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Summary

In these notes a new space-time discontinuous Galerkin finite element method for the solution

of the Euler equations of gas dynamics in time-dependent flow domains is discussed. The dis-

continuous Galerkin discretization results in an efficient element-wise conservative upwind finite

element method, which is particularly well suited for local mesh refinement. The upwind scheme

uses a formulation of the HLLC flux applicable to moving meshes and several formulations for

the stabilization operator to ensure monotone solutions around discontinuities are investigated.

The non-linear equations of the space-time discretization are solved using a multigrid accelerated

pseudo-time integration technique with an optimized Runge-Kutta method. In order to improve

the computational efficiency a new and efficient quadrature rule for the flux integrals arising in

the space-time discontinuous Galerkin discretization is presented and analyzed. The quadrature

rule is a factor three more efficient than the commonly applied Gauss quadrature rule and does

not affect the local truncation error and stability of the numerical scheme. The local truncation

error of the resulting numerical discretization is determined and is shown to be the same as when

product Gauss quadrature rules are used. Details of the approximation of the dissipation in the nu-

merical flux are presented, which render the scheme consistent and stable. The numerical scheme

is demonstrated with calculations of several model problems, an oscillating NACA 0012 airfoil

and the three-dimensional, transonic flow over a deforming wing.
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1 Introduction

These notes discuss a new discontinuous Galerkin (DG) finite element method for the adaptive so-

lution of the unsteady Euler equations of gas dynamics in three-dimensional time-dependent flow

domains. The algorithm results in a second order accurate finite element discretization on deform-

ing meshes and accuracy can be improved using local mesh refinement orh-type mesh adaptation.

In the development of the numerical scheme the main objectives to be satisfied are obtaining a

conservative discretization on deforming meshes, the accurate capturing of flow discontinuities

usingh-adaptation, while maintaining accuracy on locally refined meshes, and achieving good

computational efficiency on parallel computers. These requirements have been the main motiva-

tion to develop a discontinuous Galerkin finite element method. The main feature of discontinuous

Galerkin methods is the use of basis functions which are discontinuous across element faces. This

results in a finite element discretization with a very compact stencil, which can be combined well

with h-adaptation. These properties are important for many problems and the main reason why

discontinuous Galerkin methods presently are receiving significant attention.

Discontinuous Galerkin methods can be subdivided into two main classes, namely discretizations

with basis functions which are discontinuous either in space or in time. The first class of DG

methods, in combination with a TVD Runge-Kutta time integration method, has been thoroughly

investigated by Cockburn and Shu. Detailed surveys can be found in (Ref. 18, 19). The second

class of DG methods uses discontinuous basis functions in time and a streamline upwind Galerkin

or Galerkin least squares discretization in space. Both classes of discontinuous Galerkin methods

are also extensively discussed in Barth (Ref. 3) and Schwab (Ref. 36).

The separation between space and time becomes cumbersome for time-dependent domain bound-

aries, which require the mesh to follow the boundary movement. We will therefore not separate

space and time, but consider the Euler equations directly in four dimensional space, and use basis

functions in the finite element discretization which are discontinuous across element faces, both in

space and time. We refer to this technique as the space-time discontinuous Galerkin finite element

method. The space-time DG method provides optimal efficiency to adapt and deform the mesh,

while maintaining a conservative scheme which does not require interpolation of data after mesh

refinement or deformation. The space-time DG method presented in this notes is an extension

of our research on a solution adaptive discontinuous Galerkin finite element method for steady

three-dimensional inviscid and compressible flows, Van der Vegt and Van der Ven (Ref. 43). In

the first part of these notes we discuss the general formulation of the space-time DG method for

the adaptive solution of the Euler equations in time-dependent flow domains. In the second part

we discuss and analyze a new integration technique for the element face and volume integrals for
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discontinuous Galerkin discretizations, which results in a significant improvement in computa-

tional efficiency. We will also demonstrate the maturity of the space-time DG discretization with

three-dimensional aerodynamic applications, such as a deforming wing in transonic flow.

The combined use of space and time discontinuous basis functions in a discontinuous Galerkin

method has been proposed by Jaffre, Johnson and Szepessy (Ref. 26), which theoretically analyzed

this technique for multi-dimensional scalar conservation laws on non-deforming meshes. See also

Cockburn and Gremaud (Ref. 14). Until now, however, the use of space-time discontinuous basis

functions in DG methods has not been fully explored for non-linear hyperbolic systems of partial

differential equations, such as the Euler equations of gas dynamics. An initial study was conducted

by Lowrie, Roe and van Leer (Ref. 32). Their formulation results in a staggered space-time mesh,

which is quite different from the DG discretization presented in these notes, and does not easily

extend to local mesh refinement which is important for many applications.

In order to make the space-time DG method an accurate and efficient technique for the solution

of the Euler equations of gas dynamics we had to deal with a number of issues. First, we will

extensively discuss the weak formulation of the space-time discontinuous Galerkin finite element

method using the Arbitrary Lagrangian Eulerian (ALE) approach. This technique decouples the

grid motion from the motion of the fluid particles and is widely used in fluid-structure interac-

tion problems and ideally suited for deforming meshes. The discontinuous Galerkin discretization

which we present automatically satisfies the geometric conservation law, which states that a uni-

form flow field should not be influenced by the grid motion, since the element face and volume

integrals are calculated with sufficiently accurate quadrature rules. This problem was analyzed in

detail by Lesoinne and Farhat (Ref. 29), and is an essential condition to obtain at least first order

accuracy in time, as was proven by Guillard and Farhat (Ref. 24).

The space-time discontinuous Galerkin discretization results for each element in a coupled sys-

tem of non-linear equations. We will present and analyze a pseudo-time integration method with

multigrid acceleration which can efficiently solve these equations. In this technique the non-linear

equations of the DG discretization are augmented with a pseudo-time and marched to steady state

in pseudo-time. The pseudo-time integration is significantly improved by optimizing the Runge-

Kutta time integration method. The use of a multigrid technique for a DG discretization of hy-

perbolic partial differential equations is new and required a significant development effort. The

proposed algorithm works well on locally refined meshes and maintains the local structure of a

DG discretization, which allows a straightforward parallelization of the method.

Since the Euler equations of gas dynamics are hyperbolic and develop discontinuities in finite
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time it is important to ensure monotone solutions around discontinuities. In the TVD Runge-Kutta

discontinuous Galerkin method this is accomplished by using a slope limiter, for a survey see

Cockburn (Ref. 18). In our earlier work we also used this limiter (Ref. 43, 44), but the limiter in

a DG method prevents convergence to steady state and also has a negative effect on the numerical

accuracy. In these notes we will discuss the use of a stabilization operator instead of a slope

limiter to maintain monotone solutions. This technique significantly improved the accuracy and

convergence to steady state of the pseudo-time integration.

Applications of computational fluid dynamics techniques to real-life (time-dependent, three-dimensional)

applications, such as occur for instance in aerodynamics, require significant computational re-

sources. This certainly applies to the DG method, which is known to be computationally expen-

sive. The computational complexity of the DG method has been investigated by various authors,

e.g. Lockard and Atkins (Ref. 31) and Van der Ven and Van der Vegt (Ref. 48). The computation-

ally most intensive part of the method is the evaluation of the flux integrals. The standard approach

for the evaluation of these integrals is the application of Gauss quadrature rules. For second-order

accurate space-time DG methods a mixture of two-point and three-point product rules is required,

which implies twelve flux evaluations for the face fluxes and 27 flux evaluations for the volume

fluxes. This number is prohibitively large and would render DG methods impractical for real-life

applications.

Atkins and Shu (Ref. 2) presented a quadrature free implementation of the DG method, and in

earlier work, Van der Vegt and Van der Ven (Ref. 43) presented a DG implementation which

requires only one flux evaluation per face. In this latter work (Ref. 43) a slope limiter was applied

for stability which is replaced in these notes with a stabilization operator. This improves both

the convergence to steady state and the accuracy of the method. The quadrature rule presented in

(Ref. 43), however, proved to be unstable in combination with the stabilization operator.

This prompted the development of the so-called Taylor quadrature rule, which is discussed in the

second part of these notes. The Taylor quadrature rule is related to the quadrature-free approach

of Atkins and Shu (Ref. 2). As in the quadrature-free approach the flux is expanded in the basis

functions, but the coefficients are obtained from a direct Taylor expansion of the flux in the face

center. Since the expansion coefficients of the solution vector related to the linear basis functions

can be interpreted as first derivatives of the solution vector, these expansion coefficients occur

directly in the Taylor expansion of the flux. This demonstrates that DG methods provide a natural

setting for the Taylor quadrature rule.

For linear fluxes, this flux expansion is equal to the flux expansion in the quadrature-free approach,
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but for the nonlinear Euler flux the expansion is different since we only use as many terms as the

number of basis functions in the DG expansion, whereas in the quadrature-free approach the ex-

pansion would also include the second order terms in the Taylor expansion. The Taylor quadrature

rule significantly reduces the number of flux evaluations, reducing the flop count with respect to

the required product Gauss quadrature rule. Moreover, since only data in the face center is re-

quired, the data locality of the algorithm is improved, which enhances the computational speed on

cache-based computers.

The quadrature rule in the DG method must be chosen carefully, since it can negatively affect the

accuracy of the DG discretization. For the TVD Runge-Kutta space DG discretization of a multi-

dimensional scalar conservation law this has been analyzed by Cockburn, Hou, and Shu (Ref. 16)

when Gauss quadrature rules are used for the flux integrals. In these notes we analyze the accuracy

of the space-time DG discretization both for the Taylor and Gauss quadrature rules. The analysis

shows that the Taylor quadrature rule does not have an adverse effect on the accuracy of the DG

method, which is also confirmed by the numerical experiments discussed in Chapter 4.

Having established the accuracy of the numerical method, the next issue is the stability of the

discretization. Unlike the approach of Atkins and Shu (Ref. 2), the Taylor quadrature rule does

not presuppose a relatively simple numerical flux, such as the Lax-Friedrichs flux, which for our

applications is too dissipative. We use the HLLC flux (Toro (Ref. 41)) which has an accuracy

comparable to the Osher numerical flux, at considerably less computational cost. In our experience

the proper integration of the upwind dissipation of the numerical flux is also essential for the

stability of the gradient equations. This implies that the dissipative part of the numerical flux must

be linearized as well. The linearization of the HLLC flux in the Taylor quadrature rule is discussed

in detail, and is constructed such that it results in a stable scheme, with correct treatment of the

pressure term at contact discontinuities, and satisfies the Geometric Conservation Law for moving

meshes.

The outline of these notes is as follows. In Chapter 2 we discuss the main aspects of the space-time

discontinuous Galerkin finite element method (STDGFEM). After some preliminaries we discuss

in Section 2.2 the weak formulation of the space-time discontinuous Galerkin discretization and

show its relation with the ALE weak formulation. Next, we give a derivation of the non-linear

equations for the DG expansion coefficients and define the HLLC flux suitable for moving bound-

aries and the stabilization operator necessary to ensure monotone solutions around discontinuities.

In Section 2.3 the multigrid accelerated pseudo-time integration method for the solution of the

non-linear DG equations is presented and its stability is analyzed. The mesh adaptation is dis-



- 13 -
NLR-TP-2003-342

cussed in Section 2.4 and we give a brief summary of the mesh deformation algorithm in Section

2.5.

In Chapter 3 we present the Taylor quadrature rule for the face and volume flux integrals. First,

we transform in Section 3.1 the flux integrals into a form suitable for the Taylor approximation.

The Taylor quadrature rule is discussed in Section 3.2 and the application to the HLLC scheme

in Section 3.3. In Section 3.3.4 the local truncation error of the DG scheme using the Taylor and

Gauss quadrature rules is analyzed. Numerical experiments are presented in Chapter 4, including

the simulation of the flow past an oscillating NACA 0012 airfoil using locally refined meshes and

a deforming AGARD 445.6 wing. Conclusions are drawn in Chapter 5. The Appendices give

background information for the error analysis and detailed expressions for the element face and

volume integration.
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2 Space-time discontinuous Galerkin formulation for the Euler equations of gas

dynamics in time-dependent flow domains

2.1 Space-time formulation of the Euler Equations of gas dynamics

We consider the Euler equations of gas dynamics in a time-dependent flow domain. Since the

flow domain boundary is moving and deforming in time we do not make an explicit separation

between the space and time variables and consider the Euler equations directly inR4. LetE ⊂ R4

be an open domain. A pointx ∈ R4 has coordinates(x1, · · · , x4), but we will also frequently use

the notation(x̄, t) ∈ R4, with x̄ = (x1, x2, x3) ∈ R3 the position vector at timet andt = x4

representing time. The flow domainΩ(t) at timet is defined as:Ω(t) := {x̄ ∈ R3 | (x̄, t) ∈ E},
with t0 andT the initial and final time of the evolution of the flow domain. The space-time

domain boundary∂E consists of the hypersurfacesΩ(t0) := {x ∈ ∂E | x4 = t0}, Ω(T ) := {x ∈
∂E | x4 = T} andQ := {x ∈ ∂E | t0 < x4 < T}.

LetF : R5 → R5×4 denote the flux tensor, which is defined as:

F =



ρu1 ρu2 ρu3 ρ

ρu2
1 + p ρu1u2 ρu1u3 ρu1

ρu1u2 ρu2
2 + p ρu2u3 ρu2

ρu1u3 ρu2u3 ρu2
3 + p ρu3

(ρE + p)u1 (ρE + p)u2 (ρE + p)u3 ρE


,

with ρ, p, andE the density, pressure, and specific total energy, respectively, andui the velocity

components in the Cartesian coordinate directionsxi, i ∈ {1, 2, 3} of the velocity vectoru : E →
R3. Let the vectorU : E → R5 denote the conservative flow variables with components:

Ui = Fi4,

then the Euler equations of gas dynamics are defined as:

divF
(
U(x)

)
= 0, x ∈ E , (1)

together with the initial and boundary conditions:

U(x) = U0(x), x ∈ Ω(t0),

U(x) = B(U,Uw), x ∈ Q.

HereU0 : Ω(t0) → R5 denotes the initial flow field,B : R5 × R5 → R5 the boundary operator

andUw : Q → R5 the prescribed boundary flow field data. The divergence of a second order

tensor is defined as:div F = ∂Fij

∂xj
, and the summation index is used on repeated indices in these

notes. The Euler equations are completed with the equation of state for a calorically perfect gas:

p = (γ − 1)ρ(E − 1
2uiui), with γ the ratio of specific heats.
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2.2 Space-Time Discontinuous Galerkin Discretization of the Euler Equations

2.2.1 Geometry definition of space-time elements

Consider a partitioningt0 < t1 < · · · < T of the time interval(t0, T ) and define the time interval

In as: In = (tn, tn+1). The space-time domainE ⊂ R4 is split into a finite number of space-

time slabs:{x ∈ E |x4 ∈ In}. The evolution of the flow domain during the time intervalIn is

represented by the mappingΦn
t , which is defined as:

Φn
t : Ω(tn) → Ω(t) : x̄ 7→ Φn

t (x̄), t ∈ In. (2)

The mappingΦn
t is assumed to be sufficiently smooth, orientation preserving and invertible in each

time intervalIn, but can be different in different time intervals. This makes it possible to generate

a new grid when elements become too severely distorted during the dynamic mesh movement. At

the time leveltn we use hexahedral elementsK to define the tessellation̄T n
h :

T̄ n
h := {Kn

j |
Nn∪
j=1

K̄n
j = Ω̄h(tn) andKn

j ∩Kn
j′ = ∅ if j 6= j′, 1 ≤ j, j′ ≤ Nn},

such thatΩh(tn) → Ω(tn) ash → 0, with h the radius of the smallest sphere completely con-

taining each elementK ∈ T̄ n
h , andNn the total number of hexahedra inΩh(tn). Each element

Kn ∈ T̄ n
h is related to the master elementK̂ = (−1, 1)3 through the mappingFn

K :

Fn
K : K̂ → Kn : ξ̄ 7→ x̄ =

8∑
i=1

xi(Kn)χi(ξ̄),

with xi(Kn) ∈ R3, 1 ≤ i ≤ 8, the spatial coordinates of the vertices of the hexahedronKn

at time tn andχi(ξ̄) the standard tri-linear finite element shape functions for hexahedra, with

ξ̄ = (ξ1, ξ2, ξ3) ∈ K̂. The elementsKn+1 are now obtained by moving the vertices of each

hexahedronKn ∈ T̄ n
h with the mappingΦn

t to their new position at timet = tn+1, and we can

define the mapping:

Fn+1
K : K̂ → Kn+1 : ξ̄ 7→ x̄ =

8∑
i=1

Φn
tn+1

(xi(Kn))χi(ξ̄).

The space-time elements are obtained by connecting the elements inΩ(tn) andΩ(tn+1) by linear

interpolation in time. This results in the following parameterization of the space-time elements

Kn:

Gn
K : K̂ → Kn : ξ 7→ (x̄, t) =

(
1
2(1− ξ4)Fn

K(ξ) + 1
2(1 + ξ4)Fn+1

K (ξ),

1
2(tn + tn+1) + 1

2(tn+1 − tn)ξ4
)
, (3)
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with ξ ∈ K̂ the computational coordinates in the master elementK̂, which is defined as:̂K =

(−1, 1)4. The space-time tessellation is now defined as:

T n
h := {K = Gn

K(K̂) | K ∈ T̄ n
h }.

We will also frequently use the notationK(t) for the elementK at timet, which is defined as:

K(t) = {x̄ ∈ R3 | (x̄, t) ∈ K}. The space-time elementKn is bounded by the hypersurfaces

K(t+n ) = lim
ε↓0

K(tn + ε), K(t−n+1) = lim
ε↓0

K(tn+1 − ε), andQn = ∂Kn \
(
K(t+n ) ∪K(t−n+1

)
).

This notation is used to indicate that the mesh can change discontinuously at the time levelstn and

tn+1.

The boundary faces ofKn can also be represented using the mapping (3). For1 ≤ m ≤ 8 define

the eight facesSm of the space-time elementK, with ∂K = ∪8
m=1Sm, by:

S2m−1 = {GK(ξ) | ξ ∈ K̂, ξm = −1},

S2m = {GK(ξ) | ξ ∈ K̂, ξm = 1}, 1 ≤ m ≤ 4. (4)

Note thatQn = ∪6
m=1Sm,K(t+n ) = S7, andK(t−n+1) = S8.

