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Abstract

In this paper the 2D maximum lift prediction capability of an unstructured Reynolds-Averaged

Navier-Stokes (RANS) CFD method is evaluated. The Fully Automatic Navier-Stokes (FANS)

method is briefly described. 2D maximum lift for a three element airfoil is predicted and compared

with experiments, for both take-off and landing. The conclusion of this evaluation is that the present

RANS CFD method, based on the k-! turbulence model, gives an adequate predictive capability of

maximum lift for the take-off configuration, including a significant confluence between slat wake

and wing boundary layer. For the landing configuration, the CFD method predicts the shape of the

lift curve and angle of attack at maximum lift. The deficiency in the maximum lift prediction for

the landing configuration is due to the absense of an extra rate-of-strain term in the k-! turbulence

model.
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1 Introduction

High-lift devices such as a typical three element airfoil depicted in figure 1 are installed on aircraft

wings in order to generate an increased maximum lift coefficient of the wing during take-off and

landing.

An important topic in the final design of the high-lift device is the accurate prediction of the

maximum lift coefficient that can be obtained with a given configuration, and the pitching moment

characteristic. For take-off conditions drag is also an important characteristic, at least for two-

engine aircraft.

The problem of maximum lift prediction is challenging for both experiments and CFD due to

the mix of complex flow phenomena involved such as transition, separation, low subsonic flow

combined with transonic flow (on the slat), wake-boundary layer confluence, etc.

Up to now, accurate 3D maximum lift prediction based on the Reynolds-Averaged Navier-Stokes

(RANS) is not yet feasible. For this reason, this paper will be restricted to 2D maximum lift

prediction for a three element airfoil.

In order to accurately predict 2D maximum lift, the CFD method should be capable to capture

the relevant flow mechanisms causing maximum lift, and in order to be practical, this prediction

should be available within a short turn-around time.

In this paper the 2D maximum lift prediction capability of an unstructured Reynolds-Averaged

Navier-Stokes (RANS) CFD method is evaluated.
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2 FANS, a 2D CFD method for maximum lift prediction

FANS (Fully Automatic Navier-Stokes method) is a 2D CFD method, primarily developed for

accurate high-lift flow simulations within short turn-around times.

2.1 Grid generation

In figure 2 a flow diagram is given for the automatic generation of high quality, unstructured

viscous flow grids within FANS. Starting point is the input geometry defined in terms of curves

(which are given by there support points). The input geometry usually has regions where the first

and/or second derivative behaves singular (for instance at the trailing edge of an airfoil).

In the first step, the input geometry is automatically preprocessed, resulting in a regularized

geometry and a boundary conforming geometry, see figure 3.

In the next step, an Euler grid is generated around the boundary conforming geometry, based on

user specified maximum spacings and curvatures. The Euler grid generation algorithm is of the

quadtree type, see reference 2.

Finally, a viscous flow grid with high aspect ratio grid cells is introduced between the regularized

geometry and the boundary conforming geometry, based on the (user-specified) number of grid

points across the boundary conforming region, reference 3.

The resulting viscous flow grids have a number of important properties : smoothness (both spatial

and topological) and central symmetry in the viscous flow region, see also reference 1. Provided

a special definition of the control volumes in the flow solver is used (avoiding degeneration of the

control volume for high aspect ratio viscous flow grids), accurate viscous flow solutions can be

obtained on these grids.

A detail of the high aspect ratio viscous flow grid between the wing and slat is given in figure 4.

2.2 Flow solver

The Reynolds-Averaged Navier-Stokes equations for compressible flow are solved, coupled with

a standard k-! turbulence model.

This k-! turbulence model is fixed for a number of known problems : regions of laminar flow can

be enforced in the boundary layer part of the grid, a background production term is introduced

to allow the simulation of a free stream with a uniform low turbulent Reynolds number, wall
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roughness effects are introduced via the solid wall boundary condition for !, and the production

terms are modified according to ref. 6 to avoid an excess of turbulent production near stagnation

zones. The SST modification of the k-! turbulence model introduced in the latter reference is not

implemented in FANS.

