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ABSTRACT

A two-dimensional solution-adaptive grid generation method based on mesh movement is presented. As
explained in Ref. 1, each simply connected domain D in 2D physical space which is bounded by four edge-
curves, can be mapped one-to-one onto a square parameter space Pst. This harmonic map only depends on
the shape of the domain. Using this map, an initial grid in domain D can be mapped into the parameter
space and yields a corresponding initial grid in that space. In parameter space, the solution vector is
considered as a monitor surface and the Laplace-Beltrami equation is used to cover the monitor surface
with a uniform distribution of grid points. The projection of these points on the (s, t) plane define the
adapted grid in parameter space Pst. After that, the harmonic map can then be used to map the adapted grid
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Summary

A two-dimensional solution-adaptive grid generation method based on mesh movement is pre-
sented. Asexplained in Ref. 1, each simply connected domain D in 2D physical space which is
bounded by four edge-curves, can be mapped one-to-one onto a square parameter space Ps;. This
harmonic map only depends on the shape of the domain. Using thismap, an initial grid in domain
D can be mapped into the parameter space and yields a corresponding initial grid in that space. In
parameter space, the solution vector is considered as a monitor surface and the Laplace-Beltrami
equation is used to cover the monitor surface with a uniform distribution of grid points. The pro-
jection of these pointson the (s, t) plane define the adapted grid in parameter space P,;. After that,
the harmonic map can then be used to map the adapted grid from parameter space into the physical
space.
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1 Introduction

The theory of harmonic maps is becoming increasingly popular for the construction of adaptive
grids. The popularity of the use of harmonic maps for grid adaptation comes from the fact that the
adaptive meshes are continuous and differentiable with non-vanishing Jacobian. This very impor-
tant property guarantees one-to-one mapping.

In Refs. 6, 7, the grid was adapted in adomain in physical space by prescribing a specia metricin
it. Even more closely related to this investigation is the work of lvanenko (Ref. 8), who obtained
adaptive grids by projecting harmonic coordinates constructed on the surface of graph of the mon-
itor surface on the given domain in physical space. A variational approach has been used, based
on the approximation of the harmonic functiona (Dirichlet’s functional) itself rather then the Euler
eguations.

In this paper, the problem of grid adaptation in adomain in physical space is broken into two sub-
problems. First thegrid adaptation isformulated in parameter space (asimple unit square), by using
the harmonic map between the domain in physical space and the parameter space (see Ref. 1). The
harmonic map only depends on the shape of the domain and can therefore be considered as a prop-
erty of the domain. The harmonic map isused to map theinitial grid from the physical domain into
the parameter space. |n parameter space, the solution vector is considered asamonitor surface (see
Ref. 2). The solution of the Laplace-Beltrami equation yields an harmonic map from the graph of
the monitor surface onto the computational space (a unit square supplied with a uniform mesh).
The inverse mapping from computational space to the monitor surface defines harmonic coordi-
nates on the surface which are then projected onto the (s, t) plane. The projection of these points
define the adapted grid in parameter space P,;. Theinverse map iseasily obtained by numerical in-
version instead of interchanging dependent and independent variables which is the more common
approach. Finally the harmonic map between the parameter space and the physical domain can be
used to map the adapted grid from parameter space into the physical space.
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2 TheLaplace-Beltrami operator

Consider a bounded surface S with a prescribed geometrical shape in three dimensional physica
space with Cartesian coordinates * = (1, z)”. Assumethat S isparametrized by adifferentiable
one-to-one mapping z : Py — S, where Py, is the unit square in two dimensional space with
Cartesian coordinates 5 = (s,t)”. Let (Ey, E») and (Es, E,) be the two pairs of opposite edges
of surface S. Assumethat s = 0 atedge F,s = 1 atedge F»,t = 0 at edge F3, t = 1 at edge
E,. Introduce the two covariant base vectors