The reader is referred to Figure 1 for a two-dimensional illustration of the elements and mappings.

Remark 2.2.1 The tessellationT n
h does not impose a limitation on the number of elements which

can connect to a face of an element. This is important because during the simulations the compu-

tational mesh will be adapted by subdividing elements in space and/or time in regions where more

mesh resolution is required.

Remark 2.2.2 Since we use a tri-linear representation of the elements in space, this implies that

we use a bi-linear representation of the geometry at slip flow boundaries. Recently, Bassi and

Rebay (Ref. 4), concluded that a higher order representation of a slip flow boundary is mandatory

in order to avoid strong numerical boundary layers and to obtain convergence. In Section 4.3.2

we show that under grid refinement the numerical boundary layer diminishes for hexahedral type

elements. Since local mesh refinement already is an integral part of our algorithm, we use this

technique to remove the numerical boundary layer at slip flow boundaries and it is not necessary

to use a higher-order accurate boundary representation.
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2.2.2 Space-time discontinuous Galerkin finite element approximation

2.2.2.1 Weak formulation of the Euler equations

In order to ensure that the different forms of the weak formulation of the Euler equations of gas

dynamics, which are discussed in this section, are well defined we introduce the broken space

V (T n
h ):

V (T n
h ) :=

{
U : T n

h → R5 | (gradU1)T : F(U2)|Kn
j
∈ L1(Kn

j );(
(gradU2)T ·D(U1)

)
: gradU1|Kn

j
∈ L1(Kn

j );

γ−(U1) ·
(
nT
K F(γ−(U2)) + nT

K F(γ+(U3))
)
∈ L1(∂Kn

j );

∀(U1, U2, U3) ∈ V (T n
h ), ∀Kn

j ∈ T n
h

}
,

with L1 the space of Lebesgue integrable functions,γ±(U) = limε↓0 U(x ± εnK) the traces

of U at ∂K, nK ∈ R4 the unit outward normal vector at∂K, D : R5 → R4×4 the artificial

viscosity matrix, and superscriptT denotes the transposition of a vector. We will also frequently

use the notationU± to denoteγ±(U). The gradient operatorgrad : R5 → R4×5 is defined as:

(gradU)ij = ∂Uj

∂xi
and the symbol: represents the dyadic product of two second order tensors and

is defined forA, B ∈ Rn×m asA : B = AijBij .

The discontinuous Galerkin finite element discretization is obtained by approximating the test and

trial functions in each elementK ∈ T n
h with polynomial expansions which are discontinuous

across element faces, both in space and time. First, in the master elementK̂ the basis functions

φ̂m : K̂ → R are defined which are linear in computational space:

φ̂m(ξ) = 1, m = 0,

= ξm, m = 1, · · · , 4.

Next, the basis functionsφm : K → R are constructed through the parameterizationGK :

φm = φ̂m ◦G−1
K , m = 0, . . . , 4.

We also introduce the basis functionsψm : K → R, which are defined as:

ψm(x̄, t) =1, m = 0,

=φm(x̄, t)− 1
|Kj(t−n+1)|

∫
Kj(t

−
n+1)

φm(x̄, t−n+1)dK, m = 1, · · · , 4, (5)

since this will result in a splitting of the test and trial functions into an element mean at timetn+1

and a fluctuating part. This property will be beneficial in the definition of the stabilization operator

and the multigrid convergence acceleration, discussed in Sections 2.2.5 and 2.3.
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The finite element spaceV 1
h (T n

h ) is now defined as follows:

V 1
h (T n

h ) :=
{
Uh

∣∣ Uh|K ∈ (P 1(K))5
}
⊂ V (T n

h ),

with the polynomial spaceP 1(K) = span{ψm,m = 0, · · · , 4}. The trial functionsUh : T n
h →

R5 are defined in each elementK ∈ T n
h as:

Uh(x̄, t)|K ≡ P(U(x̄, t)|K) =
4∑

m=0

Ûm(K)ψm(x̄, t), (6)

with P : R5 → V 1
h (T n

h ) the projection operator onto the spaceV 1
h andÛm ∈ R5 the expansion

coefficients. The test functionsWh : T n
h → R5 are defined analogously, only witĥUm replaced

by Ŵm. The weak formulation for the Euler equations of an inviscid compressible gas can now be

formulated as:

Find aUh ∈ V 1
h (T n

h ), such that for allWh ∈ V 1
h (T n

h ), the following variational equation is

satisfied:

NT∑
n=0

Nn∑
j=1

{∫
Kn

j

Wh · divF(Uh) dK +
∫
Kn

j

(
(grad Wh)T ·D(Uh)

)
: gradUh dK

}
= 0, (7)

withNT +1 the total number of space-time slabs andNn the number of elements in the tessellation

T n
h . The second contribution in (7) is the stabilization operator and added to the weak formulation

to prevent numerical oscillations around discontinuities and in regions with sharp gradients, for

more details see Section 2.2.5.

2.2.2.2 Transformation of the space-time weak formulation into ALE form

The weak formulation (7) can be transformed into an integrated by parts form using Gauss’ theo-

rem. This has as main benefit that it does not result in loss of conservation under inexact quadra-

ture, see e.g. Hansbo (Ref. 25). This approach is for instance followed by Shakib et al. (Ref. 37).

It is, however, possible to establish a relation between the Arbitrary Lagrangian Eulerian (ALE)

formulation, commonly used on moving and deforming meshes, and the space-time approach.

This can be done either directly for the partial differential equations, as presented by Masud and

Hughes (Ref. 33), or for the weak formulation using Stokes’ theorem, see Bottasso (Ref. 9). In

this section we will establish the relation between the space-time and ALE formulation in a more

simplified way, which does not require the use of differential forms, and gives more insight into

the origin of the various contributions.

If we introduce

Wh · divF(Uh) = div (W T
h F(Uh))− (gradWh)T : F(Uh), (8)
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Fig. 1 Illustration of the geometry of two-dimensional space-time elements in both computa-

tional and physical space. Notations in the text.

into the weak formulation (7) and apply Gauss’ theorem to the contribution resulting from the first

term on the righthand side of (8) then we obtain:∫
Kn

j

div (W T
h F(Uh)) dK =

∫
∂Kn

j

nK ·
(
(W−

h )TF(U−h )
)
d(∂K), (9)

wherenK is the unit outward normal vector at the boundary∂Kn. The ALE formulation can now

be obtained by calculating the normal vectornK.

Given the parameterization(x̄, t) = Gn
K(ξ) for the space-time element, the normal vectornK at

the boundary surface componentsS2i−1 andS2i, 1 ≤ i ≤ 4, defined in (4), is orthogonal to the

tangential vectorsti1 , ti2 , andti3 , with the indices{i1, i2, i3} ⊂ {1, · · · , 4} complementary to the

index{i}. The tangential vectors are defined as:tj = ∂Gn
K

∂ξj
, and are equal to (cf. (3)):

tj =

 1
2(1− ξ4)

∂F n
K(ξ̄)
∂ξj

+ 1
2(1 + ξ4)

∂F n+1
K (ξ̄)
∂ξj

0

 , j = 1, 2, 3,

t4 =1
2

 Fn+1
K (ξ̄)− Fn

K(ξ̄)

tn+1 − tn

 = 1
2

 ∆x̄

∆t

 ,

(also see Figure 1). The normal vectors atS7 andS8 are simply(0, 0, 0,−1) and (0, 0, 0, 1),

respectively, hence the boundary integrals over the surfacesS7 andS8 are equal to:

8∑
m=7

∫
Sm

nK ·
(
(W−

h )TF(U−h )
)
dS =

∫
Kj(t

−
n+1)

W−
h · U−h dS −

∫
Kj(t

+
n )
W−

h · U−h dS, (10)

where we used the relations:U−h = Fi4(U−h ), S7 = Kj(t+n ) andS8 = Kj(t−n+1).
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For the remaining boundary terms remember that for eachξ4 ∈ (−1, 1) the elementK(t), such

that (K(t), ξ4) = Gn
K(ξ̄, ξ4), is the space-element defined by the interpolated vertices of the

elementsK(t+n ) andK(t−n+1). Let n̄i
K(x̄, t) ∈ R3, (1 ≤ i ≤ 6), be the space part of the normal

vector at the boundary partsSi ⊂ Qn
j . By definition, n̄2m−1

K and n̄2m
K , (1 ≤ m ≤ 3), are

perpendicular to the tangential vectorstik = 1
2(1 − ξ4)

∂F n
K

∂ξik
+ 1

2(1 + ξ4)
∂F n+1

K
∂ξik

, with k = 1 or 2,

such that{i1, i2,m} = {1, 2, 3}. Hence, the vectors(n̄i
K, α) ∈ R4 are orthogonal to the tangential

vectorstik , if and only if the conditions:

1
2∆x̄ · n̄i

K + 1
2α∆t = 0,

are satisfied. The space-time normal vectorni
K atSi, (1 ≤ i ≤ 6), therefore is equal to:

ni
K = (n̄i

K,−v · n̄i
K),

with the grid velocityv ∈ R3 given by the relation:v = 4x̄/4t. Since the space-time normal

vectornK has length one, the space normal vectorn̄K has a length|n̄K| = 1/
√

1 + v · v. The

boundary flux integral overSi, (1 ≤ i ≤ 6) is now equal to:

6∑
i=1

∫
Si

nK ·
(
(W−

h )TF(U−h )
)
dS =

∫
Qn

j

[
n̄K ·

(
(W−

h )T F̄(U−h )
)
− n̄K ·v(W−

h ·U
−
h )
)]
dQ, (11)

where the flux tensor̄F : R5 → R5×3 has components̄Fij = Fij with 1 ≤ j ≤ 3. If we

replace the righthand side of (9) with the sum of (10) and (11) using the fact that∂Kn = ∪8
i=1Si,

and introduce this relation into (7) we obtain the weak formulation for the Euler equations of gas

dynamics in ALE form:

Find aUh ∈ V 1
h (T n

h ), such that for allWh ∈ V 1
h (T n

h ), the following variational equation is

satisfied:

NT∑
n=0

Nn∑
j=1

{
−
∫
Kn

j

(gradWh)T : F(Uh)dK +
∫

Kj(t
−
n+1)

W−
h · U−h dK−

∫
Kj(t

+
n )
W−

h · U−h dK +
∫
Qn

j

W−
h ·
(
F̄(U−h )n̄K − n̄K · vU−h

)
dQ+

∫
Kn

j

(
(grad Wh)T ·D(Uh)

)
: gradUh dK

}
= 0. (12)

2.2.2.3 Introduction of numerical flux

In the summation over the space-time elements, the integrals over the internal faces ofQn,K(tn)

andK(tn+1) in the weak formulation (12) are counted twice, since two elements are connected
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to each side of the faces. (In case of mesh refinement this applies to subsets of these faces.) This

results in a multi-valued flux tensor at internal faces, since in generalU−h 6= U+
h in the discontin-

uous Galerkin discretization, and this requires special care. If we use the fact that the normal flux

through the boundary faces must be continuous, almost everywhere, to ensure conservation then

we obtain the relations:∫
Kj(t

+
n )∪Kj(t

−
n+1)

W−
h · U−h dK =

∫
Kj(t

+
n )∪Kj(t

−
n+1)

W−
h · U+

h dK, ∀Wh ∈ V 1
h (T n

h ),

∫
Qn

j

W−
h · (F̃(U−h )n̄K)dQ =

∫
Qn

j

W−
h · (F̃(U+

h )n̄K)dQ, ∀Wh ∈ V 1
h (T n

h ),

(13)

with U+
h the trace ofUh at ∂Kn

j of elements connected toKn
j . The generalized flux tensor̃F :

R5 → R5×3 is defined as:

F̃(U) = F̄(U)− v ⊗ U,

wherev ⊗ U = viUj . The integrals over internal facesKj(t+n ) then transform into:

Nn∑
j=1

∫
Kj(t

+
n )
W−

h · U−h dK =
Nn∑
j=1

∫
Kj(t

+
n )
W−

h · 1
2(U−h + U+

h )dK,

with a similar relation forKj(t−n+1). The multivalued time flux is now replaced with a numerical

flux HT which, in order to ensure the causality of the time flux, is defined as:

HT (U−h , U
+
h ) =U+

h atKj(t+n )

=U−h atKj(t−n+1).

The numerical fluxHT can also be used at the boundary facesKj(t+0 ), where the external trace is

provided by the initial condition att = t0. The numerical fluxHT makes it possible to drop the

summation over the space-time slabs in the weak formulation (12), since each space-time slab only

depends on the previous space-time slab. The introduction of the time flux is an alternative to the

weak coupling between space-time slabs generally used in time-discontinuous Galerkin methods

and results in a uniform treatment of the space-time flux in the DG discretization. Using (13), the

integrals overQn
j in (12) can be transformed into:

Nn∑
j=1

∫
Qn

j

W−
h · (F̃(U−h )n̄K)dQ =

Nn∑
j=1

∫
Qn

j

W−
h · 1

2

(
F̃(U−h )n̄K + F̃(U+

h )n̄K
)
dQ. (14)

The representation of the flux in (14) as the average between the left and right states at the element

face results in a central discretization which suffers from numerical oscillations around disconti-

nuities. Monotone solutions are obtained by adding the stabilization operator and introducing a
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Godunov type upwind flux. The use of an upwind flux fits very well into a discontinuous Galerkin

discretization, since the statesU−h andU+
h can be considered as the left and right states in a Rie-

mann problem. We replace therefore the flux1
2

(
F̃(U−h (x̄, t))n̄K+F̃(U+

h (x̄, t))n̄K
)

at the element

facesQn
j in the time interval[t, t+4t) with a monotone upwind fluxH(U−h , U

+
h ), which is con-

sistent:H(Uh, Uh) = F̃(Uh)n̄K, and conservative:H(U−h , U
+
h ) = −H(U+

h , U
−
h ). At external

boundary faces we apply the same procedure, but at these faces the external stateU+
h is controlled

by the boundary operator:U+
h = B(U−h , Uw).

Any of the well-known (approximate) Riemann solvers, such as those from Godunov, Roe, Lax-

Friedrichs, or Osher, for a survey see Toro (Ref. 41), can be used as upwind numerical flux. In

earlier work, Van der Vegt and Van der Ven (Ref. 43), we used the Osher flux because of its

good accuracy and nice mathematical foundation, but the Osher flux is computationally expensive

and is replaced with the HLLC flux. The HLLC flux is introduced by Toro, Spruce and Speares

(Ref. 40) and further analyzed by Batten et al. (Ref. 5, 6). The HLLC flux provides solutions of

at least the same quality as the Osher flux, but at less than one quarter of the computational cost.

The definition of the HLLC flux for moving interfaces is provided in Section 2.2.4. An important

benefit of using an upwind numerical flux is that this already ensures nearly monotone solutions

without a stabilization operator. A relatively simple stabilization operator in comparison with

for instance the one used by Shakib, Hughes and Johan (Ref. 37) for the Galerkin least squares

finite element method then is sufficient to obtain monotone solutions. The weak formulation for

the space-time discontinuous Galerkin finite element discretization of the Euler equations of gas

dynamics now is equal to:

Find aUh ∈ V 1
h (T n

h ), such that for allWh ∈ V 1
h (T n

h ), the following variational equation is

satisfied:
Nn∑
j=1

{
−
∫
Kn

j

(gradWh)T : F(Uh)dK +
∫

Kj(t
−
n+1)

W−
h · U−h dK−

∫
Kj(t

+
n )
W−

h · U+
h dK +

∫
Qn

j

W−
h ·H(U−h , U

+
h )dQ+

∫
Kn

j

(
(grad Wh)T ·D(Uh)

)
: gradUh dK

}
= 0. (15)

2.2.3 Equations for the flow field expansion coefficients

An important element in the numerical discretization is the splitting of the test and trial functions

into an element mean̄Uh : T n
h → R5 at the time leveltn+1 and a fluctuating part̃Uh : T n

h → R5:

Uh(x̄, t) = Ūh(Kj(t−n+1)) + Ũh(x̄, t), ∀(x̄, t) ∈ Kn
j , (16)
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with:

Ūh(Kj(t−n+1)) = Û0, (17)∫
Kj(t

−
n+1)

Ũh(x̄, t)dK = 0. (18)

The flow field can now be represented as:

Uh(x̄, t) = Ūh(Kj(t−n+1)) +
4∑

m=1

Ûm(Kn
j )ψm(x̄, t), ∀(x̄, t) ∈ Kn

j .

This splitting is a direct consequence of the fact that the basis functionsψm(x̄, t) are constructed

such that:∫
Kj(t

−
n+1)

ψm(x̄, t−n+1)dK = 0, m ≥ 1, (19)

and has several advantages. In the first place, the structure of the space-time discontinuous

Galerkin discretization becomes more clear, because the equations for the element mean are iden-

tical to a finite volume discretization. A second advantage of the splitting is that it makes it easier

to define the stabilization operator and the multigrid convergence acceleration procedure. The

stabilization operator does not act on the element mean, only on the fluctuating part. Any ad-

justment to the element fluctuations due to the stabilization operator will therefore not affect the

element mean, and preserve a conservative scheme. The multigrid procedure also benefits from

this splitting since it only uses the equations for the element mean at the coarse grid levels. This

results in a significant simplification of the multigrid algorithm, while maintaining good multigrid

performance.

If we introduce the polynomial expansions (6) forUh andWh into the weak formulation of the

Euler equations (15), use (16)-(19) and the fact that the coefficientsŴ are arbitrary, then the

following set of equations for the element meanŪi(Kj(t−n+1)), 1 ≤ i ≤ 5, is obtained:

∣∣Kj(t−n+1)
∣∣ Ūi(Kj(t−n+1))−

∫
Kj(t

+
n )
Uh,i(x̄, t−n )dK +

∫
Qn

j

Hi(U−h , U
+
h )dQ = 0. (20)

The coefficients for the fluctuating part of the flow field̂Umi(Kn
j ) with m = 1, · · · , 4, are equal
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to:

4∑
m=1

Ûmi(Kn
j )
(
−
∫
Kn

j

∂ψl(x̄, t)
∂t

ψm(x̄, t)dK +
∫

Kj(t
−
n+1)

ψl(x̄, t−n+1)ψm(x̄, t−n+1)dK
)
−

∫
Kj(t

+
n )
Uh,i(x̄, t−n )ψl(x̄, t+n )dK − Ūi(Kj(t−n+1))

∫
Kn

j

∂ψl(x̄, t)
∂t

dK+

∫
Qn

j

ψl(x̄, t)Hi(U−h , U
+
h )dQ−

∫
Kn

j

∂ψl(x̄, t)
∂xk

F̄ik(Uh)dK+

4∑
m=1

Ûmi(Kn
j )
∫
Kn

j

∂ψl(x̄, t)
∂xk

Dkp(Uh)
∂ψm(x̄, t)
∂xp

dK = 0, l = 1, · · · , 4; i = 1, · · · , 5.