Polynomial upwind flux-difference splitting according to ref. 4 is used for discretizing the

convective flux, in combination with a central discretization of the viscous flux, ref. 8. Second

order spatial accuracy is obtained by the MUSCL approach for all equations, applying a smooth

version of the Barth-Jespersen limiter, references 5 and 11.

The source terms of the turbulence model are treated in a point implicit manner.

The discretized equations are solved with a defect correction multigrid method.

For 2D maximum lift prediction typically a chain of computations for subsequent angles of attack

are made overnight, see fig. 5. The lift coefficient as well as the drag coefficient level off for each

angle of attack (landing, case b01, ..., b07).

For the remaining cases b08, b09 and b10, the chain of computations broke down because the

specified transition onset locations of case b01, ..., b07 became unrealistic on the slat and flap

upper surface. This aspect of transition onset location definition is critical for short turn around

time 2D maximum lift prediction.

Maximum lift itself can be very sensitive to the extent of laminar flow, even at high, full scale flight

Reynolds numbers. Unrealistic transition onset locations generally destroy the accuracy of the

maximum lift prediction (both the maximum lift level and angle of attack). For instance, take-off

maximum lift due to slat separation instead of wing separation is found if the slat transition onset

locations are specified too far downstream.
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3 Take-off maximum lift prediction

The take-off configuration of the three element airfoil considered here can be characterized by

moderate slat and flap settings (a low drag coefficient is important during take-off, hence massive

separations should be avoided by moderate slat and flap settings).

Both the take-off and landing case have been extensively tested within GARTEUR Action Group

AD(AG08) in the NLR transonic wind tunnel HST. These experimental results (described in more

detail in references 9 and 10) are used in this paper, for free stream Mach and Reynolds numbers

of 0:2 and 4 million respectively.

In figure 6 a comparison is made for the take-off configuration between the lift coefficients of both

the experiments and CFD computations (case a01 upto a10, for increasing angle of attack). The

agreement between experiments and CFD computations can be qualified as very good although

the computations give a slightly higher maximum lift coefficient. The slat, wing and flap pressure

coefficient distributions match very well, figure 10, 12 and 14 for both a low and high angle of

attack (the latter at maximum lift).

In figure 8 the computed wing upper surface skin friction is shown. It can be observed from this

figure that separation occurs first on the wing upper surface, near the trailing edge, which is also

the case in the experiments.

It can be concluded that for take-off (no massive separations), the relevant flow mechanisms

(including significant confluence between the slat wake and the wing boundary layer) responsible

for reaching maximum lift, can be well predicted even with a standard k-! turbulence model,

provided that transition onset onset locations are realistically specified.
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4 Landing maximum lift prediction

The landing configuration of the three element airfoil is characterized by more extreme slat and

flap settings. The free stream Mach and Reynolds numbers are 0:2 and 4 million respectively.

In figure 7 a comparison is made between the integrated lift coefficients of both the experiments

and CFD computations. Both the shape of the curve and the angle of attack for which maximum

lift is reached are reproduced. Unsteady flow is found beyond maximum lift, cases b09 and b10.

The lack of agreement between the experimental and CFD maximum lift value is larger than for

take-off, the computations giving a lift curve that is shifted to a higher lift level. This can also

be observed from the slat, wing and flap pressure coefficient distributions, figures 11, 13 and

15, with lower computed suction side pressure coefficients compared to the experiments (scales

correspond to figures 10, 12 and 14). The shift in the lift curve is directly related to the fact that

the experimentally observed separation on the flap upper surface (for low angles of attack) is not

found in the computations.