0% or
= — =X a> —= —
1 9s s 5 U2 ot

—

a

The two covariant base vectors span the tangent plane of S at the corresponding point P. The two
contravariant base vectors @' and @2 are aso lying in the tangent plane of S at the corresponding
point P, and obey

(&iaaj) = 6; 1= {1a2} y J = {1a2}7 (2)

where ¢? is the Kronecker symbol. Define the covariant metric tensor components a;; = (d, @;),
and the contravariant metric tensor components o/ = (a*,a’). The covariant and contravariant
metric tensor components are related to each other according to

11 12
a a a a 10
11 12 _ . (3)
aio a2 a12 a22 0 1
Furthermore, @t = a'ld; + a'2dy and @2 = a'2d; + a*2d,. Introduce the determinant .J2 of the

covariant metrictensor: J? = ayja9; —a?,. Notethat .J isequal to the areaspanned by the vectors
dy and dy i.e. J =| @ A ds ||, where A isthe vector product operator.

Now consider an arbitrary function ¢ = ¢(s, t). Then ¢ is aso defined on surface S and the gra-
dient of ¢ isequal to

Vo= grad ¢ = @' + i’ (4)
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and the Laplace-Beltrami operator A¢ isequa to

A¢ = div (grad ¢) = % {(Ja”gbs + Ja12¢t)s + (Ja%s + Ja22¢t)t} ,

Q)

which may befound in every textbook on Tensor Analysis and Differentiadl Geometry (for example
see Ref. 4, section 77, page 225). According to the RHS of Eq.(5), the Laplace-Beltrami equation

A¢ = 0 can be written in vector notation as
div (M grad ¢) =0

where the matrix M = M (s, t) isdefined as

1 12
a a 1 ags2 —a12
\/i == J 12 22 = —_— .
a'? a J\ —a2  an

In EQ.(6), thediv and grad operator are now operators in parameter space Pg;.

Consider the generalized Dirichlet integral

19)= [ [ (vo.Vo)Tasdt= [ [ (@162 + 202061+ a2 Tasit.

The associated Euler equation for the minimization of I is given by

(Janqbs + Ja12¢t)s + (Ja12¢55 + Ja22¢t)t = 0.

Thus the Laplace-Beltrami equation isthe Euler equation of the generalized Dirichlet integral.

(6)

()

(8)

(9)

Introduce the parameter space P, as the unit square in atwo dimensional space with Cartesian

coordinates E = (¢,17)". Require that the parameters ¢ and 1) obey the following boundary condi-
tions. e £ =0atedge By and € = 1 at edge E», e £ obeys natural boundary conditions at edges
Esand E,,¢ n=0atedge F3 andn = 1 a edge FE4, o 7 obeys natural boundary conditions at



-8-
TP 96297

edges E; and E5. Furthermore, require that

div (M grad &) =0, div (M grad n) = 0. (20)

The natural boundary condition for n = n(s, t) along edge E; (FE>), is obtained as follows. Con-
Sder acurve n(s,t) = ny = constant in parameter space P;. Assume that this curve can be
parametrized, i.e. s = s(a), t = t(«), sothat n(s(a),t(a)) = no. Differentiation w.r.t. « gives
NsSa+nite = 0. Thecorresponding curveon surface S isdefined as #(a) = #(s(«), t(«)). Hence
To = TsSq + Tito. The natural boundary condition along edge E; (E-2) requires that the curve
(o) = Z(s(), t(c)) isorthogonal at edge Ey (E2) onsurface S. Thus (Z,, Z;) = 0. Thisyields
(Zs, %1)sa + (24, Z1)ta = 0. Using this relation, together with ns, + n:t, = 0, yields the natural
boundary condition for n = 7(s,t) dong edge E (E»):

8y

_ (_‘Saft)

=== 11
778 ( ", t) 77t ( )
In the same way, the natural boundary condition for £ = £(s, t) along edge E3 (Ey) is
T, T
g = Tty 1)

