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List of symbols 

turbulent kinetic energy, 

dissipation of k, 

specific dissipation rate of k ,  

back ground specific dissipation rate of k, 

density, 

dissipation term of the k equation, 

dissipation term of thew equation, 

model coefficient corresponding to Dk, 

model coefficient corresponding to Dw,  

Mach number, 

angle of attack, 

chord, 

Reynolds nuniber based on the chord c, 

lift coefficient, 

drag coefficient, 

moment coefficient, 

pressure coefficient, 

degree of turbulence, 

free stream velocity, 

total pressure loss, 



Fully A u t o m a t i c  Navier-Stokes a lgor i thm 
for 2D High-Lift flows 

K.M.J. de Cock 
NLR, Anthony Fokkerweg 2, 1059 CM Amsterdam: 
The Netherlands, +31-(0)20-511 34 49, cock@nlr.nl 

A b s t r a c t  

A description of a Fully Automatic Navier-Stokes algorithm for 2D High-Lift flows is 
given. The effectiveness of multi grid to solve the steady, compressible Reynolds Aver- 
aged Navier-Stokes and k - w turbulence equations on 2D unstructured grids to second 
order accuracy is demonstrated. Results are show11 for both transonic and High-Lift cases. 

In t roduc t ion  

Design of High-Lift devices to achieve specific maximum lift values is of great importance 
for the wing sizing of large aircraft. Aerodynamic analysis codes based on Viscous-lnviscid 
Interaction methods are still frequently used due to desirable properties with respect to 
turn around times and computational cost. Limitations on the physical modeling triggered 
the use of (multi block structured) Reynolds Averaged Navier-Stokes (RANS) methods, 
capable of computing accurate solutions. A new bottleneck however is the generation of 
multi block grids, causing large turn around times. Pioneering work to overcome this gricl 
generation problem with unstructured grids has been conducted by D. Mavriplis, Ref. 6, 
usi~rg a k-c turbulence model. 

This paper covers a 2D Fully Automatic Navier-Stokes (FANS) algorithm for High-Lift 
flows on unstructured grids. The algorithm is based on the compressible RANS equations 
coupled to the standard two equation k - w turbulence model. 
The riiair~ objectives of this paper are : 1) demonstrate the effectiveness of the multi grid 
( M G )  for a second order accurate discretization of the RANS and the k - w turbulence 
equations on unstructured grids, 2) illustrate that a two equation turbulence model is the 
lowest level of turbulence mo.deling capable of predicting wake boundary layer confluence 
without ad hoc fixes to determine the turbulent length scale. 

2D u n s t r u c t u r e d  gr id  genera t ion  for viscous flow simulations 

The following steps in the automatic gricl generation process can be distinguisheel : 

S t e p  1, regularization of the geometric singularities OII a small scalc (typically 0.01 % 
chord), i n  orcler to makc step 2 and 4 robust, Fig. 111. In con~l)inatio~~ wit11 stcp 3, step 
I causes an automatic recluction of the aspcct ratio of t l ~ c  grid ticar trailing eclges by 
clusteri~ig gricl points. In OD this clusterirtg is also tlcsirable for accllracy arld roI)~~st.~tess 
of the flow solver, but not yet acceptable. 

ITl~is investigation was performed under contract OlDOBN wit11 t hc  Netherlands Agel~cy for ,\erospace 
Programs (NIVR) .  



S t e p  2, creation of a Wall Proximity Region (WPR) by inflating the geometry, resulting 
in two different domains in which different flow phenomena occur. This WPR should 
cover the high velocity gradient region of a turbulent wall bounded flow (only a part of 
the total thickness). Fig. l a  shows the original and inflated geometry for the NACA 
0012 airfoil, and Fig. l b  shows a detail of the last 0.5 % chord (regularization of a sharp 
trailing edge, step 1). 

S t e p  3, creation of an Euler grid suited for MG outside the WPR, with automatic refine- 
ment towards the geometry and in regions of high geometric curvature. For thin 'CVPR 
the properties of the original geometry are sufficiently reflected in the inflated geometry. 
Compared to Ref. 7, no background grid with user defined sources is used. For further 
details, see Ref. 12. 