(21)

The computational mesh can be discontinuous at the interface between two space-time slabs. This

implies that more than one element inT n−1
h can connect to the elementKn

j ∈ T n
h . In that case

the polynomial representation ofUh(x̄, t−n ) in the various elements inT n−1
h which connect to the

elementKn
j must be used in the evaluation of the integrals

∫
Kj(t

+
n ) Uh(x̄, t−n )ψl(x̄, t+n )dK. This is

discussed in Sections 2.4.1 and 2.4.2. The different contributions in (21) are evaluated separately.

Define the geometric coefficientsA1, A2,A ∈ R5×5 as:

A1
lm =

∫
Kn

j

∂ψl(x̄, t)
∂t

ψm(x̄, t)dK,

A2
lm =

∫
Kj(t

−
n+1)

ψl(x̄, t−n+1)ψm(x̄, t−n+1)dK,

Alm =−A1
lm +A2

lm,

and the coefficientsB ∈ R5×5, which couple the space-time slabs, as:

Bil(U+
h |Kj(t

+
n )) =

∫
Kj(t

+
n )
Uh,i(x̄, t−n )ψl(x̄, t+n )dK. (22)

The element face and volume flux contributionsR1 ∈ R5×5,R2 ∈ R5×4 are defined as:

R1
il(U

−
h |Qn

j
, U+

h |Qn
j
) =

∫
Qn

j

ψl(x̄, t)Hi(U−h , U
+
h )dQ (23)

R2
il(Uh|Kn

j
) =

∫
Kn

j

∂ψl(x̄, t)
∂xk

F̄ik(Uh)dK, (24)

and the integrals of the stabilization operatorD ∈ R4×4 are denoted as:

Dlm(Uh|Kn
j
, U∗h |Kn

j
)) =

∫
Kn

j

∂ψl(x̄, t)
∂xk

Dkp(Uh|Kn
j
, U∗h |Kn

j
)
∂ψm(x̄, t)
∂xp

dK, (25)
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with U∗h |Kn
j

the solution in the elementsK ∈ T n
h which connect to the elementKn

j . The evaluation

of the flux and stabilization operator integrals is discussed in Sections 2.2.4 and 2.2.5, respectively.

The system of non-linear equations (21) for the expansion coefficientsÛmi(Kn
j ) can be expressed

as:

L(Ûn, Ûn−1) = 0, (26)

with Ûn = Ûmi(K), K ∈ T n
h , 0 ≤ m ≤ 4, 1 ≤ i ≤ 5, andL : R5×5 × R5×5 → R5×5 having

components in each space-time element:

Li0 = |Kj(t−n+1)| Ūi(Kj(t−n+1))−Bi0(U+
h |Kj(t

+
n )) +R1

i0(Uh|Kn
j
, U∗h |Kn

j
), (27)

Lil =
4∑

m=1

(
Alm(Kn

j ) +Dlm(Uh|Kn
j
, U∗h |Kn

j
)
)
Ûmi(Kn

j )−Bil(Û+
h |Kj(t

+
n ))−

A1
l0Ūi(Kj(t−n+1)) +R1

il(U
−
h |Qn

j
, U+

h |Qn
j
)−R2

il(Uh|Kn
j
), l = 1, · · · , 4. (28)

The space-time discontinuous Galerkin discretization results in a set of non-linear equations (26)

for the expansion coefficientŝUn. This set of non-linear equations is solved with a Full Approx-

imation Storage (FAS) multigrid scheme, which is discussed in Section 2.3. Since the evaluation

of the coupling termsB between space-time slabs is fairly complicated for general meshes it is

also useful to consider the equations for continuous grid motion. In this case these integrals are

relatively simple:

Bil(U+
h |Kj(t

+
n )) = BlmÛmi(Kn−1

j )

with:

Blm =
∫

Kj(tn)
ψl(x̄, t+n )ψm(x̄, t−n )dK.

If we use the relationsB00 = |Kj(tn)| andÛ0i(Kn−1
j ) = Ūi(Kj(t−n )) then (27) is a standard finite

volume discretization for the element mean.

Remark 2.2.3 It would have been more convenient to define the element mean flow field for the

space-time elementK instead of using the element mean flow field inKj(t−n+1)), but this would not

result in a decoupling of the equations for the element mean from the equations for the fluctuations

Ũh due to the weak coupling between the different time slabs in the weak formulation (15).

2.2.4 Flux Calculation

2.2.4.1 Extension of the HLLC scheme to moving meshes

In Section 2.2.2.3 we introduced the HLLC flux into the weak formulation in order to prevent

numerical oscillations around discontinuities. The formulation of the HLLC scheme discussed
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Fig. 2 Wave pattern used in the definition of the HLLC flux function for an element face moving

with velocity v. Here SL and SR are the fastest left and right moving signal velocities. The solution

in the star region U∗ is divided by a wave with velocity SM .

in Toro et al. (Ref. 40, 41) and Batten et al. (Ref. 5, 6) is, however, only valid for non-moving

meshes. In this section we will discuss the extension of the HLLC scheme to moving meshes.

This extension is most easily accomplished by considering the structure of the wave pattern in

the Riemann problem which is assumed in the HLLC scheme, see Figure 2. The HLLC scheme

assumes that we have two averaged intermediate statesU∗L andU∗R in the star region, which is the

region bounded by the waves with the slowest and fastest signal speedsSL andSR, respectively.

The star region is divided into two parts by a contact wave which moves with velocitySM . Outside

the star region the solution still is at its initial values at timetm, which are denotedUL andUR

and are equal to the tracesU−h (tm) andU+
h (tm), respectively. In the time interval[tm, tm +4t)

the solutionUHLLC at an element face which moves with the velocityv then is equal to:

UHLLC =



UL ≡ U−h (tm) if SL > v,

U∗L if SL ≤ v < SM ,

U∗R if SM ≤ v < SR,

UR ≡ U+
h (tm) if SR ≤ v,

(29)

where depending on the grid velocityv we have to consider four different cases. The time interval

4t is chosen such that there is no interaction with waves coming from other Riemann problems.

Assume thatSL < v, SR > v, andSM ≥ v, then we can calculate the fluxHHLLC(UL, UR)

in the time interval[tm, tm + 4t) by integrating the Euler equations over the control volumes

2DEFC and2EABF as shown in Figure 2. Using Gauss’ theorem we obtain for the control
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volume2DEFC the relation:∫ SL4t

xL

UL dx+
∫ v4t

SL4t
Uh(x, tm +4t) dx

=
∫ 0

xL

Uh(x, tm) dx+
∫ tm+4t

tm

F̂(Uh(xL, t)) dt−
∫ tm+4t

tm

F̂(U−h (vt, t)) dt, (30)

and for the control volume2EABF :∫ SM4t

v4t
Uh(x, tm +4t) dx+

∫ SR4t

SM4t
Uh(x, tm +4t) dx+

∫ xR

SR4t
UR dx

=
∫ xR

0
Uh(x, tm) dx+

∫ tm+4t

tm

F̂(U+
h (vt, t))dt−

∫ tm+4t

tm

F̂(Uh(xR, t)) dt, (31)

with F̂(Uh) = n̄KF̄(Uh). If we introduce now the averaged solutionsU∗L andU∗R, which are

defined as:

U∗L =
1

(SM − SL)4t

∫ SM4t

SL4t
Uh(x, tm +4t)dx,

U∗R =
1

(SR − SM )4t

∫ SR4t

SM4t
Uh(x, tm +4t)dx,

and use the fact thatU±h is constant along the linex = vt in the Riemann problem then we obtain

after subtracting (30) from (31) the following expression for the HLLC flux at the interface in the

time interval[tm, tm +4t):

HHLLC(UL, UR) = 1
2(F̃(U−h (vt, t)) + F̃(U+

h (vt, t)))

= 1
2(F̂(UL) + F̂(UR) + ((SL − v) + (SM − v))U∗L+

((SR − v)− (SM − v))U∗R − SLUL − SRUR).

For the other three cases:(SL < v, SR > v, SM ≤ v), (SL < v, SR < v, SM < v), and

(SL > v, SR > v, SM > v) a similar analysis can be made. If we combine the four cases then

we obtain the following expression for the HLLC flux at a moving interface in the time interval

[tm, tm +4t):

HHLLC(UL, UR) = 1
2

(
F̂(UL) + F̂(UR)− (|SL − v| − |SM − v|)U∗L+

(|SR − v| − |SM − v|)U∗R + |SL − v|UL − |SR − v|UR−

v(UL + UR)
)
. (32)
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In order to completely define the HLLC flux we still need to define the star statesU∗L andU∗R, and

the wave speedsSL, SR andSM . This can be done in various ways, but since there is no difference

with the HLLC scheme for non-moving meshes, we only state the final results. We will follow the

approach of Batten et al. (Ref. 5) which assumed that:

SM = û∗L = û∗R = û∗,

with ûL,R = n̄K · uL,R, andû∗ the normal velocity calculated from the HLL approximation. This

results in the following expression forSM :

SM =
ρRûR(SR − ûR)− ρLûL(SL − ûL) + pL − pR

ρR(SR − ûR)− ρL(SL − ûL)
. (33)

The star states are obtained using the Rankine-Hugoniot relations across the waves moving with

the velocitiesSL andSR:

U∗L =
SL − ûL

SL − SM
UL +

1
SL − SM


0

(p∗ − pL)n̄K
p∗SM − pLûL

 , (34)

with an identical relation forU∗R, only with L replaced withR. The intermediate pressures are

equal to:

p∗L = ρL(SL − ûL)(SM − ûL) + pL,

p∗R = ρR(SR − ûR)(SM − ûR) + pR, (35)

but the definition ofSM ensures thatp∗L = p∗R = p∗, as is required for a contact discontinuity. The

wave speedsSL andSR are computed according to Davis (Ref. 20) as:

SL = min(ûL − aL, ûR − aR), SR = max(ûL + aL, ûR + aR), (36)

with a =
√
γp/ρ the speed of sound. Batten et al. (Ref. 6) showed that it is better to use wave

velocities based on the Roe averaged velocities, but we did not notice any major difference with

the simpler waves velocities defined in (36) for the simulations discussed in these notes.

2.2.4.2 Evaluation of flux integrals

The flux integrals (23) and (24) are computed by transforming the integrals to the reference face

(−1, 1)3 and reference element̂K, respectively, after which the integrals are approximated with

product Gauss quadrature rules. For the element face flux integrals (23) a two-point product Gauss

quadrature rule is used for the integration in the local coordinate directionsξ1, ξ2 andξ3, and a

three point Gauss quadrature rule for the integration in the local coordinate directionξ4. The
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volume flux integrals (24) are computed with a three-point product Gauss quadrature rule. In

Section 3.3.8 Corollary 3.3.16, it is shown that these quadrature rules are sufficiently accurate

to ensure that the discontinuous Galerkin discretization discussed in these notes is second order

accurate in a suitable Sobolev norm. The product Gauss quadrature rules also evaluate the flux

integrals sufficiently accurate to satisfy the Geometric Conservation Law (GCL). The GCL, which

is originally formulated by Thomas and Lombard (Ref. 39), requires that a uniform flow field is

not disturbed by the grid motion and is an essential condition in order to obtain at least first order

accuracy in time, as was proven by Guillard and Farhat (Ref. 24).

The product Gauss quadrature rules are easy to implement, but require 12 flux evaluations per

element face integral and 81 flux evaluations per volume integral. This number can be slightly re-

duced using more sophisticated quadrature rules, as described by Stroud (Ref. 38), but the number

of flux evaluations remains large. In Section 3 we describe and analyze a technique to reduce the

number of flux evaluations in the flux integration to one, while maintaining the same second order

accuracy as obtained with the product Gauss quadrature rules.

2.2.5 Stabilization operator

The discontinuous Galerkin finite element method without stabilization operator does not guar-

antee monotone solutions around discontinuities and sharp gradients. In these regions numerical

oscillations develop when polynomials of degree one or higher are used. For the Runge-Kutta dis-

continuous Galerkin method Cockburn, Hou and Shu (Ref. 16) derived a local projection or slope

limiter which guarantees monotone solutions for multi-dimensional scalar conservation laws. This

approach was a major breakthrough for the numerical solution hyperbolic partial differential equa-

tions because initially discontinuous Galerkin finite element discretizations experienced severe sta-

bility limitations. The use of a slope limiter in combination with a DG method results in a robust

numerical discretization and has become quite popular. We have used this technique to compute

complex three-dimensional (unsteady) flows for aerodynamical applications in combination with

local mesh refinement, Van der Vegt, Van der Ven and Boelens (Ref. 43, 44). Other applications of

DG methods with limiters, including higher order discretizations, can be found in Cockburn and

Shu (Ref. 17), Cockburn, Karniadakis and Shu (Ref. 19), and Kershaw et al. (Ref. 27).

Despite its robustness the use of a slope limiter has serious disadvantages since it may result in

an unnecessary reduction in accuracy in smooth parts of the flow field and prevents convergence

to steady state. The accuracy problem has been an important motivation for Cockburn and Shu to

look at Total Variation Bounded (TVB) DG discretizations (Ref. 15), but these techniques are not

easy to apply in multiple dimensions and contain problem dependent constants which are difficult

to estimate. Recently, Burbeau, Sagaut and Bruneau (Ref. 12) proposed limiters for second and
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higher order accurate DG methods without problem dependent constants which look promising

but still need further testing on real applications.

The problems with the convergence to steady state caused by the limiter are more severe and

originate from an inconsistency in the combination of a discontinuous Galerkin discretization

and a limiter. Since the limited solution does not satisfy the steady state discontinuous Galerkin

equations, it is not possible to reduce the residual to machine accuracy. Instead, the scheme tries

to converge to the unlimited solution, which suffers however from numerical oscillations, and the

limiter must remain active to prevent this. This is particularly annoying for industrial applications,

since it is unclear when to stop the calculations. Convergence to steady state is also important

for unsteady problems. In Section 2.3 we solve the non-linear equations for the DG expansions

coefficients (26) by introducing a pseudo-time and marching the solution to steady state in pseudo-

time with a FAS multigrid algorithm.

The problems in obtaining steady state solutions with a limited DG method are well known, but

have received little attention since most applications of DG methods have been to unsteady prob-

lems in combination with an explicit Runge-Kutta time integration method. After extensive testing

we came to the conclusion that a better alternative is provided by stabilizing the discontinuous

Galerkin method by adding artificial dissipation. This approach is also followed by Barth (Ref. 3),

Baumann (Ref. 7), Cockburn and Gremaud (Ref. 14), and Jaffre, Johnson and Szepessy (Ref. 26)

for the discontinuous Galerkin method and is standard in the Streamline Upwind Petrov Galerkin

(SUPG) and Galerkin least squares methods. In this section we will discuss new stabilization oper-

ators for the space-time discontinuous Galerkin method and in later sections we will demonstrate

that this technique provides excellent shock capturing and convergence to steady state in pseudo-

time. The stabilization operators use the jump in the polynomial representation at the element

faces in the discontinuous Galerkin discretization and the element residual. In this way optimal

use is made of the information contained in a DG discretization and we maintain the compact

stencil of the discontinuous Galerkin discretization.

The effectiveness of the stabilization operatorD defined in (25), strongly depends on the artifi-

cial viscosity matrixD(Uh|Kn
j
, U∗h |Kn

j
) ∈ R4×4. The definition of the artificial viscosity matrix

is more straightforward if the stabilization operator acts independently in all computational co-

ordinate directions. This is achieved by introducing the artificial viscosity matrixD̃ ∈ R4×4 in

computational space using the relation:

D(Uh|Kn
j
, U∗h |Kn

j
) = RT D̃(Uh|Kn

j
, U∗h |Kn

j
)R, (37)
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where the matrixR ∈ R4×4 is defined as:

R = 2H−1 gradGK . (38)

The matrixH ∈ R4×4 is introduced to ensure that bothD andD̃ have the same mesh dependence

as a function ofhi, and is defined as:

H = diag (h1, h2, h3, h4),

with hi ∈ R+ the leading terms of the expansion of the mappingGK (3) in the computational

coordinatesξi, (1 ≤ i ≤ 4). The multiplication with the factor two in (38) ensures that for

orthogonal cells the matrixR is the rotation matrix from the computational space to the physical

space. The integrals in the stabilization operatorDnm given by (25) can now be further evaluated,

resulting in:

Dnm(Uh|Kn
j
, U∗h |Kn

j
) =

∫
Kn

j

∂ψn

∂xk
RpkD̃pq(Uh|Kn

j
, U∗h |Kn

j
)Rql

∂ψm

∂xl
dK

=4
∫
K̂
(H−1)pnD̃pq(Uh|Kn

j
, U∗h |Kn

j
)(H−1)qm|JGK

|dK̂,

=
4|Kn

j |
h2

n

δnmD̃nn(Uh|Kn
j
, U∗h |Kn

j
)

(no summation onn), where we used the relations:(gradGK)ij = ∂xj/∂ξi and∂ψn/∂ξp = δnp

and made the assumption thatD̃ is constant in each element.

The stabilization operator should act only in areas with discontinuities or when the mesh resolu-

tion is insufficient. This requirement can be directly coupled to the jump in the solution across

element faces and the element residual, respectively, both of which are readily available in the

discontinuous Galerkin discretization. In regions with smooth solutions these contributions are of

the order of the truncation error and will therefore not reduce the accuracy in these regions. We

have tested two models for the artificial coefficients:

Model I. In the artificial viscosity model I only the jump in the pressure across the element faces

influences the stabilization matrix. This technique works very well in subsonic and transonic

flows with weak shocks. The artificial viscosity matrix is defined as:

D̃qq(Uh|Kn
j
, U∗h |Kn

j
) =

C ′ λhq

|Qn
j |

6∑
m=1

| p+(x(m))− p−(x(m))| |Sm|
p+(x(m)) + p−(x(m))

, q = 1, 2, 3,

=0, otherwise,

with p±(x(m)) = γ±(p(x(m))) the pressure at the centers of the facesSm ⊂ Qn
j , andγ the

trace operator. The scaling factorλ is defined as:λ = |n̄K ·(u−v)|+a, and is the maximum
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of the eigenvalues of the flux Jacobians∂F̄/∂U at the midpointsx(m) of the facesSm, with

n̄K the space normal atQn
j , u andv the fluid and grid velocity, anda =

√
γp/ρ the speed

of sound. The constantC ′ is of order one. Other discontinuity sensors, based for instance

on the density, have also been tested, but the difference with the pressure sensor generally

was very small.