The field equations div (M grad ¢) = 0 and div (M grad n) = 0, supplied with the boundary
conditions, define the mapping 5 : Pst — Pey. Now, suppose that the parameter space Py, is
covered by auniform mesh. Inversion of the mapping & : Py, — Py, yields acorresponding mesh
in parameter space P, which can be mapped onto surface S. Thismesh will cover surface S with
aLaplace mesh, i.e. a smooth mesh with slowly varying mesh-line density. This observation will
be the basis for our grid adaptation algorithm.
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3 Grid adaptation in parameter space P,

Consider a simply connected bounded domain D in two dimensiona space with Cartesian coor-
dinates # = (z,y)T. Let (Ey, Ey) and (Es3, E,) be the two pairs of opposite edges as shown in
Fig.1. Suppose that domain D is covered by aninitial grid. Let this grid be given by the mapping
#" : Pg, — D which maps auniform grid in computational space P, into D. Assume that this
mappingissuchthat { =0 atedge F1,&{ = 1 atedge E», n = 0 at edge E3,n = 1 at edge Ej.

We wish to adapt the grid to a given solution vector G = Qp(Z) of some initial-boundary value
problem for flow equations. For this purpose, we use the same parameter space P,; asintroduced in
Ref. 1 for eliptic grid generation. Asin Ref. 1, the parameter space P, is defined asthe unit square
inatwo dimensional spacewith Cartesian coordinates 5 = (s, t)”. Theparameters s and ¢ obey the
following boundary conditions. ¢ s =0 at edge F;, and s = 1 a edge E5, e s isthe normalized
arclengthaongedges Fs and Fy, e t =0atedge F3 andt = 1 at edge E4, o ¢ isthe normalized
arc length along edges E; and E». Themapping s : 0D — JP,, isdefined by these requirements.
Intheinterior of D, the parameters s and ¢ are harmonic functions of 2 and v, thus obey the Laplace
equations As = sy, + sy = 0 and At = ¢y, +ty, = 0. Thetwo Laplace equations As = 0
and At = 0, together with the above specified boundary conditions, define the harmonic mapping
§: D — Pg. Note that this mapping only depends on the shape of domain D and may thus be
considered as aproperty of domain D. It iswell known that this mapping is differentiable and one-
to-one, so that the inverse mapping also exist. The inverse mapping # : Py +— D iscaled the
dliptic transformation.

Due to the fact that there is an initial grid in domain D, presented by the mapping z! : Pg,, — D,
the corresponding grid in parameter space P,; can be easily computed by solving, in D, the Laplace
eguations supplied with the Dirichlet boundary conditions. Let this grid be given by the mapping
51 : Pgy > Py Theideais to adapt mapping 57, i.e. theinitial grid in parameter space Ps;.

Grid adaptation in parameter space Ps; has severa useful properties (see Ref. 3). The solution
vector QD at agrid point of theinitia gridin D, can be transfered to the corresponding grid point
of theinitial grid in P,,. Let stt represent the solution vector in P,;. One of the problems in
grid adaptation is the scaling of the solution vector. The components of Qp may have different
dimensions and represent quantities like density, velocity, pressure etc. A natural way toscale stt
isto normalize each component such that it is dimensionless and has range [—1, 1].

Because parameter space P, can be considered asthe normalized arc length scal ed space of domain
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D, theinitia grid in D and the corresponding initial grid in P, will share the same properties. For
example, whentheinitial gridin D has arefined structure in aboundary-layer or ashock, then these
refined structures will also exist in the corresponding initial grid in Ps;.

@ ® ) @ b/
— —
0 ® 0 @
0 1 E 0 1S X

Computational space P{ﬂ

Parameter space FSJt Domain D

Fig. 1 Transformation from computational space P, via parameter space Ps;, to domain D in

Cartesian (z,y) space.