S t e p  4, algebraic generation of a structured, 0-type Navier-Stolies grid in the WPR, 
made unstructured by uniformly created diagonals and agglomerated in normal direction. 
Advantages with respect to accuracy are : a smooth variation of the control volumeshape, 
a constant, low stretching of the grid in normal direction, a better accuracy due to the 
central symmetry property (Ref. 13), and a constant number of connections per grid 
node. An other, practical advantage is that the algorithm uses only one element type. 
I11 3D, it is no longer possible to create diagonals in a uniform way, hence a mixture of 
prisms and tetrahedra is to be preferred. 

F low solver 

The steady, compressible RANS equations are solved, coupled to the standard k - w two 
equation turbulence model, Ref. 3. A modification to the k - w production term according 
to Ref. I is considered, in order to avoid unphysical production in stagnation, separation 
arid reattachment zones. The following dissipation terrns are used 

with tlie density p ,  the turbulent kineticenergy k, the specific dissipation rate w ,  the back- 
ground specific dissipation rate ws, the model coefficients 8' and 0, and the sign function. 
For wb equal to zero, the classical dissipation terms are recovered. With these dissipation 
terms the asymptotic value of w in regions with no production tends to a background value 
wb, without changing the basic behavior of k. Due to this modification, the frequently used 
limiter on w to avoid singularities of the turbulent viscosity, wri,il,d = mnx(w,wb), can be 
omitted (if  active, this limiter hampers blG convergence due to non vanishing residuals). 
A cross diffusion term according to Wilcox is implemented to reduce the dependency of 
the solution of the k-w equations on the value of w at the edge of the viscous layers, Ref. 2.  

Adiabatic, no-slip boundary contlitions are used for solid walls. The turbulent kinetic 
cncrgy is zero at  the wall and the boundary condition for w is found from niotleling the 
roughness of the wall. 

Standard discretization techniques are used to tliscretize tlie governing cquatio~rs (Rcf 
15, 12), including upwind flux difference discretization for the convective fluxcs, ccrrtral 
tliscrctizatiori for tlie viscous fluxes arid point implicit discretization for thc source tcrms. 
Assuming a constant representation of the solution within a finite volume, this results in 



a first order accurate scheme which can be solved by Jacobi relaxation within a standard 
Full Approximation Scheme (FAS) MG. Linear interpolation is used for the prolongation 
and restriction operators, and injection is used for the projection operator. Remark that 
due to the constant representation of the solution adopted within a finite volume, the 
production and the cross diffusion in the volume are zero, since these terms are driven by 
gradients of the solution. This is desirable since these terms spoil the smoothing proper- 
ties of the discretized equations. Second order accuracy of the complete set of equations 
on the highest grid level is obtained using a linear representation of the solution (Refs. 
5, l l ) ,  and a defect correction hilG technique. As a consequence, the contributions of 
the production and cross diffusion terms are included in the defect correction. Solving 
the turbulence equations also with second order accuracy is'a novel aspect of the present 
approach. Common practise is to solve the turbulence equations only to first order spatial 
accuracy (Refs. 6, 9). 

R e s u l t s  

Three cases are discussed : 

C a s e  1, NACA 0012 profile, trar~sonic flow with ib1 = 0.799, a = 2.26, Re, = 9x10G, free 
transition, 46084 nodes in the highest grid level, 32 nodes per boundary layer station. 
In Fig. 2 good agreement with Ref. 2 is demonstrated for the pressure coefficient c, 
of this transonic case with shock induced separation. Ref. 2 also discusses a niodifica- 
tion of the turbulence model necessary to find the experimentally observcd shock location. 

Case  2, NLR 7301 profile + flap, High-Lift flow with ibl = 0.185, a = 13.1, Re, = 
2.51x10G, flap gap 2.6%c, fixed transition a t  3 . 3 % ~  on the upper wing surface, 72 .5%~ on 
the lower wing surface, and 105.7%~ on the flap upper surface, 44000 nodes in the higl~est 
grid level, 32 nodes per boundary layer station. The transitioil locatious are obtained 
from experiments. Force coefficients : cr = 3.0475 (experiment 2.3% lower), cd = 0.05i0 
'(experiment 28% lower, but obtained froin wake traverse), c,, = -0.4755 (experiment 8% 
higher). This is consistent with structured grid CFD results in Ref. 4. 