These differences between the CFD results and the experimental data for the landing configuration

can be largely attributed to the inadequate response of a standard k-! turbulence model to the

higher adverse pressure gradients in the landing case (which are leading to higher boundary layer

loads, and higher "off-the-surface" pressure recovery in the wakes), see reference 7. Improvement

of the turbulence model by the introduction of the effect of extra strain rates on the turbulent shear

stress can be conducted following the lines of references 6 or 7.

Remark that the large separation on the flap, present for low angles of attack, disappears close to

maximum lift, resulting in a better CFD prediction of the shape of the flap pressure coefficient

distribution.

At maximum lift for the landing configuration, the slat starts to separate near the leading edge, see

figure 9, resulting in a discontinuous change of the lift coefficient. This mechanism is reproduced

by the CFD computations, resulting in a correct shape of the predicted lift curve and the correct

maximum lift angle of attack. The difference in stalling mechanism between the take-off and

landing configuration (wing trailing edge versus slat leading edge) is reflected in the different

change of the lift coefficient beyond maximum lift, compare figures 6 and 7.
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5 Conclusions

The CFD method gives an very good prediction of the maximum lift for the take-off configuration

of the three element airfoil studied. The pressure coefficient as well as the mechanism responsible

for maximum lift and the maximum lift angle of attack are in very good agreement with the

experimental data.

For the landing configuration, the CFD method properly predicts both the shape of the lift curve and

the maximum lift angle of attack. The agreement between the experimental and CFD maximum

lift value is less good than for take-off, due to the inadequate response of a standard k-! turbulence

model to the higher adverse pressure gradients of the landing configuration.

For both the take-off and landing case, a realistic and automatic definition of the transition onset

locations on the lower and upper surfaces of the three element airfoil is crucial for a short turn-

around time and high accuracy of the 2D maximum lift prediction.
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Fig. 1 Generic three element airfoil
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Fig. 2 Grid generation flow diagram
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Fig. 3 Input, regularized and boundary conforming geometries around the slat hook
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Fig. 4 Detail of high aspect ratio viscous flow grid between wing and slat
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Fig. 5 Lift and drag coefficient history (landing, 7 angles of attack b01, ..., b07)
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Fig. 6 Three element airfoil in take-off configuration (Mach = 0.2, Re = 4 million, available HST

transition locations are used) : lift coefficient vs. angle of attack (same scales as fig. 7)
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Fig. 7 Three element airfoil in landing configuration (Mach = 0.2, Re = 4 million, available HST

transition locations are used) : lift coefficient vs. angle of attack (same scales as fig. 6)
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Fig. 8 Three element airfoil in take-off configuration (Mach = 0.2, Re = 4 million) : wing upper

surface skin friction coefficient vs. x/c. Remark the wing trailing edge separation for case

a10
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Fig. 9 Three element airfoil in landing configuration (Mach = 0.2, Re = 4 million) : slat upper

surface skin friction coefficient vs. x/c. Remark the slat leading edge separation for case

b09
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Fig. 10 Three element airfoil in take-off configuration (Mach = 0.2, Re = 4 million) : slat pressure

coefficient vs. x/c (low vs. high angle of attack)
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Fig. 11 Three element airfoil in landing configuration (Mach = 0.2, Re = 4 million) : slat pressure

coefficient vs. x/c (low vs. high angle of attack)
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Fig. 12 Three element airfoil in take-off configuration (Mach = 0.2, Re = 4 million) : wing pressure

coefficient vs. x/c (low vs. high angle of attack)
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Fig. 13 Three element airfoil in landing configuration (Mach = 0.2, Re = 4 million) : wing pressure

coefficient vs. x/c (low vs. high angle of attack)
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Fig. 14 Three element airfoil in take-off configuration (Mach = 0.2, Re = 4 million) : flap pressure

coefficient vs. x/c (low vs. high angle of attack)
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Fig. 15 Three element airfoil in landing configuration (Mach = 0.2, Re = 4 million) : flap pressure

coefficient vs. x/c (low vs. high angle of attack)