After adaptation in Py, the adapted grid in P, must be mapped into domain D. The dliptic grid
generation method, presented in Ref. 1, can be used to generate the adapted grid in domain D.
Let the mapping 5 : Pg, — Py, with components s = s4(¢,n) and t = t4(¢,n), represent
the adapted grid in P,;. Thenitisfound in Ref. 1 that the adapted grid in D, represented by the
mapping £ : Pg, — D, obeys the Poisson system:

—A

bosge — iy + by, +  (baaPly — 2012 Ply + b1y Py )
+ (bggpf1 — 2b1,P% + bHPQ?Q) 7 =0, (13)
where by1, bi2, b11 are the covariant tensor components defined by
bin = (80, 3) , bio = (F,8)) , b = (T, &), (14)

and where

— SA o SA . SA
Py =-T7" ff , Pp=-T7" i" , Py = -T7! K (15
bee ten b
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with the matrix T is defined as

A A
T:(Si 32). (16)
t& tn

The six coefficients of thevectors P, = (P}, P3)T , Pia = (P, P%)T and Py, = (P}, P3)T
areso called control functions. Thesesix control functions are completely defined by the adaptation
mapping 5 : Pg, — Pt

The adapted grid in domain D is computed by first mapping the adapted boundary grid points at
JP;, to the boundary of D. Next, theinterior adapted grid in D is computed by solving the Poisson
system given by Eq.(13) with the aready computed adapted grid points at the boundary of D as
Dirichlet boundary conditions.

Grid adaptation in P,; may be based on solving the Laplace-Beltrami equations on a monitor sur-

face given by
Q(s,1) = (5,4, Qp,, (s,0),- .., QP (5,1))", (17
where (Q%,St (5,8),..., Q% (s, T = stt are the n components of the normalized solution vec-

torin Py;. Let EA : Pst — Peyy be the inverse of the adaptation mapping g4 . Pep = Pgi. The
two components of 4 : Py, s P, given by € = £4(s, 1) and n = 7”4 (s, ), must obey

div (M grad ¢4) =0, div (M grad ") =0, (18)

where the matrix M = M (s, t) is defined by Eq.(7). The two covariant base vectors are given by

o — 8Q — 3 — aQ%Jst aQ%st T
ar = 88 - QS (1303 88 Yty 88 ) ) (19)
e — aQ e S aQ%’st aQ%st T

9 = at—Qt—(O,l, 5 o ). (20

According to Eq.(11) and Eq.(12), the natural boundary conditions at edge F; (F») and edge F3
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(E4) become respectively

(Qsa@t) A A: (Qsa@t) A 21
G T GG @

A
Ms =

Natural boundary conditions are such that the adapted grid is orthogonal at the boundary of the
monitor surface. Sometimes it is desired that the adapted grid is orthogonal at the boundary of
the domain D itself. Especialy for Navier-Stokes computations, the orthogonality of the grid in a
boundary-layer is often desired. The boundary conditions for grid orthogonality at the boundary
of domain D, which we call Neumann boundary conditions, is given by Eq.(21) with Q replaced
by Z where ¥ : Py — D isthe dliptic transformation.
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4 Numerical aspects

Eq.(18), supplied with the boundary conditions, can be solved on a non-uniform mesh in parameter
space P, to find E'A : Pst — Peyy. However, from anumerical point of view thisis not the easiest
way to do. The solution of the Laplace-Beltrami equation on a monitor surface, only depends on
the shape of the surface and the boundary conditions, but is independent of the parametrization
of the surface. Thus the only information needed to compute the discrete solution of the Laplace-
Beltrami equation, supplied with the boundary condition, are the locations of the grid points on the
monitor surface. Thus, in practice, for agrid of (N + 1) x (M + 1) points on amonitor surface,
point index coordinates {(i,j) | i =0...N,j =0... M} are used as parametrization.