Model II. For problems with stronger discontinuities the artificial viscosity model proposed and ana-

lyzed by Jaffre, Johnson and Szepessy (Ref. 26) is used. In this model both the jumps at the

element faces and the element residual are used to define the artificial viscosity:

D̃qq(Uh|Kn
j
, U∗h |Kn

j
) = max

(
C2h

2−β
K Rq(Uh|Kn

j
, U∗h |Kn

j
) , C1h

3
2
K
)
, q = 1, 2, 3,

=0, otherwise,

with

R(Uh|Kn
j
, U∗h |Kn

j
) =
∣∣∣ 3∑
k=0

∂F(Uh)
∂Uh,i

∂Uh,i(GK(0))
∂xk

∣∣∣+ C0

∣∣U+
h (x(7))− U−h (x(7))

∣∣/hK+

6∑
m=1

1
hK

∣∣n̄T
KF̃(U+

h (x(m)))− n̄T
KF̃(U−h (x(m)))

∣∣, (39)

with hK =
√
h2

1 + h2
2 + h2

3 + h2
4 andUh,i the components ofUh. The coefficientsβ, C0,

C1 andC2 are positive constants and set equal toC0 = 1.2, C1 = 0.1, C2 = 1.0 and

β = 0.1. For stronger shocks the addition of the quasi-linear form of the conservation law

in (39), which is the first contribution on the righthand side of (39), significantly improves

the robustness of the numerical scheme, since this contribution detects discontinuities very

well. Numerical tests showed that the contributions of the element residual of the quasi-

linear equations and the contributions in the jump of the flux at the element faces are equally

important.

2.3 Solution of the non-linear DG coefficient equations

2.3.1 Multigrid algorithm for pseudo-time integration

The space-time discontinuous Galerkin discretization results in each element in a system of cou-

pled non-linear equations for the expansion coefficientsÛn. In this section we will describe an

efficient multigrid technique to solve these non-linear equations. The use of a multigrid scheme

is motivated by the fact that it maintains the local, element based structure of the discontinuous

Galerkin discretization when a proper relaxation scheme is chosen. This greatly facilitates the use

of a domain decomposition technique on parallel computers, which are our main target platforms.

The multigrid technique has only been discussed for the linear advection-diffusion equation by
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Gopalakrishnan and Kanschat (Ref. 22), which theoretically analyzed its performance. Until now

multigrid techniques have not been used for DG discretizations of the Euler equations and on

locally refined meshes. The development of an efficient technique has turned out to be non-trivial.

The non-linear equations of the space-time discontinuous Galerkin discretization (26) are solved

by augmenting them with a pseudo-time derivative:

|Kj(t−n+1)|
∂Û(Kn

j )
∂τ

= − 1
4t

L(Ûn, Ûn−1), (40)

where the righthand side of (40) is divided by4t to make it possible to obtain also steady state

solutions as4t → ∞, because 1
4tL is independent of4t. The system (40) is integrated in

pseudo-time using an optimized Runge-Kutta scheme in combination with a FAS multigrid algo-

rithm to accelerate the convergence to steady state. On the coarse meshes only the equations for

element mean are used. Depending on the type of artificial dissipation we must, however, modify

the Runge-Kutta scheme.

We define the following five stage semi-implicit Runge-Kutta scheme as relaxation operator for

the multigrid procedure:

Procedure Sk
I (k,Lk,Fk

O, Ŵ
k):

1. Initialize the first Runge-Kutta stage: V̂ (0) = Ŵ k.

2. Do for all stages s = 1 to 5:

(
I +

αsλ̄

|Kn|
(
|Kn|I + D̄k(V̂ (s−1))

))
V̂ (s) =

V̂ (0) +
αsλ̄

|Kn|

(
(|Kn|I + D̄k(V̂ (s−1)))V̂ (s−1) − Lk(V̂ (s−1), Ûk(Kn−1)) + Fk

O

)
(41)

3. End do

4. Update solution: Ŵ k = V̂ (5).

End Procedure Sk
I ,

with Kn = Kj(t−n+1). In this procedureŴ k are approximations to the expansion coefficients

Û(Kn) at the different grid levelsk, Ûk(Kn−1) are the expansion coefficients of the restriction

of Uh(Kn−1) to the grid levelk, andFk
O represents the forcing function, which is defined in

Procedure FAS. At the fine grid levelk = M , the non-linear operatorLM : R5×5 × R5×5 →
R5×5 satisfies:LM = L, with L defined in (27)-(28), and we havêUM , V̂M , ŴM , F̂M

O ∈ R5×5.

At the coarse grid levels1 ≤ k < M the components of the operatorsLk : R5 × R5 → R5 are
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equal to:Lk
i = Li0, and we havêV k, Ŵ k, F̂k

O ∈ R5. The coefficientŝUk ∈ R5 only consist

of the coefficients of the mean flow field̂U0i and the coefficient̄λ is defined as:̄λ = ∆τ
∆t , with

4τ the time step in the pseudo-time integration. The Runge-Kutta coefficientsαs are defined as:

α1 = 0.0791451, α2 = 0.163551, α3 = 0.283663, α4 = 0.5, andα5 = 1.0, and optimized with a

searching technique to improve the stability and smoothing properties of the Runge-Kutta scheme.

The matrixD̄M ∈ R5×5 is defined as:

D̄M =

(
0 0

0 D

)
,

at the fine grid level, with the dissipation matrixD ∈ R4×4 given by (25), andD̄k is zero at

the coarse grid levels. Note, the dissipation operators discussed in Section 2.2.5 both result in a

diagonal matrix, hence the implicit treatment of this contribution is straightforward. The matrix

I ∈ R5×5 represents the identity matrix.

The Runge-Kutta scheme (41) is obtained from a second order accurate five-stage Runge-Kutta

method:

V̂ (s) = V̂ (0) − αsλ̄

|Kn|
Lk(V̂ (s−1), Ûk(Kn−1)), for s = 1, · · · , 5, (42)

by treatingV̂ in Lk(V̂ , Ûk(Kn−1)) semi-implicitly. This is accomplished by approximating(Ā+

D̄)V̂ as: (|Kn|I + D̄)V̂ (s) + (Ā − |Kn|I)V̂ (s−1). HereĀ is the coefficient matrix multiplying

V̂ in (27) and (28). The contributionαsλ̄(|Kn|I + D̄)V̂ (s−1)/|Kn| then is added and subtracted

to the righthand side of (42) to restore the operatorLk. This makes it possible to have a residual

Lk(Ûn, Ûn−1) ≈ 0 when the solution converges to a steady state, which facilitates the definition

of the multigrid algorithm.

The semi-implicit Runge-Kutta scheme is necessary because the pseudo-time integration would

otherwise become unstable for values ofλ̄ of the order of one. The use of a semi-implicit Runge-

Kutta scheme was proposed by Melson, Sanetrik and Atkins (Ref. 34) for time-accurate calcula-

tions with multigrid acceleration using a Jameson type finite volume discretization of the com-

pressible Navier-Stokes equations. In Section 2.3.2 we analyze this procedure and show that for

small values of̄λ it also greatly enhances the stability of the pseudo-time integration method for

the space-time discontinuous Galerkin discretization.

The multigrid procedure also requires the definition of the coarse grid meshes and the restriction

and prolongation operator. The unadapted mesh is generated such that it has a sufficient number of

coarse grid levels. For most calculations at least three levels are used. In general the mesh is also
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Fig. 3 Coarsening based on refinement tree. The numbers at the nodes of the tree refer to the

number of leaves in the subtree. The dashed lines show where the tree is pruned. The

fine grid cells and the resulting coarse grid cells are shown to the right.

locally refined, and starting at the leaves of the refinement tree, we traverse the tree backwards

untill a sufficiently large number of cells is merged into coarse grid cells. The ratio of the number

of cells between two grid levels is approximately eight in three dimensions. In Figure 3 an example

of this process is given. This process results in a number of tessellationsT n
h,k, 1 ≤ k ≤ M , for

each grid level, which are defined as:

T n
h,k := {Kn

j,k | Kn
j,k = ∪j′∈Ij,k

Kn
j′ , Kn

j′ ∈ T n
h },

with Ij,k the indices of the elementsKn
j′ which agglomerate into the coarse grid elementKn

j,k.

Note, at the fine grid levelk = M we haveT n
h,M = T n

h . An example of tree multigrid levels in a

locally refined mesh is given in Figure 4.

We also have to correct for the fact that the agglomerated coarse grid cells are not necessarily hex-

ahedronal elements. This does not give serious problems since at the coarse grid levels we only

use equations for the element mean. These equations are identical to a first order accurate finite

volume discretization for which it is straightforward to obtain a discretization on agglomerated

elements. This is considerably more complicated for a second or higher order accurate discon-

tinuous Galerkin discretization, which also uses the equations for the flow field fluctuations, and

is one of the main reasons for only using the equations for the element mean on the coarse grid

levels.

For the discretization at the coarse grid levels we introduce the approximation spacesVh,k, which
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Fig. 4 Multigrid levels in an adapted mesh about the NACA 0012 airfoil.
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are defined as:

Vh,k(T n
h,k) :=


{
Uh

∣∣ Uh|K = Ū(K(t−n+1)), ∀K ∈ T n
h,k

}
if 1 ≤ k < M,

V 1(T n
h ) if k = M.

The restriction operatorIk−1
k : Vh,k(T n

h,k) → Vh,k−1(T n
h,k−1) is a volume weighted average and is

defined as:

Ik−1
k Uh|Kn

j
=

∑
j′∈Ij,k

Û0i(Kn
j′)|Kn

j′ |∑
j′∈Ij,k

|Kn
j′ |

, (43)

with Kn
j ∈ T n

h,k. The prolongation operatorIk
k−1 : Vh,k−1(T n

h,k−1) → Vh,k(T n
h,k) is a pure injec-

tion and defined as:

Ik
k−1Uh|Kn

j,k
= Ū(Kj,k(t−n+1)), (44)

for all fine grid elementsKj ∈ T n
h,k which agglomerate into the coarse grid elementKn

j,k. We can

now define a FAS multigrid algorithm for the space-time discontinuous Galerkin discretization on

locally refined meshes:

Procedure FAS(k,Lk,Fk
O, Ŵ

k):

1. Do m1 Runge-Kutta steps Sk(k,Lk,Fk
O, Ŵ

k) at grid level k.

2. Compute forcing function:

F k−1
O = Lk−1

(
Ik−1
k Ŵ k, Ik−1

k Ûk(Kn−1)
)

+ Ik−1
k

(
Fk

O − Lk(Ŵ k, Ûk(Kn−1))
)
,

with FM
O = 0.

3. If k > 0 Do Procedure FAS(k − 1,Lk−1,Fk−1
O , Ŵ k−1)

4. Update element mean solution at grid level k: Ŵ k
i0 = Ŵ k

i0 + Ik
k−1(Ŵ

k−1
i0 − Ik−1

k Ŵ k
i0).

5. Do m2 Runge-Kutta steps Sk(k,Lk,Fk
O, Ŵ

k) at level k.

End Procedure FAS.

In the definition of theProcedure FAS we used (17)-(18), which allow us to apply the restriction

and prolongation operator directly to the coefficientsÛ without first projectingUh to the basis

functionsψm. TheProcedure FAS uses a V-cycle multigrid strategy. Other cycling strategies,

such as the W-cycle can be obtained with minor changes to theProcedure FAS. The present

multigrid algorithm makes rather crude assumptions at the coarse grid levels, but has a good per-

formance in practice. An example is given in Figure 5 for calculations of the transonic flow about

a NACA 0012 airfoil on a locally refined mesh. This figure shows that after each adaptation step,
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Fig. 5 Convergence rate comparison of the residual for the element mean and fluctuating DG

coefficient equations using single and multigrid computations (dark lines) on a twice

adapted mesh of a NACA 0012 airfoil.
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which result in the peaks in the residual, the residual is efficiently reduced by the multigrid pro-

cedure, both for the equations of the element mean and the fluctuations. We have extensively

tested several other multigrid strategies, including solving the equations for the flow field fluctu-

ationsÛmi, m ≥ 1 also on the coarse meshes and more elaborate restriction and prolongation

operators. Although some of these methods were promising in a two-level smoothing analysis,

and their theoretical performance was verified in calculations on simple model problems, none of

these techniques came close to the performance of the multigrid algorithm for the solution of the

Euler equations discussed in this section.

2.3.2 Stability analysis of pseudo-time integration

In this section we investigate the stability of the pseudo-time integration method discussed in

Section 2.3.1. As a model problem we use the linear advection equation:

∂u

∂t
+ a

∂u

∂x
= 0,

with a > 0 a positive constant. This results in a relatively simple linear system, which is useful for

analyzing the properties of the numerical discretization. The space-time discontinuous Galerkin

discretization for the linear advection equation using a mesh with grid velocitiessj ≤ a, j =

1, · · ·N , withN the number of mesh points, can be represented in matrix form as:

AÛ(Kn
j )− BÛ(Kn

j−1) = CÛ(Kn−1
j ),

with:

A =


4xn+1

j + cn
j+ 1

2

cn
j+ 1

2

−cn
j+ 1

2

2a1 +cn
j+ 1

2

−2a4tn 1
3a2 +cn

j+ 1
2

+d11 −2a1 − cn
j+ 1

2

+ 2a4tn

−4xn
j −4x

n+1
j − cn

j+ 1
2

−cn
j+ 1

2

2
3a3 + 4

3c
n
j+ 1

2

+ d22



B =


cn
j− 1

2

cn
j− 1

2

−cn
j− 1

2

−cn
j− 1

2

−cn
j− 1

2

cn
j− 1

2

−cn
j− 1

2

−cn
j− 1

2

4
3c

n
j− 1

2

 , C =


4xn

j 0 0

0 1
34x

n
j 0

−24xn
j 0 0

 ,

with 4xn
j = xn

j+1 − xn
j , x̄n

j = 1
2(xn

j + xn
j+1), a1 = x̄n+1

j − x̄n
j , a2 = 24xn+1

j − 4xn
j , a3 =

24xn
j +4xn+1

j , cn
j± 1

2

= 4tn(a − sj± 1
2
), andsn

j+ 1
2

= (xn+1
j+1 − xn

j+1)/4tn. Herexn
j andxn

j+1

denote the begin and end points of the element at timetn, respectively. The termsd11 andd22 are

determined by the artificial dissipation operator.
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For the stability analysis we assume that the time step, element size, and velocity remain constant,

i.e.4t = 4tn, ∆x = 4xn+1
j = 4xn

j , ands = sn
j− 1

2

= sn
j+ 1

2

for all j andn, and set the artificial

viscosity coefficients equal to zero, then the operatorL can be expressed as:

L(Ûn, Ûn−1) = AÛ(Kn
j )− BÛ(Kn

j−1)− CÛ(Kn−1
j ), (45)

with the matricesA,B, C ∈ R3×3 defined as:

A =


1 + δ δ −δ

−δ 1
3 + δ δ

−2− δ −δ 2 + 4
3δ

 , B =


δ δ −δ

−δ −δ δ

−δ −δ 4
3δ

 , C =


1 0 0

0 1
3 0

−2 0 0

 ,

with δ = 4t(a − s)/4x ands ≤ a. The Runge-Kutta scheme (41) is used for the pseudo-time

integration. Consider now the spatial Fourier mode:

Û(Kn
j ) = eıθjÛF ,

with θ ∈ [0, 2π) andı =
√
−1. Since the stability of the pseudo-time integration is determined by

the transients we only consider the homogeneous part of the equation for the Fourier coefficient

ÛF :

dÛF

dτ
= − 1

∆t
P(θ)ÛF , (46)

with P(θ) = A − e−ıθB. The matrixP ∈ R3×3 is non-singular and we can writeP as: P =

QMQ−1, withQ the matrix of right eigenvectors andM the diagonal matrix with the eigenvalues

µm(θ), (m = 0, 1, 2) of P(θ). Introducing a new vector̂V F = Q−1ÛF then (46) becomes a

system of uncoupled ordinary differential equations:

dV̂ F
m

dτ
= −µm(θ)

4t
V̂ F

m , for m = 0, 1, 2.

This system of ordinary differential equations is solved with the semi-implicit Runge-Kutta scheme

(41), which has an amplification factorG(z), with z ∈ C. The pseudo-time integration method

is stable if the amplification factorG satisfies the condition|G(zm(θ))| ≤ 1, for m = 0, 1, 2;

θ ∈ [0, 2π) with zm(θ) defined aszm(θ) = −∆τ
∆t µm(θ). The stability is analyzed for different

values of the physical and pseudo-time stepCFL-numbers (defined asCFL4t = a4t/4x and

CFL4τ = a4τ/4x, respectively), and the ratios/a.

In Figure 6 contour values of the stability domain|G(z)| ≤ 1 for the 5-stage semi-implicit Runge-

Kutta scheme (41) with optimized coefficients are shown for the physical CFL numbersCFL4t =
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Fig. 6 Locus of the eigenvalues zm(θ), θ ∈ [0, 2π), (dots) of the DG discretization of ut +aux = 0

and the stability domain of the 5-stage semi-implicit Runge-Kutta method with optimized

coefficients. CFL4t = 1.0, CFL4τ = 1.8 (top), CFL4t = 100.0, CFL4τ = 1.8 (bottom),

no grid velocity.
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1 and 100, respectively. Also shown are the locus of the eigenvalueszm(θ), θ ∈ [0, 2π), which

must be inside the stability region to ensure the stability of the pseudo-time integration. For

CFL4t = 1 the Runge-Kutta scheme is stable forCFL4τ ≤ 1.94 and forCFL4t = 100 the

pseudo-time step CFL number must be less thanCFL4τ ≤ 1.85, which is unchanged for larger

values ofCFL4t. The large stability domain and excellent smoothing properties of the semi-

implicit Runge-Kutta method for small values of the physical time step CFL number is important

for time-accurate simulations.