Case  3, NLR 422 three element airfoil, High-Lift flow with ib1 = 0.3, a = 8, Re, = 6x10G, 
free tral~sition, 28955 nodes in the highest grid level, 16 nodes per boundary layer station. 

bIG performance is tliscussed first. The  normalized maximum residuals of the mass, k 
and w equation drop between 3.5 and 4.5 orders of magnitude in 500 hi1G V-cycles for 
lbotl~ case 1 (Fig. I )  and case 2 (Fig. 2). Remark that it takes abo111 100 V-cycles to 
obtain velocity profiles that generate net production of k a t  the wall. Five bIG levels 
are used for all cases. Level 4 is formetl by global coarseliing level 5 ,  and level 1,2 autl 
:3 are ger~eratetl by serni coarsetling level 4 norrnal to the wall i l l  thc WPR. Grid level 
4 for case 2 is show11 in Fig. 5. Senii coarsening of the grid is mainly usctl for robust- 
ness, suppose that  global coarsening is ilsetl to generate grit1 lcvcl I to 4. 111 that casc, 
t l ~ c  sainc grid resolution i n  normal tlirection a t  the wall will bc f o u ~ ~ t l  011 grid lcvcl 1 as 
wit11 semi coarsening. The grid in taogential tlircctiou l~owcvcr will be too coarse i n  order 
to generate useful MG correctioi~s for difficult flow cases (for instance separatiol~ bubbles). 

Secouclly, High-Lift results are sl~own. I n  Figs. 6 and 7 the cornputetl c, of case 2 is 



compared with the experimental values of Ref. 10. A laminar separation bubble is found 
just before the transition location on the upper wing surface. Although the c, on the flap 
seems to be close to the experiment, a discrepancy exists on the Rap upper surface, due to 
the turbulence model predicting an excessive shear in the wake of the wing. This causes 
an underprediction of the wake dispacement, see Ref. 14. For this discrepancy the k - w 
modification discussed in Ref. 2 can partly bring relief. 
Further, compared to for instance Ref. 7, 8, a turbulent length scale equation is used to 
define the length scales in the region above the Rap. This is also necessary for the three 
element airfoil flow of case 3. In'Fig. 8 grid level 4 is shown, and in Fig. 9 an isoline 
of the degree of turbulence T u  = m/q, = 4%, demonstrating the confluence of the 
turbulent wake of the slat with the boundary layer of the ding. In Fig. 10 Mach isolines 
are shown around the slat. A small supersonic region is present, requiring the use of the 
con~pressible RANS equations. In Fig. 11 total pressure loss Apt isolines are given in the 
Rap region. Separation occurs at the flap trailing edge. 

Conclusions 

Good multi grid performance of the second order accurate discretized RANS and k-w 
equations is demonstrated for a transonic and a High-Lift Row, both involving separated 
regions. High-Lift Row results are shown using a two equation turbulence model whicti is 
the lowest level of turbulence modeling capable of simulating the merging of a wake with 
a boundary layer without a d  hoc fixes to the turbulence model. This level of turbulence 
modeling combined with the automatic grid generation and the good multi grid perfor- 
mance results in a very powerful tool to analyze the maximum lift capability of different 
High-Lift configurations. 
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Fig. 1 NACA 0012, a) geometr and 
WPR, (b) detail o f t  h e last 0 .-J 3 ac 

Fig. 2 NACA 0012, iL1 = ,799, ol = 
2.26, Re, = 9x106, cp distribution 

Fig. 3 NACA 0012, ILI = ,799, 
a = 2.26, Re, = 9x106, convergence 
history 

Fig. 4 NLR 7301 + flap, A! = . IS& 
a = 13.1, Re, = 2.51x106, convergence 
history 



Fig. 6 N L R  7301 + flap, M =..lS5, a Fig. 7 NLR 7301 + fly, M = ,185, n  
= 13.1, Re, = 2.51~10 , c, on the wing = 13.1, Re, = 2.51x10 , c, on the flap 

Fig. 9 NLR 422, iL1 = 0.3, n =  8, Re, = 6x106, isoline of the turbulence degree Tu  = 4% 

I I 

Fig. 10 NLR 422, iL1 = 0.3, n  = S, Re, Fig. 1 l NLR 422, iL1 = 0.3, n  = 8, Re, 
=Gx106, iL1 = 0.10,0.25,0.40, ..., 1.00 = 6x10G, A?), = 0.010,0.025,0.0:10,0.055 