Consider the initial non-uniform grid in parameter space Py, given by the mapping 57 : Pg,, +—
Pgi. Write this grid as {(sf;,#/;) | i =0...N,j = 0... M}. The adapted grid in Py, given
by the mapping 54 : P¢, — Py, and written as {(s Z],tj}) | i =0...N,j =0...M},
must be found by numerical inversion of the mapping f : Pst + Pgp. Thisis done as follows.
Let {(5”,77”) | ¢ =0...N,7 =0...M} bethe solution of the Laplace-Beltrami equation.
Consider this grid as a non-overlapping subdivision of the computational space P, by N x M
patches, where each patch has four corner points. For agiven grid point (7, j) of the uniform grid
in Pg,, givenby (&;,mi;) = (i/N, 7 /M) the corresponding grid point (s} i Z]) of the adapted grid
is obtained as follows. Suppose that (¢;;,7;;) belongs to patch (p,q) as shown in Fig.26.

Theloca patch parameters « and 5 are now defined by the following two bilinear equations

£i,j = 5;1,(1(1 - a)(l - B) + 511)44—1,(104(1 B) + £p q+1( )/8 + £p+1,q+1aﬁa
Nij = 7711)4,(1(1 - O[)(]_ - /6) + 77;)4—1—1,(10‘(1 /6) + np,q—i—l( )/6 + 77p+1 q—i—laﬁ

The two parameters « and 3 are solved by Newton iteration. Notethat 0 < o < land0< 3 < 1
because (¢;7,7;;) belongs to patch (p,q). After computation of « and 3, acorresponding grid point
(s}, t7+) of the adapted grid is given by

SA,] = Si,q(l - O()(l - B) + 3£+1,qa(1 /3) + Sp q+1( )/8 + 3p+1 q+1a/83
ti‘J = tzli,q(l a)(1-p) + tzI)Jrl,qO‘(l )+ t; gr1(l—a)B+ tp+1 10

After one adaptation step, we obtain a new adapted grid {(s:} i=0...N,j=0...M}

in parameter space P,;. Thisgrid can be considered as a new initia grid in Py, on which a next

zga zy) |
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adaptation step can be performed. Assume that the monitor surface function does not change dur-
ing adaptation. The components of the monitor surface are recomputed on this new grid and the
process can be repeated until convergence isreached. Convergence is obtained when {(f{]‘-, 77;-‘]‘-) =
(&j,mij) = (i/N,j/M) | i=0...N,j =0...M}. Inpractice, about 5-10 adaptation steps
are sufficient to reach convergence.

If the solution vector (p,, is constant, then the matrix M = M (s, t) is the unit matrix and the
L aplace-Beltrami equations, Eq.(18), simplify to the Laplace equations: A¢é4 = ¢4 +¢/4 = 0 and
An? = nd 4+ nft = 0. Thus after adaptation, we will get auniform grid in P,,. Consequently,
the adapted grid in domain D becomes a Laplace grid so that all features of theinitial grid will get
lost. From apractical point of view, this behavior is unwanted. Instead, it is much more desirable
that an initial grid remains unchanged when the solution vector is constant. This can be achieved
by redefining the monitor surface, given by Eq.(17), as

Q(s,t) = (€' (s,8),0" (5,8), Qb (5,), - .., Qb (5,8) 7, (22)

where 7 : Py, — P, is the inverse of the mapping 57 : Pg, — Py. Inthat case, if stt is
constant, the matrix M = M (s, t) becomes

M

| (<sz>2+<nz>2 —( §£{+77£77{)>_ 23)

Tl =l \ —(elel oty (€2 + (n])?

Then M gred ¢' = (n], —n})" and M grad n’ = (=¢/,¢])", sothat div (M grad ¢7)
= 0 and div (M grad n’) = 0. Thus, in that case, the mapping 57 : Pst — Py already obeysthe
Laplace-Beltrami equations and the initial grid will therefore remain unchanged during adaptation.

If Eq.(22) is used for the definition of the monitor surface, then, during the first adaptation step,
the Laplace-Beltrami equations are in fact solved on a uniform mesh in a parameter space. Then
the method resembl es the approach of Hagmelijer, Ref. 3, who used anisotropic diffusion equations
instead of Laplace-Beltrami equations on uniforms grids in a parametric domain.
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5 1llustrations

Only grid adaptation in parameter space P, is considered. The mapping of the adapted grid into a
domain D, based on the Poisson system given by Eq.(13), is not shown.