In Figure 7 the effect of the semi-implicit treatment ofV̂ in (41) is shown forCFL4t = 1. For

small physical time step CFL numbers the stabilizing effect of this technique is very large and the

pseudo-time step CFL number must be reduced to 1.08 to ensure stability when the semi-implicit

technique is not used. For physical CFL numbers larger than 100 the effect of the semi-implicit

Runge-Kutta scheme is, however, negligible. The effect of using optimized coefficients in the

Runge-Kutta scheme (41) is also large, as can be seen in Figure 7 where the stability contours

for the semi-implicit Runge-Kutta scheme with coefficientsαs = 1
4 ,

1
6 ,

3
8 ,

1
2 , 1 for the stagess =

1, · · · , 5 are shown. This are the coefficients for the Jameson Runge-Kutta scheme, which is

a popular Runge-Kutta method in computational fluid dynamics and also frequently used as a

smoother in multigrid algorithms. For this Runge-Kutta scheme the pseudo-time CFL number

must be reduced toCFL4τ ≤ 0.88, when the physical CFL number is equal toCFL4t = 1.

When the physical CFL number is equal toCFL4t = 100 then the pseudo-time CFL number

must be reduced toCFL4τ ≤ 0.95 for the Jameson Runge-Kutta scheme. The effect of grid

velocity is stabilizing if the grid velocity is in the range0 ≤ s ≤ a. This is a direct consequence

of the relationδ = CFL4t(1 − s/a). When the grid velocity is in this range then it reduces

the effective physical time step CFL number and since the pseudo-time integration has a larger

stability domain for smaller values ofCFL4t this improves stability.

2.4 Mesh adaptation

In order to improve the accuracy of the discontinuous Galerkin discretization the computational

mesh is adapted to provide more resolution in important flow structures. The mesh adaptation pro-

cedure is based on anisotropic refinement and coarsening of the mesh by subdividing and merging

elements, independently in each of the local coordinate directionsξi, (1 ≤ i ≤ 4), of the reference

element. The data structures and searching techniques for local mesh refinement and coarsening,

which are suitable for the space-time discontinuous Galerkin finite element discretization, are es-

sentially the same as discussed in Van der Vegt and Van der Ven (Ref. 43). The mesh adaptation

is controlled with a sensor function which is based on the following quantities:

• shock sensor, which measures differences in flow quantities and total pressure loss across
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Fig. 7 Locus of the eigenvalues zm(θ), θ ∈ [0, 2π), (dots) of the DG discretization of ut +aux = 0

and the stability domain of the explicit 5-stage Runge-Kutta method (42) with optimized

coefficients (top) and the five stage semi-implicit Jameson Runge-Kutta scheme (bottom).

CFL4t = 1.0. CFL4τ = 1.8, no grid velocity.
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cell faces;

• vorticity sensor, which measures the vorticity within an element;

• grid sensor, which either measures the anisotropy of the mesh or the mesh width of a cell.

We do not control the adaptation procedure using a-posteriori error estimates, since this technique

presently is not sufficiently well developed for the Euler equations. After the mesh adaptation the

coupling coefficients (22), which link the old and new space-time slabs, have to be computed in

order to preserve time accuracy. In the next two sections we will discuss the evaluation of this

contribution for element refinement and coarsening.

2.4.1 Space-time slab coupling for element refinement

Given a refinement between two space-time slabs, where an element is divided in half in one of

the computational coordinate directions, letKn−1
j be an element in the space-time slabT n−1

h , and

Kn
j0

, Kn
j1

two space-time elements inT n
h such that:Kn

j := K̄j(t−n ) = K̄j0(t
+
n ) ∪ K̄j1(t

+
n ). The

solutionUh(x̄, t−n ) in elementKn−1
j is approximated as:

Uh,j(x̄, t−n ) =
4∑

m=0

Ûm(Kn−1
j )ψm,j(x̄, t−n ),

where the element indexj is added toUh and the basis functionsψm to indicate to which element

they belong. The space-time slab coupling coefficients (22) for the elementsKn
jk

, k = 0 or 1, can

now be evaluated as:

Bl(U+
h |Kjk

(t+n )) =
∫

Kjk
(t+n )

Uh,j(x̄, t−n )ψl,jk
(x̄, t+n )dK

=
3∑

m=0

Ûm(Kn−1
j )

∫
Kjk

(t+n )
ψm,j(x̄, t−n )ψl,jk

(x̄, t+n )dK, l = 0, · · · , 4.

(47)

The summation over the DG expansion coefficients is from zero to three, sinceψ4,j(x̄, t−n ) = 0 (cf.

(5)). The evaluation of the integrals on the right hand side of (47) requires an explicit expression

for ψm,j(x̄, t−n ) in the elementKjk
. Since the basis functionsψm are defined in the reference

elementK̂ using the basis functionŝψm, we must linkψm,j(x̄, t−n ) to its representation in the

reference element. Introduce the mappingsLk
i , with 1 ≤ i ≤ 3, andk = 0 or 1, which are defined

as:

Lk
i : K̂ → K̂′ : ξm 7→


1
2ξm − 1

2 + k if i = m

ξm if i 6= m,
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with:

K̂′ = (−1, 1)× . . .×(−1 + k, k)× . . .× (−1, 1).

i-th entry

Here the subscripti denotes the coordinate direction in which the element is refined. Note that

GKjk
andGKj ◦ Lk

i are identical isoparametric mappings ofKjk
. We can use this property to

relate the basis function in the elementKj to the basis functions in its childrenKj0 andKj1 . The

basis functionsψm,j , restricted toKj0 andKj1 in (47), transform to:

ψm,j = ψ̂m ◦G−1
Kj

= ψ̂m ◦ Lk
i ◦G−1

Kjk
=

{
1
2ψm,jk

− 1
2 + k if i = m

ψm,jk
if i 6= m,

(48)

and we can use (48) to define the basis functionsψm,j in the elementsKjk
. If we introduce (48)

into (47) and transform back to the reference elementK̂ then we obtain simple expressions for the

element integrals which can be evaluated with a product Gauss quadrature rule with three points

in each coordinate direction.

2.4.2 Space-time slab coupling for element coarsening

Given a de-refinement between two space-time slabs, letKn−1
j0

andKn−1
j1

be two elements in

the space-time slabT n−1
h , andKn

j ∈ T n
h , the space-time element such that:Kn

j := K̄j(t+n ) =

K̄j0(t
−
n ) ∪ K̄j1(t

−
n ). The integral for the coupling coefficients (22) then can be evaluated as:

Bl(U+
h |K(t+n )) =

∫
Kj0

(t−n )
Uh,j0(x̄, t

−
n )ψl,j(x̄, t+n )dK+

∫
Kj1

(t−n )
Uh,j1(x̄, t

−
n )ψl,j(x̄, t+n )dK

=
3∑

m=0

(
Ûm(Kn−1

j0
)
∫

Kj0
(t−n )

ψm,j(x̄, t−n )ψl,j(x̄, t+n )dK+

Ûm(Kn−1
j1

)
∫

Kj1
(t−n )

ψm,j(x̄, t−n )ψl,j(x̄, t+n )dK
)
, (49)

with ψm,j restricted toKj0 andKj1 given by (48). After transformation to the reference element it

is straightforward to calculate the integrals in (49) with a product Gauss quadrature rule with three

points in each coordinate direction.

2.5 Grid deformation

The grid in the time slabs is constructed using the motion of the boundary, following the procedure

proposed by Masud and Hughes (Ref. 33). For a given time levelt = tn let ∂Ω(tn) be the
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boundary ofΩ(tn) ⊂ R3. Decompose∂Ω(tn) = Γm∪Γf into a moving boundaryΓm and a fixed

boundaryΓf , with Γm ∩ Γf = ∅. The position ofΓm at time levelt = tn+1 is prescribed by a

displacement functiong, which describes the movement of the boundary. The grid is deformed to

accomodate the movement of the boundary by solving the following equation for the displacement

functions : Ω(tn) → R3:

∇ · ([1 + τm]∇s) = 0, x ∈ Ω(tn) (50)

s = g, x ∈ Γm

s = 0, x ∈ Γf ,

with τm : Ω(tn) → R+ ∪ {0} a function designed such that small elements mainly experience

solid body motion in order to prevent grid inversion at sharp corners. For the Euler simulations

discussed in these notes this term was, however, not necessary to preserve grid consistency. The

mesh at time levelt = tn+1 then is obtained by adding the displacements to the position of

the grid points at timetn. The system (50) is discretized using a standard (continuous) Galerkin

discretization with linear tetrahedron elements. The resulting linear system of equations is solved

using a diagonal preconditioned conjugate gradient method.

The grid deformation procedure can deform elements in such a way that the isoparametric mapping

Fn
K from the master element̂K is not invertible. In order to detect these elements the conditions

derived by Knupp (Ref. 28) and Van der Vegt (Ref. 47) on the invertibility of the isoparametric

mapping are used. If elements are detected which do not fullfil this condition then their defor-

mation is limited by increasing the value ofτ , but in most practical simulations this has not been

necessary.
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3 Efficient Flux Quadrature

The computation of the element face and volume flux integrals is by far the most computing in-

tensive part in the space-time discontinuous Galerkin finite element method. The use of Gauss

quadrature rules for the evaluation of the flux integrals, as discussed in Section 2.2.4.2, is straight-

forward but requires a large number of flux evaluations and makes the algorithm unnecessarily

expensive. In order to improve the computational efficiency we discuss and analyze in this section

an alternative flux quadrature technique. This technique is based on a Taylor series expansion

of the flux and uses also information of the flow field gradients, which is readily available in a

discontinuous Galerkin discretization.

3.1 Preliminaries

The evaluation of the flux integrals will be performed in a reference element, and to this end

the following notation is introduced. LetdŜm (resp. dSm
) be theR4 valued (resp.R3 valued)

measure on̂S = (−1, 1)3 such that:∫
Sm

fnKdx =
∫
Ŝ
fdŜm,∫

Sm

fnKdx =
∫
Ŝ
fdSm

,

(1 ≤ m ≤ 6), wheref is a function onSm ⊂ ∂K anddx is the Euclidean measure onSm. The

precise expression for the two measures is given in Appendix B. In Appendix B it will be shown

that the vector-valued measuresdŜm anddSm
satisfy the following relation for1 ≤ m ≤ 6:∫

Ŝ
f · dŜm =

1
2
∆t
(∫

Ŝ
f · dSm −

∫
Ŝ
f4v · dS

m
)
, (51)

for any integrable functionf : Sm → R4, wherev = (Fn+1
K − Fn

K)/∆t is the local grid velocity.

Takingf = W T
h F we have:∫

Sm

W T
h FnKdx =

1
2
∆t
(∫

Ŝ
W T

h F · dSm −
∫
Ŝ
W T

h Uv · dS
m
)
, (52)

in which we recognize the ALE formulation containing the grid velocity. In the remainder of these

notes we will drop the subscriptK from the space-time normaln.

For the analysis of the local truncation error Section 3.3.4 it is beneficial to rewrite the weak

formulation (15) by introducing the space-time numerical fluxHSP as:

HSP(U−h , U
+
h , nK) =

{
H(U−h , U

+
h , nK) if nK 6= 0,

1
2(U−h + U+

h )nK,4 − 1
2 |nK,4|(U+

h − U−h ) if nK = 0,
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The weak formulation (15) then is equal to:

Nn∑
j=1

{
−
∫
Kn

j

(gradWh)T : F(Uh)dK +
∫

∂Kn
j

W−
h ·HSP(U−h , U

+
h , nK)d(∂K)+ (53)∫

Kn
j

(
(grad Wh)T ·D(Uh)

)
: gradUh dK

}
= 0. (54)

3.2 Taylor quadrature rule

In an attempt to improve the computational efficiency of the second order accurate DG method

a novel approximation of the flux integrals is proposed. The flux function in the integrand is

replaced by the second order Taylor series of the flux evaluated at the face center. Terms containing

the gradients transversal to the face are introduced into the discretized equations, enhancing the

stability of the discretized system. Moreover, second order accuracy of this Taylor approximation

of the flux integrals is proved in Section 3.3.4. Based on a flop count analysis (not presented here)

it is estimated that this approximation is computationally more efficient than Gauss quadrature,

because of the reduction in the number of flux evaluations. Also, the locality of the required

flow data (only data in the face center is required) will improve the speed of the flux quadrature

algorithm.

First, we will explain the basic concept of the so-called Taylor quadrature for the face flux in-

tegrals, after which we will present the general formulation for both face and volume flux inte-

grals. In the Taylor quadrature rule, the central part of the HLLC flux, namely the contribution
1
2(F̂(UL) + F̂(UR)) in (32), is approximated as:∫

Sm

φmF ik(U∗)nkdx ≈F ik(U∗(ξm))
∫
Ŝ
ξmdS

m
k

+
∑

l∈I(Sm)

∂F ik

∂U j
∗

(U∗(ξm))
∂U j

∗
∂ξl

(ξm)
∫
Ŝ
ξlξmdS

m
k ,

(55)

whereU∗ = UL or UR, ξm is the computational face center of the faceSm defined byξm,i =

±δim, andI(Sm) is the ordered index set defined byI(Sm) = {m2,m3,m4}, m2 < m3 < m4,

the complement of{m} in {1, 2, 3, 4}. These are the first four terms in a Taylor expansion of the

integrand onŜ. The remaining integrals, which depend solely on the geometry of the face, are

evaluated exactly — only the flux terms are expanded in a Taylor series. The exact evaluation of

the geometric terms is crucial in order to maintain the second order accuracy of the DG method.

The flow derivatives necessary for the quadrature rule can be easily computed, since in computa-

tional coordinates the solution vectorUh in cell K, restricted to the faceSm1 , can be written as:
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U|Sm1
= U(ξm1

) + ξm2Ûm2(K) + ξm3Ûm3(K) + ξ4Û4(K); (56)

hence, the flow derivatives are equal to∂U
∂ξl

(ξm1
) = Ûl for l ∈ I(Sm1). The fact that the gradi-

ents occur directly in the approximation of the face flux integrals, demonstrates that DG methods

provide a natural setting for the Taylor quadrature rule.

For the general formulation of the Taylor quadrature rule for both face and volume flux integrals

we return to the weak formulation (54) of the Euler equations using the space-time flux. This

allows us to treat the space-time fluxes through the different element faces in a uniform way.

The first step is to transform the integrals in physical space to integrals in computational space,∫
Q
W−

h · F±nTdQ =
8∑

m=1

∫
Ŝm

Ŵ−
h,i · F

±
ik dŜ

m
k . (57)

Likewise the volume flux integrals are transformed to computational space:∫
K
∇Wh : FdK =

∫
K̂
∇Ŵh : F |JGK

| dK̂. (58)

Subsequently the flux in the integrand is expanded in a second order Taylor series, and the follow-

ing Taylor quadrature rules for the face and volume integrals are obtained:

∫
∂K
W−

h · F± · nKd∂K ≈

8∑
m=1

[
F±

ik(ξ̄m)
∫
Ŝ
Ŵ−

h,i dŜ
m
k +

∑
l∈I(Sm)

∂F±
ik(ξ̄m)
∂ξl

∫
Ŝ
Ŵ−

h,i ξl dŜ
m
k

]
, (59)

∫
K
∇Wh : FdK ≈ Fij(0)

∫
K̂

∂Wh,i

∂xj
|JGK

|dK̂ +
∂Fij(0)
∂ξl

∫
K̂

∂Wh,i

∂xj
ξl |JGK

|dK̂, (60)

with F± = F(U±).

In Section 3.3.5, Lemma 3.3.3, the conditions for the flux tensor will be given such that the ap-

proximations above are well defined.
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3.3 Taylor approximation

For the stability of the discretization, it was found to be essential to not just expand the central

part of the numerical flux, but also the dissipative part. This has been one of the main reasons

to apply the HLLC flux, where one can hope to obtain reasonably simple expressions for the

derivatives of the dissipative part. Note that in smooth parts of the flow field the dissipative part

of the numerical flux is of higher order than the central part, hence the approximation of the face

integrals of the dissipative part does not affect the local truncation error analyzed in Section 3.3.4.

This section only deals with the numerical flux through the space-time faces. The time-numerical

flux, including the dissipative part of the time-numerical flux, is computed analytically, which is

consistent with the Taylor quadrature rule, since the time-flux is linear.

The application of the Taylor quadrature rule to the HLLC flux can be most easily accomplished

by rewriting the intermediate states (34) as:

U∗L =
SL − ûL

SL − SM
UL +

1
SL − SM


0

(p∗ − pL)n

p∗SM − pLûL



=
SL

SL − SM
UL −

1
SL − SM

ûLUL + pL


0

n

ûL


+

1
SL − SM

p∗


0

n

SM


(right intermediate state is computed likewise). Recognizing the second term between square

brackets on the right hand side as a flux term, the HLLC flux can be expressed as:

HHLLC(UL, UR, n) = cLF̂L + cRF̂R −
1
2
v(UL + UR)

+
1
2

(
|S̃L| − SL

|S̃L| − |S̃M |
SL − SM

)
UL −

1
2

(
|S̃R| − SR

|S̃R| − |S̃M |
SR − SM

)
UR

−1
2

(
|S̃L| − |S̃M |
SL − SM

− |S̃R| − |S̃M |
SR − SM

)
p∗vp,

(61)

whereF̂L = F̂(UL) = F(UL) · n is the normal flux. The corrected wave speeds are defined as

S̃∗ = S∗ − v, the constantscL andcR are given by the relations:

cL =
1
2

(
1 +

|S̃L| − |S̃M |
SL − SM

)
,

cR =
1
2

(
1− |S̃R| − |S̃M |

SR − SM

)
,



- 51 -
NLR-TP-2003-342

and the vectorvp ∈ R5 is defined by:

vp =


0

n

SM

 .

The term1
2(F̂(UL) + F̂(UR)) in (61) is referred to as the central part of the numerical flux, the

remaining terms as the dissipative part of the numerical flux.

A complete linearization of the HLLC flux would require the linearization of all wave speeds.

Linearization of the wave speeds is a tedious exercise, not only because the expressions for the left

and right wave speeds are complex, but also because of the upwind character of the HLLC flux.

An efficient linearization of the flux integral would be a linearization where the left and right wave

speeds are assumed to be constant, while retaining certain desirable properties of the HLLC flux.

