, then, during the first adaptation step,

the Laplace-Beltrami equations are in fact solved on a uniform mesh in a parameter space. Then

the method resembles the approach of Hagmeijer, Ref. 3, who used anisotropic diffusion equations

instead of Laplace-Beltrami equations on uniforms grids in a parametric domain.
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5 Illustrations

Only grid adaptation in parameter space Pst is considered. The mapping of the adapted grid into a

domain D, based on the Poisson system given by Eq.(13), is not shown.

In all cases, the initial grid in Pst is uniform, so that there is no distinction between the definition

of the monitor surface function defined by Eq.(17) and Eq.(22). All adapted grids are converged

solutions obtained after 5-10 adaptation steps.

Fig.2 through Fig.9 show adaptive grids for a scalar monitor function defined as

Q
Pst

(s; t) = � tanh(80(1=16�(s�1=2)2�(t�1=2)2)). As illustrated, the amount of adaptation

can be varied by changing the height � of this ”table” function.

Fig.10 through Fig.13 illustrate grid adaptation to a curved ”shock”. The example is based on a

solution function borrowed from Ref. 5: Q
Pst

(s; t) = tanh(5((5=4)2� (s�3=2)2� t2)). Natural

boundary conditions are used. Fig.12 illustrates that the adapted grid is such that it uniformly covers

the monitor surface with grid points.

Grid adaptation towards a parabola Q1

Pst

(s; t) = tanh(5(t� 3(s� 1=2)2)) is illustrated in Fig.14

through Fig.17. This example can also be found in Ref. 6. Fig.18 depicts the adapted grid towards

the parabola Q1
Pst

and a straight-line Q2
Pst

(s; t) = tanh(5(t� s)).

Fig.19 through Fig.24 shows an adaptation to a model problem that simulates the interaction of an

oblique-shock and a boundary-layer as used in Ref. 3. The two components of the corresponding

solution vector are defined as Q1

Pst

(s; t) = tanh(50t) andQ2

Pst

(s; t) = tanh(25(t�s+0:5)=
p
2).

Q1
Pst

is called the boundary-layer function and Q2
Pst

is called the shock function. The Neumann

boundary condition is used at the edge where the boundary-layer is situated. Thus the grid lines

of the adapted grid should be orthogonal at this edge. Natural boundary conditions are used at the

other three edges. Fig.21 and Fig.22 illustrate that the adapted grid tries to uniformly cover both the

monitor surface of the boundary-layer function and the shock function. The adapted grid is clearly

a compromise between conflicting requirements. Fig.23 and Fig.24 show respectively the com-

plete adapted grid and a blow-up at the foot of the shock. At the foot of the shock, the adapted grid

is clearly orthogonal at the boundary. Fig.25 shows a blow-up of the adapted grid in the boundary-

layer at a location left to the foot of the shock. In this region, the adapted grid uniformly covers the

monitor surface of the boundary-layer function, as shown in Fig.21. Therefore, the skewness of

the adapted grid in the boundary-layer is inherent to our approach and cannot be removed by only

specifying a Neumann boundary condition. This is a severe problem, because in practice, grids
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should be orthogonal in the complete boundary-layer and not only at the boundary of a domain.

This problem also occurs in the approach of Hagmeijer Ref. 3, who solved the problem by intro-

ducing the MAD (Modified Anisotropic Diffusion) equations. Such an approach cannot be easily

done with the Laplace-Beltrami equations, without loosing the mathematical rigour of the method.
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6 Conclusions

Grid adaptation based on solving the Laplace-Beltrami equations on a monitor surface in parameter

space, is a sound mathematical approach. The adapted grids clearly resolve the solution vector.

However, the method provides no control about grid skewness, which appears to be a problem,

especially in boundary-layers.
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Fig. 2 Monitor surface and initial grid of a "table" function: Q(s; t) = � tanh(80(1=16 � (s �

1=2)2 � (t� 1=2)2)). The parameter � is used to vary the height.
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Fig. 3 Contour-lines and initial grid.
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Fig. 4 Monitor surface and adapted grid.
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Fig. 5 Adapted grid. The height of the table function is defined by the parameter � = 0:1.
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Fig. 6 Adapted grid corresponding to an increase of the height of the table function (� = 0:2).
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Fig. 7 Adapted grid corresponding to an increase of the height of the table function (� = 0:3).
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Fig. 8 Adapted grid corresponding to an increase of the height of the table function (� = 0:4).
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Fig. 9 Adapted grid corresponding to an increase of the height of the table function (� = 0:5).
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Fig. 10 Monitor surface and initial grid of a curved "shock": Q(s; t) = tanh(5((5=4)2 � (s �

3=2)2 � t2)).
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Fig. 11 Contour-lines and initial grid.
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Fig. 12 Monitor surface and adapted grid.



- 30 -
TP 96297

X

Y

Z

0
0
0
0

0
0
0
0

0
0

0
0
0

0

0
0

D

Fig. 13 Adapted grid.
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Fig. 14 Monitor surface and initial grid of a parabola: Q(s; t) = tanh(5(t� 3(s� 1=2)2)).
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Fig. 15 Contour-lines and initial grid.
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Fig. 16 Monitor surface and adapted grid.
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Fig. 17 Adapted grid.
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Fig. 18 Adapted grid to a parabola: Q1(s; t) = tanh(5(t � 3(s � 1=2)2)), and a straight-line:

Q2(s; t) = tanh(5(t� s)).
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Fig. 19 Initial grid and monitor surface of boundary-layer function: Q1(s; t) = tanh(50t).
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Fig. 20 Initial grid and monitor surface of an oblique shock function: Q2(s; t) = tanh(25(t �

s+ 0:5)=
p
2).
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Fig. 21 Adapted grid and monitor surface of boundary-layer function.
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Fig. 22 Adapted grid and monitor surface of shock function.
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Fig. 23 Adapted grid.
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Fig. 24 Detail of adapted grid at the foot of the shock.
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Fig. 25 Detail of adapted grid in boundary-layer.
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Fig. 26 Patch (p,q) in parameter space P��.