In all cases, theinitia grid in P, isuniform, so that there is no distinction between the definition
of the monitor surface function defined by Eq.(17) and Eq.(22). All adapted grids are converged
solutions obtained after 5-10 adaptation steps.

Fig.2 through Fig.9 show adaptive grids for a scalar monitor function defined as
Qp,,(s,t) = a tanh(80(1/16—(s—1/2)? — (t—1/2)?)). Asillustrated, the amount of adaptation
can be varied by changing the height « of this "table” function.

Fig.10 through Fig.13 illustrate grid adaptation to a curved "shock”. The example is based on a
solution function borrowed from Ref. 5: Qp., (s,t) = tanh(5((5/4) — (s —3/2)? —t?)). Natura
boundary conditions are used. Fig.12illustrates that the adapted grid issuch that it uniformly covers
the monitor surface with grid points.

Grid adaptation towards aparabola Qp, (s,t) = tanh(5(t —3(s —1/2)?)) isillustrated in Fig.14
through Fig.17. Thisexample can also be found in Ref. 6. Fig.18 depicts the adapted grid towards
the parabola ), and astraight-line Q% _ (s, t) = tanh(5(t — s)).

Fig.19 through Fig.24 shows an adaptation to amodel problem that simulates the interaction of an
oblique-shock and a boundary-layer asused in Ref. 3. The two components of the corresponding
solution vector aredefined as Q, (s, t) = tanh(50t) and Q% (s,t) = tanh(25(t—s+0.5)/v/2).
Q%p,, is called the boundary-layer function and Q% , is called the shock function. The Neumann
boundary condition is used at the edge where the boundary-layer is situated. Thus the grid lines
of the adapted grid should be orthogonal at this edge. Natural boundary conditions are used at the
other three edges. Fig.21 and Fig.22illustrate that the adapted grid triesto uniformly cover both the
monitor surface of the boundary-layer function and the shock function. The adapted grid is clearly
a compromise between conflicting requirements. Fig.23 and Fig.24 show respectively the com-
plete adapted grid and a blow-up at the foot of the shock. At the foot of the shock, the adapted grid
isclearly orthogonal at the boundary. Fig.25 shows a blow-up of the adapted grid in the boundary-
layer at alocation |eft to the foot of the shock. In thisregion, the adapted grid uniformly coversthe
monitor surface of the boundary-layer function, as shown in Fig.21. Therefore, the skewness of
the adapted grid in the boundary-layer isinherent to our approach and cannot be removed by only
specifying a Neumann boundary condition. This is a severe problem, because in practice, grids
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should be orthogonal in the complete boundary-layer and not only at the boundary of a domain.
This problem also occurs in the approach of Hagmeijer Ref. 3, who solved the problem by intro-
ducing the MAD (Modified Anisotropic Diffusion) equations. Such an approach cannot be easily
done with the L aplace-Beltrami equations, without |0osing the mathematical rigour of the method.
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6 Conclusions

Grid adaptation based on solving the Laplace-Beltrami equations on amonitor surface in parameter
space, is a sound mathematical approach. The adapted grids clearly resolve the solution vector.
However, the method provides no control about grid skewness, which appears to be a problem,
especidly in boundary-layers.
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Fig. 3 Contour-lines and initial grid.
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Fig. 5 Adapted grid. The height of the table function is defined by the parameter o = 0.1.
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Fig. 7 Adapted grid corresponding to an increase of the height of the table function (oo = 0.3).
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Fig. 18 Adapted grid to a parabola: Q'(s,t)
Q%(s,t) = tanh(5(t — s)).
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Fig. 21 Adapted grid and monitor surface of boundary-layer function.
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Fig. 22 Adapted grid and monitor surface of shock function.



@

-40 -
TP 96297

[ ]

[ ]
N
\

Fig. 23 Adapted grid.
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Fig. 25 Detail of adapted grid in boundary-layer.
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