These properties are stability of the discretization scheme, preservation of uniform flow, and the

contact wave analogy for the contact wave speed. Such a linearization is presented below, for a

given space-time faceS = Sm, (1 ≤ m ≤ 6), using the following assumptions:

Assumption 1 The wave speedsSL andSR are assumed constant in the face, the contact wave

speedSM is allowed to vary with the flow. Variations with respect to the face normal are ignored

for all wave speeds.

Assumption 2The wave speeds are computed based on the face average normal
∫
S ndx/|

∫
S ndx|.

Assumption 3The face moments are approximated as
∫
Ŝ PJSdξ ≈ |

∫
Ŝ PdS|, for an arbitrary

polynomialP on Ŝ, whereJS is the Jacobian of the parameterization ofS.

Assumption 4 The coefficients in the dissipative flux containing the contact wave speed are as-

sumed constant.

As will be shown in Section 3.3.1, the first assumption is sufficient to ensure that the intermediate

pressures are equal across the contact wave up to second order in the left and right states. In

Section 3.3.2 it will be shown that the other assumptions are sufficient to ensure the preservation

of uniform flow when the Taylor quadrature rule is used. The stability of the scheme will be

demonstrated experimentally in Section 4. It is important to note that the Taylor quadrature rule

puts no restriction on the specific choice of the left and right wave speeds.

Using Assumption 1 to 4 and the formulation of the HLLC flux in (61) we obtain the following

approximation of the face flux integrals:∫
Sm

φnH
i
HLLC(UL, UR, n)dx ≈ (62)
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1
2
(
cLF ik(UL(ξm)) + cRF ik(UR(ξm))

) ∫
Ŝ
ξndS

m
k

+
1
2
cL

∑
l∈I(S)

∂F ik

∂U j
(UL(ξm))Û j

L,l

∫
Ŝ
ξlξndS

m
k

+
1
2
cR

∑
l∈I(S)

∂F ik

∂U j
(UR(ξm))Û j

R,l

∫
Ŝ
ξlξndS

m
k

− 1
2

∫
Ŝ
(UL + UR)ξnvkdS

m
k

+
1
2

(
|S̃L| − SL

|S̃L| − |S̃M |
SL − SM

)∫
Ŝ
U i

LξnJSmdξ (63)

− 1
2

(
|S̃R| − SR

|S̃R| − |S̃M |
SR − SM

)∫
Ŝ
U i

RξnJSmdξ (64)

− 1
2

(
|S̃L| − |S̃M |
SL − SM

− |S̃R| − |S̃M |
SR − SM

)
F̃ i(p∗).

The first three terms on the right hand side of (62) follow directly from (55). In the last term the

functionsF̃ i(p∗) are defined as:

F̃ 1(p∗) =0

F̃ i(p∗) =p∗(ξm)
∫
Ŝ
ξndS

m
i−1 + (2 ≤ i ≤ 4)

+
∑

l∈I(S)

(
∂p∗

∂U j
L

Û j
L,l +

∂p∗

∂U j
R

Û j
R,l

)∫
Ŝ
ξlξndS

m
i−1

F̃ 5(p∗) =SM (ξm)p∗(ξm)
∫
Ŝ
ξnJSmdξ+

+
∑

l∈I(S)

SM (ξm)

(
∂p∗

∂U j
L

Û j
L,l +

∂p∗

∂U j
R

Û j
R,l

)∫
Ŝ
ξlξnJSmdξ

+
∑

l∈I(S)

p∗(ξm)

(
∂SM

∂U j
L

Û j
L,l +

∂SM

∂U j
R

Û j
R,l

)∫
Ŝ
ξlξnJSmdξ,

which essentially is the differentiation product rule applied top∗vp in (61). The integrals in (63)

and (64) are written out using (56) and Assumption 3 for the face moments:∫
Sm

UξnJSmdξ =U(ξm)
∫
Ŝ
ξnJSmdξ +

∑
l∈I(S)

Ûl

∫
Ŝ
ξlξnJSmdξ

≈U(ξm)
∣∣∣∣∫
Ŝ
ξndS

m
∣∣∣∣+ ∑

l∈I(S)

Ûl

∣∣∣∣∫
Ŝ
ξlξndS

m
∣∣∣∣ .
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The grid velocity term is treated in the same way:∫
Ŝ
Uξnv · nJSdξ = U(ξm)

∫
Ŝ
ξnv · dS

m +
∑

l∈I(S)

Ûl

∫
Ŝ
ξlξnv · dS

m

(note that this is not an approximation). The analytical expressions for the geometric integrals∫
Ŝ ξlξndS

m
and

∫
Ŝ ξlξnv · dS

m
are presented in Appendix C.

3.3.1 Contact wave analogy

The intermediate pressures defined in (35) are equal if all flow quantities are evaluated at the same

point. If we assume all wave speeds to be constant in a face, we would have
∂p∗R
∂UL

= 0, whereas

clearly
∂p∗L
∂UL

is nonzero. Hence a variation in the left state would have no effect on the right

intermediate pressure, so the intermediate pressures will in general not be equal across the face.

Since the introduction of the contact wave analogy into the HLL flux has significantly improved

the accuracy of the HLLC flux, we want to preserve the contact wave analogy within the quadrature

rule. We will show that taking the variation ofSM into account, but assumingSL andSR constant

across the face, implies that the left and right intermediate pressures are equal up to second order

(compare with Batten et al. (Ref. 6)), which is consistent with the Taylor quadrature rule.

Lemma 3.3.1 Given Assumption 1, we have:

(p∗L − p∗R)(UL + ∆UL, UR + ∆UR) = O(|∆UL|2, |∆UR|2), (|∆UL|, |∆UR| → 0).

Since the intermediate pressures are equal in the face center by the construction of the contact

wave speedSM , it is sufficient to prove that the linear variations of the intermediate pressures are

equal.

Defineρ̃ = ρR(SR − ûR) − ρL(SL − ûL). Given the definition ofSM in (33) the derivative of

SM with respect to the left state is obtained as follows:

∂SM

∂UL
=− SM

ρ̃

∂ρ̃

∂UL
+

1
ρ̃

∂

∂UL
(−ρLûL(SL − ûL) + pL)

=− SM

ρ̃

∂ρ̃

∂UL
+

1
ρ̃

∂

∂UL
(p∗L − ρLSM (SL − ûL))

=− SM

ρ̃

∂ρ̃

∂UL
+

1
ρ̃

∂p∗L
∂UL

− ρL(SL − ûL)
ρ̃

∂SM

∂UL
+
SM

ρ̃

∂ρ̃

∂UL

=
1
ρ̃

∂p∗L
∂UL

− ρL(SL − ûL)
ρ̃

∂SM

∂UL

which is equivalent with:

ρR(SR − ûR)
∂SM

∂UL
=
∂p∗L
∂UL

.
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Hence,
∂p∗R
∂UL

= ρR(SR − ûR)
∂SM

∂UL
=
∂p∗L
∂UL

,

where the first equality follows directly from (35). Likewise it can be proven that the derivatives

with respect toUR are equal.2

3.3.2 Consistency of the approximation

Lemma 3.3.2 Given Assumption 2 to 4, the Taylor approximation of the flux integrals preserves

uniform flow. Hence the flux evaluation satisfies the Geometric Conservation Law for moving

meshes.

To prove the preservation of uniform flow, it is sufficient to show that the dissipative part of the

HLLC scheme vanishes in uniform flow, since the geometric terms in the central flux are evaluated

exactly.

Without loss of generality we may assumeSL < v < SM < SR. The dissipative part of the

HLLC scheme is given pointwise by (compare with (61))

S̃L

SL − SM

(
SMU + pvp − F̂

)
,

where the subscriptsR andL are omitted from the flow variables sinceUL = UR = U . For

uniform flow, the contact wave speedSM is equal to the normal velocity. With the definition of

the normal in the definition of the wave speeds, Assumption 2, we have:

SM =
u ·
∫
S ndx

|
∫
S ndx|

,

hence,

u ·
∫
S
ndx = SM

∣∣∣∣∫
S
ndx

∣∣∣∣ Ass. 3= SM

∫
S
dx.

If we now use Assumption 4 in the first equality, we obtain:∫
S

S̃L

SL − SM

(
SMU + pvp − F̂

)
dx =

=
S̃L

SL − SM

∫
S

(
SMU + pvp − F̂

)
dx

=
S̃L

SL − SM
(Uu ·

∫
S
ndx+

∫
S
pvpdx−F ·

∫
S
ndx)

=
S̃L

SL − SM
(


ρu ·

∫
S ndx

(ρuu+ p)
∫
S ndx

(ρE + p)u ·
∫
S ndx

−F ·
∫
S
ndx) = 0,
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hence, uniform flow is preserved. Combined with the exact evaluation of the geometrical coeffi-

cients this proves that the Taylor quadrature rule satisfies the Geometric Conservation Law.2

3.3.3 Boundary conditions

The Taylor quadrature rule described above is extended to boundary faces by consistently expand-

ing the boundary conditions in Taylor series. Since the flux for a boundary face is computed using

a right state based on the left state, the expansion only depends on the left state. To be more pre-

cise, for a specific boundary condition letf : R5 → R5 define the mapping describing the dummy

state as function of the left state:

UR = fw(UL) =: B(UL, Uw),

then

∂

∂ξl
F(UR) =

∂

∂ξl
F(fw(UL))

=
∂F
∂Uk

(UR)
∂fk

w

∂U j
Û j

L,l.

It is natural to approximate the integrals of the dissipative flux using the Taylor expansion off :∫
S
U i

Rφndx ≈U i
R(ξm)

∫
Ŝ
ξnJSdξ +

∑
l∈I(S)

∂f i
w

∂U j
Û j

L,l

∫
Ŝ
ξlξnJSdξ

The above two formulas show that the Taylor quadrature rule for boundary faces is equal to the

Taylor quadrature rule for internal faces if we define:

Û i
R,l =

∂f i
w

∂U j
Û j

L,l. (65)

It is straightforward to expand the boundary conditions into a Taylor series. For the slip wall

boundary condition for strongly curved surfaces it may be beneficial to incorporate the variation

of the face normal and grid velocity.

An unexpected benefit of using the Taylor quadrature rule at slip flow boundaries is that it results

in considerably smaller entropy and total pressure losses near the slip flow boundary. This will

be demonstrated in Section 4.3.2 and more details can be found in Van der Vegt and Van der Ven

(Ref. 46).
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3.3.4 Local truncation error

In this section we will analyze the accuracy of the Taylor and Gauss quadrature rules for the flux

integration. The Gauss quadrature rules are straightforward to implement but computationally ex-

pensive in comparison with the Taylor quadrature rules. The main result, Proposition 3.3.12, pro-

vides an estimate for the truncation error of the space-time discontinuous Galerkin discretization,

including the effect of the Taylor quadrature rules. The analysis shows that the Taylor quadrature

rules result in the same truncation error for the space-time DG discretization of the conserva-

tion laws, when linear test and trial functions in the reference element are used, as is obtained

with Gauss quadrature rules. Both quadrature rules result in a second order truncation error of

the discretization in the same properly chosen norm. Also, conditions on the flux tensorF , and

implicitly also onU , are given which guarantee the applicability of the Taylor and Gauss quadra-

ture rules. These conditions and the error estimates require a high degree of smoothness. The

required smoothness is, however, not available when discontinuities are present in the flow, but in

these areas the numerical discretization will have a reduced accuracy anyway, independent of the

quadrature rule. Definitions of the various Sobolev spaces and (semi)-norms used in this section

can be found in Appendix A.

3.3.5 Validity of the approximation

Sufficient conditions on the flux tensor such that the Taylor quadrature rules (59) and (60) are

applicable are given by the following lemma:

Lemma 3.3.3 LetGK : K̂ → K be aC1 diffeomorphism for allK ∈ T n
h . If F ∈

(
W s,q

B (T n
h )
)5×4

,

with s, q ∈ R, 1 ≤ q < ∞, s integer whenq = 1, and(s − 1)q > 4, then the Taylor quadrature

rules presented in (59) and (60) are well defined.

The proof of this lemma is immediate using a Taylor series expansion of the tracesF± and the flux

tensorF , if we can ensure that we can consider pointwise values ofF± at ∂K̂ andF in K̂, and

also for their derivatives. This requires that we can imbed the flux tensorF in C1( ¯̂K), the space of

continuously differentiable functions on̂̄K, the closure of̂K. SinceK̂ is a bounded domain with

the cone property (see Appendix A) and(s− 1)q > dim(K̂) = 4, with s ∈ R and1 ≤ q <∞, s

integer whenq = 1, the following imbedding exists:

W s,q(K̂) ↪→ C1( ¯̂K). (66)

For integer values ofs this is part of the Rellich-Kondrachov theorem, see Adams (Ref. 1) Theorem

6.2 part II, page 144. For fractional order spaces, withs not an integer and1 < q < ∞, this is

a direct consequence of Theorem 4.6.1/6 in Triebel (Ref. 42), pages 327–328, using the relation
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between fractional order Sobolev spaces and Besov spaces, see Triebel (Ref. 42), page 323 and

also Nikol’skii (Ref. 35). This means that pointwise values ofF and its derivatives exist and the

quadrature rules (59)-(60) are well defined, because the JacobianJGK
is finite whenGK is aC1

diffeomorphism.2

Remark 3.3.4 For the error estimates in Section 3.3.6 we must know to which Sobolev space the

tracesF± belong. The imbedding theorem (66) ensures thatF± ∈ C1(Ŝm), but we can also apply

the imbedding theorem directly tôSm. If we compare the imbedding conditions(s − 1)q > 4 for

F in the domainK̂ and the equivalent condition(s′ − 1)q > 3 for the imbedding ofF± in Ŝm,

then we see thatF± ∈ W s−1/q,q(Ŝm). This result can also be obtained from the trace theorem

whens− 1/q is not an integer, see Grisvard (Ref. 23). In the present analysis also integer values

s− 1/q are required and we need to use (66) to determine the Sobolev spaces forF±.

3.3.6 Analysis of element face quadrature errors

Combining (57) and (59) we can now define the quadrature error functionalE∂K for the integration

of the element face fluxes at∂K as:

E∂K(W−
h ,F

±) =
8∑

m=1

∫
Ŝm

Ŵ−
h,i(ξ)

(
F±

ik(ξ)−F±
ik(ξ̄m)−

∑
l∈I(Sm)

ξl
∂F±

ik(ξ̄m)
∂ξl

)
dŜm

k . (67)

An upper bound for the quadrature error of the flux integrals over∂K is provided by the following

lemma:

Lemma 3.3.5 Let the tessellationT n
h satisfy the condition0 < hT ≤ 1, with hT the diameter

of the smallest ball containing the elementsK ∈ T n
h . Suppose that for allK ∈ T n

h the mapping

GK is a C1 diffeomorphism with|JG−1
K
| ≤ C/h4

K. LetF ∈
(
W s,q

B (T n
h )
)5×4

, with s, q ∈ R,

1 ≤ q < ∞, s integer whenq = 1, (s − 1)q > 4, (s − 2)q ≥ 1, andWh ∈ V 1
h (T n

h ), then the

quadrature error|E∂K| can be estimated for allK ∈ T n
h as:

|E∂K(W−
h ,F

±)| ≤ Ch
2−1/p
T

∣∣F±∣∣
2,q,∂K‖Wh ‖1,p,K,

with 1
p + 1

q = 1, andC a positive constant independent ofhT , F± andWh, but dependent on the

grid velocity.

Remark 3.3.6 The bound on the inverse of the Jacobian ofG−1
K stated in Lemma 3.3.5 is trivial

for a square hexahedral space-time element and also valid for mappings close to the identity.

Geometric conditions to ensure this condition for general elements are discussed in van der Vegt

(Ref. 47).
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Using the triangle inequality in (67) we obtain the following estimate:

|E∂K(W−
h ,F

±)|

≤
8∑

m=1

∫
Ŝm

|Ŵ−
h,i(ξ)| |F

±
ik(ξ)−F±

ik(ξ̄m)−
∑

l∈I(Sm)

ξl
∂F±

ik(ξ̄m)
∂ξl

| |dŜm
k |

≤ Ch3
T ‖ Ŵ−

h ‖0,∞,Ŝ‖ F
± ‖1,∞,Ŝ ,

where we used in the second step the estimate|ξ| ≤
√

3 for ξ ∈ Ŝm, and∫
Ŝm

|dŜm| ≤ 1
2
∆t
(∫

Ŝm

|dSm|+
∫
Ŝm

|v · dSm|
)

≤ C∆th2
T ≤ Ch3

T , for m = 1, · · · , 6,

which can be obtained directly from the geometric integrals discussed in Appendix C. The esti-

mates for the integrals overS7 andS8 follow directly from Appendix C. The constantC depends

on the grid velocityv. We also used the fact thatF± ∈W 1,∞(Ŝ). This is a direct consequence of

the imbedding (66), which is applicable since(s− 1)q > 4 and the relationC1( ¯̂K) ↪→W 1,∞( ¯̂K).

This implies, as discussed in Remark 3.3.4, thatF± ∈ W s−1/q,q(Ŝ) ↪→ W 1,∞(Ŝ) and we obtain

the estimate:

|E∂K(W−
h ,F

±)| ≤ Ch3
T ‖ Ŵ−

h ‖0,∞,Ŝ‖ F
± ‖s−1/q,q,Ŝ .

We can further improve the estimate for|E∂K| using the generalized Bramble-Hilbert lemma, see

Bramble and Hilbert (Ref. 10).

First assume thats − 1/q = 2. Define the set of polynomialsQk, such that∂
k+1q

∂ξk+1
j

= 0 for

j = 1, · · · , 4. For any fixedWh(x) = Ŵh(FS(ξ)) ∈ (Wm,q(Ŝ))5, with m ≥ 0, integer, the

bounded linear functionalE∂K satisfies the relation:

E∂K(W−
h ,F

±) = 0, ∀F± ∈ (Q1(Ŝ))5×4.

The Bramble-Hilbert lemma (Ref. 10) then states that there is a positive constantC(Ŝ), such that

for all F± ∈ (W 2,q(Ŝ))5×4, we have the inequality:

|E∂K(W−
h ,F

±)| ≤ C(Ŝ) ‖ E∂K ‖∗2,q,Ŝ [F±]2,q,Ŝ , (68)

with:

‖ E∂K ‖∗2,q,Ŝ := sup
0 6=F±∈(W 2,q(Ŝ))5×4

|E∂K(W−
h ,F

±)|
‖ F± ‖2,q,Ŝ

.
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The semi-norms[F±]2,q,Ŝm
, 1 ≤ m ≤ 8, can be expressed as a semi-norm with respect toSm

using the following inequality (Ciarlet (Ref. 13), p. 246):

[F±]2,q,Ŝm
≤ C|JF−1

S
|1/q
0,∞,Sm

(
|[FS ]|2

1,∞,Ŝm
|F±|2,q,Sm + |[FS ]|2,∞,Ŝm

|F±|1,q,Sm

)
. (69)

The semi-norms|[FS ]|k,∞,Ŝm
, k ∈ {1, 2} can be directly estimated from the isoparametric map-

pingGK :

|[FS ]|1,∞,Ŝm
≤ ChT , (70)

|[FS ]|2,∞,Ŝm
= 0. (71)

Introducing (69)-(71) into (68) and using the assumption on the Jacobian ofG−1
K , restricted toS,

as stated in Lemma 3.3.5, we obtain an improved estimate for|E∂K|:

|E∂K(W−
h ,F

±)| ≤ Ch
5−3/q
T |F±|2,q,∂K ‖ Ŵ−

h ‖0,∞,Ŝ , (72)

where the positive constantC is independent ofhT ,F± andŴh, but depends on the grid velocity.

For (s − 2)q ≥ 1 we haveW s−1/q,q(Ŝ) ⊆ W 2,q(Ŝ), which implies that inequality (72) is also

valid for F± ∈ W s−1/q,q(Ŝ). This provides more flexibility to choose optimal values ofs andq

in the estimates for the truncation error discussed later, but does not improve the Bramble-Hilbert

estimate.

The test functionsWh are chosen from the finite dimensional spaceV 1
h (T n

h ), which implies that

Wh ∈ (W t,p
B (T n

h ))5 with t ≥ 1 and 1
p + 1

q = 1, becauseF ∈ (W s,q
B (T n

h ))5×4. Since all norms

are equivalent in a finite dimensional space we can use a homogeneity argument (see Brenner and

Scott (Ref. 11)) to obtain the following inequality:

‖ Ŵh ‖1,∞,K̂≤C|JG−1
K
|1/p
0,∞,K

(
‖Wh ‖0,p,K +|GK |1,∞,K̂|Wh|1,p,K

)
≤Ch−4/p

T ‖Wh ‖1,p,K, if 0 < hT ≤ 1. (73)

Together with the trace theorem, we can use (73) to obtain the following estimate for|E∂K|:

|E∂K(W−
h ,F

±)| ≤Ch5−3/q
T |F±|2,q,∂K ‖ Ŵ−

h ‖0,∞,Ŝ

≤Ch5−3/q
T |F±|2,q,∂K ‖ Ŵh ‖1,∞,K̂

≤Ch2−1/p
T |F±|2,q,∂K ‖Wh ‖1,p,K, (74)

with 0 < hT ≤ 1. In the last step we used the relation1
p + 1

q = 1. 2
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As discussed in Section 2.2.4.2 we can also use a product Gauss quadrature rule to approximate

(57). A two-point quadrature rule is applied for the three spatial computational coordinatesξ1, ξ2

andξ3, and a three-point quadrature rule for the temporal computational coordinateξ4. Define the

quadrature error functionalEG
∂K for the integration of the element face fluxes at∂K in the same

way asE∂K in (67) with the Taylor quadrature rule replaced with the product Gauss quadrature

rule. An upper bound for the quadrature error of the flux integrals over∂K using the product

Gauss quadrature rule is provided by the following lemma:

Lemma 3.3.7 Let the tessellationT n
h be as in Lemma 3.3.5. LetF ∈

(
W s,q

B (T n
h )
)5×4

, with

s, q ∈ R, 1 ≤ q < ∞, s integer whenq = 1, sq > 4, (s− 2)q ≥ 1, andWh ∈ V 1
h (T n

h ), then the

quadrature error|EG
∂K| can be estimated for allK ∈ T n

h as:

|EG
∂K(W−

h ,F
±)| ≤ Ch

2−1/p
T |F±|2,q,∂K ‖Wh ‖1,p,K,

with 1
p + 1

q = 1, andC a positive constant independent ofhT , F± andWh, but dependent on the

grid velocity.

Given the expressions of the geometric quantities in Appendix C, the product Gauss quadrature

rule with two points in the spatial directions and three in the temporal direction is exact ifŴh ∈
(Q1(Ŝ))5 andF± ∈ (Q1(Ŝ))5×4 and we can apply the Bramble-Hilbert lemma in the same way

as for Lemma 3.3.5. The remaining part of the proof is nearly identical to Lemma 3.3.5 and is not

repeated here.2

Remark 3.3.8 The product Gauss quadrature rule with two points in the spatial directions and

three in the temporal direction uses the minimum number of quadrature points in a product Gauss

quadrature rule necessary to satisfy the requirements of the Bramble-Hilbert lemma, which is used

in the proof of Lemma 3.3.7.

Remark 3.3.9 Since the Gauss quadrature rule does not use derivatives we can relax the condi-

tion (s − 1)q > 4 to sq > 4 to ensure the validity of the quadrature rule. For more details, see

Lemma 3.3.3.

3.3.7 Analysis of element volume quadrature error

The quadrature error functionalEK for the integration of the element volume fluxes can be defined

as:

EK(Wh,F) =
∫
K̂

∂Wh,i

∂xj

(
Fij(ξ)−Fij(0)− ξl

∂Fij(0)
∂ξl

)
|JGK

|dK̂ (75)
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using (58) and (60). The following lemma provides an upper bound for the error in the approxi-

mation of the volume flux integrals:

Lemma 3.3.10 Let the tessellationT n
h be as in Lemma 3.3.5. LetF ∈

(
W s,q

B (T n
h )
)5×4

, with

s, q ∈ R, 1 ≤ q <∞, (s− 1)q > 4, (s− 2)q ≥ 1, s integer whenq = 1, andWh ∈ V 1
h (T 1

h ), then

the quadrature error|EK| can be estimated for allK ∈ T n
h as:

|EK(Wh,F)| ≤ Ch
6−4/q
T |F|2,q,Kn

j
‖Wh ‖1,p,K, (76)

with 1
p + 1

q = 1, andC a constant independent ofhk, F andWh.

The quadrature errorEK(Wh,F) can be estimated as:

|EK(Wh,F)| ≤
∫
K̂

∣∣∂Wh,i

∂xj

∣∣ |Fij(ξ)−Fij(0)− ξl
∂Fij(0)
∂ξl

∣∣ |JGK
|dK̂

≤Ch4
T ‖ F ‖1,∞,K̂‖Wh ‖1,∞,K

≤Ch4
T ‖ F ‖s,q,K̂‖Wh ‖1,∞,K,

where we used the imbedding (66), which is valid since(s − 1)q > 4. In addition we used fact

that|ξ| ≤ 2 for ξ ∈ K̂ and the estimate
∫
K̂ |JGK

|dK̂ ≤ Ch4
T , which can be obtained directly from

the geometric integrals discussed in the appendix.

The estimate of the quadrature error functional can be improved with the generalized Bramble-

Hilbert lemma (Ref. 10). Due to the close resemblance with the analysis forE∂K only the main

steps will be discussed. For any fixed value ofWh ∈ (Wm,q(K))5 withm ≥ 1, the bounded linear

functionalEK satisfies the relation:

EK(Wh,F) = 0, ∀F ∈ (Q1(K̂))5×4,

hence there is a constantC(K̂), such that for allF ∈ (W 2,q(K̂))5×4, we have the inequality:

|EK(Wh,F)| ≤ C(K̂) ‖ EK ‖∗2,q,K̂ [F ]2,q,K̂

with:

‖ EK ‖∗2,q,K̂:= sup
0 6=F∈(W 2,q(K̂))5×4

|EK(Wh,F)|
‖ F ‖2,q,K̂

≤ Ch4
T ‖Wh ‖1,∞,K .

Using the following inequalities (69)-(71), which are also valid withŜm replaced withK̂ andSm

with K, we obtain the following estimate:

|EK(Wh,F)| ≤ Ch
6−4/q
T |F|2,q,Kn

j
‖Wh ‖1,∞,K . (77)
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The estimate (76) then results from the fact that theWh are chosen from the finite dimensional

spaceV 1
h (T n

h ) in which all norms are equivalent.2

We can also approximate (58) with a three point product Gauss quadrature rule and define the

quadrature error functionalEG
K for the integration of the element volume fluxes in the same way

asEK in (75) with the Taylor quadrature rule replaced with the product Gauss quadrature rule.

An upper bound for the quadrature error of the volume flux integrals using the three point product

Gauss quadrature rule is provided by the following lemma:

Lemma 3.3.11 Let the tessellationT n
h be as in Lemma 3.3.5. LetF ∈

(
W s,q

B (T n
h )
)5×4

, with

s, q ∈ R, 1 ≤ q < ∞, sq > 4, (s − 2)q ≥ 1, s integer whenq = 1, andWh ∈ V 1
h (T 1

h ), then the

quadrature error|EG
K | can be estimated for allK ∈ T n

h as:

|EG
K (Wh,F)| ≤ Ch

6−4/q
T |F|2,q,Kn

j
‖Wh ‖1,p,K, (78)

with 1
p + 1

q = 1, andC a constant independent ofhk, F andWh.

The three point product Gauss quadrature rule is exact ifŴh ∈ (Q1(Ŝ))5 andF ∈ (Q1(Ŝ))5×4

and we can apply the Bramble-Hilbert lemma in the same way as for Lemma 3.3.10. The remain-

ing part of the proof is nearly identical to Lemma 3.3.10 and is not repeated here.2

3.3.8 Truncation error of space-time discontinuous Galerkin discretization

The effect of the quadrature rule on the accuracy of the discontinous Galerkin discretization can

be investigated by analyzing the truncation error. If we integrate (54) by parts, and introduce

the numerical discretization operatorLh : Vh(T n
h ) → V 1

h (T n
h ), then we can write the weak

formulation for the DG discretization as:

Find anFh ∈ V 1
h (T n

h ), such that for allWh ∈ V 1
h (T n

h ):(
Lh(Fh),Wh

)
Eh

= 0,

with Eh = ∪NT
n=0 ∪

Nn
j=1 Kn

j and:

(U, V )Eh
=

NT∑
n=0

Nn∑
j=1

∫
Kn

j

U · V dK, ∀U, V ∈ Vh(T n
h ).

The operatorLh(Fh) therefore is an approximation todivF . We can state now the following

proposition, which provides information about the truncation error of the numerical discretization,

including the effect of the Taylor quadrature for the flux integrals.



- 63 -
NLR-TP-2003-342

Proposition 3.3.12 Let the tessellationT n
h be as in Lemma 3.3.5, withhT the diameter of the

smallest ball containing the elementsK ∈ T n
h , with hT ≤ 1. Let Wh ∈ V 1

h (T 1
h ) andF ∈

(W t,q
B (T n

h ))5×4 with s, t, q ∈ R, 1 < q <∞, (s− 1)q > 4, (s− 2)q ≥ 1, and0 ≤ s ≤ t, then the

truncation error of the approximation todivF in each space-time elementK ∈ T n
h is equal to:

|||Lh(F)− divF|||s,q,T n
h
≤C0h

t−s
T |||F(U)|||t+1,q,T n

h
+ C1h

6−4/q
T bF(U)c2,q,T n

h
+

C2h
2−1/p
T

(
|bF+(U)c|2,q,T n

h
+ |bF−(U)c|2,q,T n

h

)
, (79)

with 1
p + 1

q = 1, andCi, i = 0, · · · , 2, positive constants independent ofF andhT . The constant

C2 depends on the grid velocity.

We split the truncation error in each elementK ∈ T n
h into a contribution related to the interpolation

error and a contribution related to the discontinous Galerkin discretization:

‖ Lh(F)− divF ‖s,q,K≤ ‖ divF − PV 1
h (T n

h )(divF) ‖s,q,K +

‖ Lh(F)− PV 1
h (T n

h )(divF) ‖s,q,K (80)

= e1 + e2, (81)

with PV 1
h (T n

h ) the projection onto the spaceV 1
h (T n

h ). The contributionse1 ande2 are provided

by Lemmas 3.3.13 and 3.3.14. If we sum (81) over all elementsK ∈ T n
h and use the Minkovski

inequality then we obtain the estimate (79), with the norm and semi-norms inW s,q
B (T n

h ) defined

in Appendix A.2

Lemma 3.3.13 Let the tessellationT n
h be as in Lemma 3.3.5 and assume that eachK ∈ T n

h is

star shaped with respect to some ball. Supposes, t, q ∈ R with 1 ≤ q ≤ ∞ and either(t−1)q > 4

whenq > 1 or t ≥ 5 whenq = 1. Then for allF ∈ (W t,q(K))5×4 and0 ≤ s ≤ t we have:

‖ divF − PV 1
h (T n

h )(divF) ‖s,q,K≤ Cht−s
T ‖ F ‖t+1,q,K . (82)

For integer values ofs andt this lemma is a direct consequence of Theorem 4.4.4 in Brenner and

Scott (Ref. 11), because the condition|JG−1
K
| ≤ C/h4

T also ensures thatγK = hK/ρK > 0, with

ρK the radius of the smallest sphere completely contained inK. For non-integer values ofs and

t we use Banach space interpolation between the estimates for integer values ofs andt. If we
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define the operatorTv := v−PV 1
h (T n

h )v and use the Banach space interpolation theorem for linear

operators (Prop. 12.1.5 in (Ref. 11)) then we obtain withm = [t] andi = [s] the estimate:

‖ T ‖[W m,p(K),W m+1,p(K)]θ,p→[W i,p(K),W i+1,p(K)]θ,p
≤ Chm−i

T ,

with 0 < θ < 1. Using Theorem 12.2.3 in (Ref. 11), which states thatWm+θ,p(K) = [Wm,p(K),Wm+1,p(K)]θ,p

if the domainK has a Lipschitz continuous boundary, we obtain the estimate (82) withs = i+ θ,

t = m + θ andv = divF . The Lipschitz condition onK is satisfied becausêK is Lipschitz and

the mappingGK , used to defineK ∈ T n
h from K̂, is aC1 diffeomorphism.2

Lemma 3.3.14 Let the tessellationT n
h , flux tensorF , and test functionWh be as in Proposition

3.3.12, then for eachK ∈ T n
h we have the estimate:

‖ Lh(F)− PV 1
h (T n

h )(divF) ‖s,q,K≤C1h
6−4/q
T |F(U)|2,q,K+

C2h
2−1/p
T (|F+(U)|2,q,∂K + |F−(U)|2,q,∂K)

with 1
p + 1

q = 1.

DefineE(Wh) = E∂K(Wh) +EK(Wh) as the error functional, withE∂K andEK defined in (67)

and (75), respectively. To eachWh ∈ (Wm,q(K))5, withm integer,K ∈ T n
h , we can associate the

vectorP Wh := (DαWh) ∈ (Lq
N (K))5, (see Appendix A), by ordering theN multi-indicesα,

satisfying|α| ≤ m, in a convenient way. Let1 ≤ p < ∞. The representation theorem for linear

functions in the dual space of the Sobolev spaceWm,p(K) (Adams (Ref. 1), Theorem 3.8), states

that there exists an elementv ∈ (Lq
N (K))5, with 1

p + 1
q = 1, such that writing the vectorv in the

form (vα)50≤|α|≤m we have for allWh ∈ (Wm,p(K))5 the following representation for the error

functionalE(Wh):

E(Wh) =
∑

0≤|α|≤m

∫
K
DαWh vα dK̂. (83)

Moreover,

inf
v∈B

‖ v ‖(Lq
N (K))5=‖ E ‖∗m,p,K, (84)

with B the set of allv ∈ (Lq
N (K))5 for which (83) holds for everyWh ∈ (Wm,p(K))5. For

1 < p < ∞ the elementv ∈ (Lq
N (K))5 satisfying(83) and(84) is unique. If we integrateE by

parts then we obtain the representation:

E(Wh) =
∫
K
Wh ·

(
Lh(F)− divF)

)
dK

=
∫
K
Wh ·

(
Lh(F)− PV 1

h (T n
h )(divF)

)
dK.
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Sincev ∈ (Lq
N (K))5 is unique for1 < p <∞, we must have the relation:

v = Lh(F)− PV 1
h (T n

h )(divF). (85)

Hence, the minimum is attained whenv satisfies (85), and using (84) we have the relation:

‖ Lh(F)− PV 1
h (T n

h )(divF) ‖(Lq
N (K))5=‖ E ‖∗m,p,K . (86)

The space(Wm,q(K))5 is a closed subspaceW of (Lq
N )5 and there exists an isometric isomor-

phism from(Wm,q(K))5 ontoW ⊂ (Lq
N (K))5 (see Adams (Ref. 1), page 46). SinceLh(F) −

divF ∈ (Wm,q(K))5, becauseF ∈ (W t,q
B (T n

h ))5×4, we can therefore transform (86) into:

‖ Lh(F)− PV 1
h (T n

h )(divF) ‖m,q,K=‖ E ‖∗m,p,K .

Using Banach space interpolation we can extend this relation also to noninteger values ofm. For

more details, see Lions (Ref. 30) and Adams (Ref. 1).

The proof is completed using the estimates provided by Lemmas 3.3.5 and 3.3.10 and the inequal-

ity ‖Wh ‖1,p,K≤‖Wh ‖s,p,K for s ≥ 1:

‖ Lh(F)−PV 1
h (T n

h )(divF) ‖s,q,K

≤ sup
0 6=Wh∈

(
W s,p(K)

)5 |EK(∇Wh,F)|
‖Wh ‖s,p,K

+ sup
0 6=Wh∈

(
W s,p(K)

)5 1
2

|E∂K(W−
h ,F

+)|
‖Wh ‖s,p,K

+

sup
0 6=Wh∈

(
W s,p(K)

)5 1
2

|E∂K(W−
h ,F

−)|
‖Wh ‖s,p,K

≤C1h
6−4/q
T |F(U)|2,q,K + C2h

2−1/p
T

(
|F+(U)|2,q,∂K + |F−(U)|2,q,∂K

)
(87)

with 1
p + 1

q = 1. 2

Remark 3.3.15 For q = 1/(1 − ε), s > 5 and t ≥ 7 in Proposition 3.3.12, withε ∈ R+

an arbitrary positive number, the trunction error of the discontinuous Galerkin discretization,

including the effect of the approximation of the element surface and volume integrals, isO(h2−ε
T )

in theW s,q
B (T n

h ) norm. This shows that the Taylor quadrature rule does not negatively influence

the second order accuracy of the numerical discretization, since we can chooseε arbitrary small.

Corrolary 3.3.16 Let the conditions of Proposition 3.3.12 be satisfied, with(s−1)q > 4 replaced

bysq > 4, then the product Gauss quadrature rules defined above Lemma 3.3.7 and Lemma 3.3.11

result in the same truncation error as obtained for the Taylor quadrature rule in Proposition

3.3.12.
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The proof is immediate if one uses the estimates provided by Lemmas 3.3.7 and 3.3.11 in (87).2

Remark 3.3.17 The reader is referred to Section 4.2 for an experimental verification of the error.

For a steady subsonic entropy preserving flow a globalL2-error of the orderh2.5
T was found from

numerical experiments, using data at superconvergence points, even on locally refined meshes.
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4 Application of Space-Time Discontinuous Galerkin Methods to Aerodynamics

The space-time discontinuous Galerkin finite element method has been tested on a number of

problems with increasing complexity. First we discuss results of simulations aimed at verifying

and validating the algorithm and subsequently we present two and three-dimensional simulations,

including a deforming wing, which demonstrate the applicability of the space-time DG method to

unsteady aerodynamics.

4.1 Sod’s shock tube problem

Sod’s problem is one of the classical shock tube problems, see Toro (Ref. 41). Its solution con-

sists of a left moving rarefaction wave and a right moving contact discontinuity and shock. Two

simulations have been performed, one with and one without mesh adaptation. Both simulations

start on a uniform mesh with 100 cells in space. The time step is chosen such that the physical

CFL numberCFL4t is less than or equal to 0.9. For the simulation with mesh adaptation, in the

first time step two refinements have been carried out, resulting in 21 extra cells. The minimum

mesh width is now one quarter of the mesh width of the original mesh. The mesh adaptation on

the initial solution is crucial because the error generated in the first time step cannot be recovered

with adaptation during the simulation and a result similar to the uniform mesh solution would be

obtained. In the subsequent time steps as many cells were added as removed, so the total number

of cells remained constant in time. The maximum number of refinement levels has been restricted

to one, which implies that no new cells with mesh widths less than half the mesh width of the orig-

inal mesh are created. The adapted space-time mesh is shown in Figure 8. The space-time mesh

clearly shows the structure of the solution and the adaptation based on coarsening and refinement

of elements follows the discontinuities without smearing. The flow solutions on the uniform and

adapted mesh att = 0.2531 are shown in Figure 9. Clearly, the solution on the adapted mesh

compares better with the exact solution. The flow solutions for Sod’s problem have been obtained

with dissipation model II, which results in nearly monotone solutions around the discontinuities.

For all other subsonic and transonic problems the simpler dissipation model I is sufficient.

4.2 Accuracy study of the discontinuous Galerkin discretization

The local element-wise discretization obtained with discontinuous Galerkin methods combines

well with local mesh refinement and the discretization does not strongly depend on the mesh

smoothness. It must, however, be verified if the DG method maintains its accuracy on non-smooth

meshes resulting fromh-refinement. In order to verify this an accuracy study has been conducted

using different meshes and comparing the numerical solution with the exact solution. For this

purpose the subsonic two-dimensional flow through a channel with asin3 bump is simulated on a
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Fig. 8 Space-time mesh for the adaptive solution of Sod’s shock tube problem.
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Table 1 Number of mesh points in uniformly and adaptively refined meshes

coarse grid medium grid fine grid

original 800 3200 12800

one adaptation 1120 4480 17920

two adaptations 1568 6272 25088

sequence of meshes with 800, 3200, and 12800 elements. The coarsest mesh is shown in Figure

10.

At the inflow boundary total pressure, total temperature, and the velocity direction (normal to the

inflow plane) are prescribed. At the outflow boundary the freestream pressure is prescribed. Since

the entropyp/ργ should be conserved in subsonic isentropic flow, theL2-norm of the difference

between the computed entropy and the freestream value is taken as a measure for the discretization

error. In Figure 11 theL2-norm of the error is plotted for uniformly refined meshes. TheL2-

error is proportional withh5/2, which is better than the theoretical results presented by Cockburn

(Ref. 18) for the linear advection equation. This can be attributed to the fact that we use the data

in the element center att−n+1, which can be shown with a simple wave analysis for the linear

advection equation to beO(h) more accurate than the data at the element faces.

Each of the three meshes is also locally refined in two steps in order to test the accuracy of the

method on non-smooth meshes with hanging nodes. At each adaptation step, the mesh size is

increased with 40%. Since the mesh adaptation parameters are the same for all three grids, the

fine to coarse meshes have the following property: for an arbitrary region of the mesh the average

mesh width is halved with respect to the average mesh width in the next coarser mesh for the same

region. Hence the series is suited for a grid convergence study to obtain the discretization error of

the DG scheme on hanging nodes. A survey of the number of mesh points is given in Table 4.2.

In the adaptation the correct geometry of the bump is preserved. A view of the one time adapted

mesh, which initially has 800 mesh points, is shown in Figure 10. TheL2-norm of the error on

the adapted meshes is shown in Figure 11, which clearly demonstrates that theL2-error on locally

refined meshes in the discontinous Galerkin discretization has the same mesh dependenceh5/2 as

on the uniformly refined meshes, despite the fact that the adapted mesh contains hanging nodes

and is non-smooth.

4.3 Comparison of Taylor and Gauss quadrature

4.3.1 Aerodynamic forces

A first comparison of the two point product Gauss quadrature rule and the Taylor quadrature rule

is presented in Figure 12. Transonic flow over a NACA0012 airfoil has been simulated with a
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Fig. 9 Results of Sod’s shock tube problem at t = 0.2531 on a uniform (top) and adapted mesh

(bottom). Computed results plotted as circles, exact solution plotted as lines.
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freestream Mach number of 0.8, and an angle of attack of 2 degrees. Both the Taylor and product

Gauss quadrature rules have been used. Clearly, the results in Figure 12 show hardly any difference

in the pressure distribution over the airfoil. The lift coefficient are computed to be 0.5387 for the

Taylor quadrature rule, and 0.5348 for the Gauss quadrature rule. The small increase in lift is most

probably caused by the fact that the Taylor quadrature rule is slightly less dissipative.

4.3.2 Slip flow boundary

In an interesting article, Bassi and Rebay (Ref. 4) found that the second order DG method using

first order polynomials for both the flow representation and the geometry elements produced a

severe numerical boundary layer for the inviscid subsonic flow past a cylinder. Bassi et al. apply

the standard steady-state RKDG algorithm of Cockburn et al. (Ref. 16), but without the use of a

limiter, since the flow is subsonic. In their simulations they used an exact Riemann solver, the

equations were discretized on a triangular mesh, and a Gauss quadrature rule was used to evaluate

the flux integrals.

The numerical experiment of Bassi and Rebay has been repeated. Subsonic flow past a cylinder has

been simulated at a Mach numberM∞ = 0.38, on a fine64×96 mesh and a coarse32×48 mesh,

both with rectangular elements, which are described using the bilinear isoparametric map. On the

Gridcells for Small Grid without Adaptation

Gridcells for Small Grid with One Adaptation

Fig. 10 Original and one time adapted mesh for converging-diverging channel.
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Fig. 11 L2-Error in flow calculations for converging-diverging channel on uniform and adapted

meshes.
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coarse mesh also a quadratic superparametric representation of the boundary has been used. Both

the Gauss and Taylor quadrature rule have been applied. No artifical dissipation has been added,

and all simulations have been converged to machine accuracy. The numerical boundary layers

are presented in Figure 13; the numerical boundary layer is represented by the total pressure loss,

defined as:

pt−loss = 1− p

p∞

(
1 + 1

2(γ − 1)M2

1 + 1
2(γ − 1)M2

∞

) γ
γ−1

,

whereM is the local Mach number, andγ is the ratio of specific heats. Clearly, the Taylor quadra-

ture rule results in a significant reduction of the numerical boundary layer. This difference can

be attributed to the fact that in the Gauss quadrature rule the normal flux is computed at different

locations in the element face. At each quadrature point we consider a one-dimensional Riemann

problem and neglect the tangential variation of the solution in the element face. The tangential

vectors at the quadrature points are slightly different and this results in different shear wave con-

tributions from the quadrature points, which manifest themselves in spurious entropy generation

near the wall. The Taylor quadrature rule considers the Riemann problem only at one point and

therefore results in a more consistent discretization when combined with one-dimensional (ap-

proximate) Riemann solvers.

Bassi and Rebay reported that it was mandatory to use higher order boundary representation in

order to get correct results. In particular, their numerical boundary was foundnot to dissappear

under grid refinement. This may have been caused by the fact that their computation failed to

converge on the finer meshes. Though they do not present a total pressure loss distribution for

linear boundary elements, the strength of the numerical wake shown in the Mach field plots, would

imply a total pressure loss far exceeding 10%, which is more than experienced in our simulations.

As shown in Figure 13, a superparametric boundary representation does improve the flow results,

but since the numerical boundary layer on the coarse mesh is not all that bad, the improvement is

not as dramatic as with Bassi and Rebay.

Actually, the accuracy improvement under grid refinement, uniform or local, is greater than when

using superparametric elements. This is already clear from Figure 13 where the fine grid results are

more accurate than the coarse superparametric results. The grid refinement efficiency is demon-

strated more strongly in Figure 14, where the previous results are compared with results obtained

under local grid refinement. The coarse mesh has been refined three times and the Mach number

distributions are shown. The adapted meshes are obtained through local grid refinement near the

cylinder, and at each adaptation the number of boundary cells in the circumferential direction is

doubled. Accuracy on the one time refined mesh is comparable to the fine mesh computation, and
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on a coarse (32× 48 elements) and fine mesh (64× 96 elements) and superparametric
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Fig. 14 Comparison of the Mach number field of a circular cylinder at M∞ = 0.38 using Gauss

(upper left) and Taylor quadrature with (locally refined) linear isoparametric elements

(coarse mesh with 1536 cells (upper right), fine mesh with 6144 cells (lower left), and

three times adapted coarse mesh with 8358 elements (lower right)).
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Table 2 Performance comparison of the different methods.

method computing time [s] speed [Gflop/s]

Osher scheme with Gauss quadrature 1628 2.2

HLLC scheme with Gauss quadrature 754 2.9

HLLC scheme with Taylor quadrature 274 3.4

the numerical boundary layer all but disappears on the three times refined mesh (maximum total

pressure loss of 0.2 percent). Hence it is not necessary to use a higher-order accurate boundary

representation in order to obtain accurate simulation results. More details can be found in Van der

Vegt et al. (Ref. 46).

4.3.3 Computational efficiency

Steady, subsonic flow over an ONERA M6 wing is simulated with a freestream Mach number of

0.4 and an angle of attack of six degrees. Even though the flow is stationary, it has been simulated

with the space-time discretization. This example is chosen to measure the computational efficiency

of the Taylor quadrature rule. Not only the quadrature rules are compared but also the numerical

flux. The original version of the flow solver applied the Osher approximate Riemann solver. As

explained above, for the development of the Taylor quadrature rule it proved necessary to change to

the HLLC approximate Riemann solver. In Table 2 computing times and speeds for the complete

execution of the flow solver are compared for three of the four combinations of quadrature rule and

Riemann solver. Computing times are on a single processor NEC SX-5, for 100 multigrid cycles

with one pre- and postrelaxation on a coarse mesh with 55,000 grid cells. In the transition from the

Gauss quadrature rule combined with the Osher scheme to the Taylor quadrature rule combined

with the HLLC scheme a speedup of six has been obtained. This is partly due to the reduced

number of computations, and partly due to the data locality, which allows higher computational

speeds.

4.3.4 Computational complexity of DG methods

As mentioned in the introduction, the prime motivation to develop the Taylor quadrature was to

decrease the computational complexity of the DG method. In Section 4.3.3 the computational

complexity of the Taylor quadrature rule has been compared with the complexity of the Gauss

quadrature rule. So far, few authors have dared to compare DG methods with conventional CFD

methods. In the following we will compare the DG methods with the finite volume method of

Jameson, which is a very efficient algorithm for transsonic aerodynamics.

For both schemes the computationally most intensive part is the flux calculation. In Table 3 flop

counts and memory I/O are presented for both methods. The analysis of the DG method is based
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Table 3 Comparison of computational complexity of the space-time DG method and a Jameson

finite volume scheme. The flop count is the number of floating point operations required to com-

pute the flux through one element face. The memory access is the number of reads and writes,

measured in words, required for this computation. The ratio of the flop count and memory access

is also presented.

discretisation scheme flop count memory access [w] ratio

finite volume 48 33 1.5

DG 885 178 5

on the Taylor quadrature rule, including the dissipative part of the HLLC flux. The analysis of the

finite volume method neglects the artificial dissipative fluxes, and only the central differences are

counted. Note that the finite volume method has five unknowns per cell, whereas the space-time

DG method has 25 unknowns per cell.

Per cell the required flop counts is three times the tabulated flop counts (half of the six faces, since

the above counts include residual updates of both cells connecting to the face). Hence a finite

volume solver requires 144 flop per 5 unknowns, that is, 30 flop per unknown. The DG methods

requires 2655 flops per 25 unknowns, that is, 105 flop per unknown. To balance the increase of

flop with an increase in speed, a DG solver should run at four times the speed of a finite volume

solver. For the DG discretisation the computation to communication ratio is more than three times

larger than for the finite volume scheme. This implies that DG solvers will be less sensitive to

unbalanced processor speed and bandwidth, and are expected to run at higher speeds than finite

volume solvers. The average speed of the current DG solver on the NLR NEC SX-5 is 3 Gflop/s

per processor, which is 37.5% of the peak speed. A typical run of a finite volume solver on the

same machine runs at 1 Gflop/s per processor. For steady state simulations the convergence rate

of both flow solvers are comparable. Based on the comparitive speeds we can conclude that the

increased number of flop counts of the DG method is balanced by its increased speed on current

computer architectures.

The high computation to communication ratio of the DG method is also beneficial for cache-based

scalar machines. Without any modification of the code, which has been optimised for vector

architectures, the code has run at 20% of the peak speed on the Origin O3000 series. This again

demonstrates that while the DG method may have a large computational complexity in terms of

floating point operations, the throughput time per unknown is comparable to standard finite volume

schemes.
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Fig. 15 Pressure coefficient Cp at 65% and 90% span for the ONERA M6 wing. Experimental

results are shown with dots.
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Fig. 16 Pressure distribution on wing and symmetry plane for the ONERA M6 wing.
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Fig. 17 Pressure coefficient Cp at 65% (top) and 90% span (bottom) for the ONERA M6 wing.

(· · · original grid, — - — one adaptation, — — two adaptations, —— three adaptations,

� � � experiment).
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Fig. 18 Adapted mesh on ONERA M6 wing.
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4.4 Steady transonic flow

In order to demonstrate the shock-capturing capabilities of the present DG method, transonic flow

around the ONERA M6 wing has been computed. The ONERA M6 wing has a trapezoidal plan-

form with 30◦ leading edge sweep and a taper ratio of 0.56. The wing sections are based on the

symmetrical ONERA-D profile with 5% thickness/chord ratio. The wing tip is rounded by rotat-

ing the tip section around its symmetry axis. The free stream Mach number is 0.84 and the angle

of attack is3.06◦. Calculations are performed on two meshes, a mesh of 440,000 cells (Mesh 1)

and an adaptively refined mesh with a different mesh topology (Mesh 2). In Figure 15 the pres-

sure distribution at the cross sections at 65% span and at 90% span in Mesh 1 are compared with

experiments. The pressure coefficient is defined asCp = (p − p∞)/1
2ρV

2
∞, with p∞ andV∞ the

freestream pressure and velocity, respectively. The pressure distribution on the wing and at the

symmetry plane is shown in Fig. 16 and shows that the two shocks merge at 87% span and sepa-

rate at approximately 94% span. Considering the fact that in the simulations the flow is considered

to be inviscid, the agreement is good.

The same computations are also performed on the adapted locally refined Mesh 2. The grid adap-

tation was started by first calculating a steady solution on the initial grid, which consists of 131072

elements. The grid is subsequently adapted three times, independently in all three directions and

the final grid consists of 339226 elements. This adaptation process is completely controlled by

the adaptation sensor. The only user interaction is the specification of the increase in number of

elements during each adaptation step, which is done before the simulation started.

The pressure coefficients at 65% span and at 90% span are shown for the various adapted meshes

in Figure 17. The adaptation process clearly improves the sharpness of the captured shocks. Fig.

18 shows the final adapted grid which clearly shows the lambda shock structure. The mesh adapts

to regions with large flow activity and significantly improves resolution in the shock regions and

around the tip. For efficient adaptation it proved to very important to be able to both add and delete

elements, because initially the grid is primarily refined in the stagnation and rear shock regions

which tend to become overresolved in the initial adaptation stages. The position of the shocks also

significantly changes during the adaptation process when the flow field becomes better resolved.

The shock sensor is, however, qualitative and further improvements in sensor functions based on

some estimate of the numerical error will contribute to improved efficiency in the grid adaptation

process.

4.5 Oscillating NACA 0012 airfoil in transonic flow

The performance of the space-time discretization and mesh adaptation algorithm on unsteady tran-

sonic flows has been investigated with the simulation of the flow field about an oscillating NACA
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Fig. 19 Lift and drag coefficient on oscillating NACA 0012 airfoil (M∞ = 0.8, ω = π/10).



- 85 -
NLR-TP-2003-342

0012 airfoil. The freestream Mach number is 0.8, the pitching angle ranges between−0.5 and4.5

degrees and the oscillation period isT = 20 (normalized withL/a∞, whereL is the chord length

anda∞ is the freestream speed of sound), which results in a circular frequencyω = π/10. The

flow field is computed both on a fine mesh with 32,768 elements and an adapted mesh, which has

approximately 9,400 elements during the simulation. During each time step the coarse mesh is

adapted, with first coarsening followed by refinement. Both simulations used a time step of 1.0 for

the interval[3.0, 13.0] of a period, and a time step of 0.5 in the remaining part of the period. The

smaller time steps during this part of the oscillation period are necessary since the shock at the

lower side of the airfoil has a greater velocity than the shock at the upper side. If the shock moves

through several cells during a time step this will result in numerical oscillations, since no artificial

dissipation or limiting is applied in the time direction. In Figure 19 the hysteresis curves of the lift

and drag force coefficientsCL andCD are shown. The results on the fine and adapted mesh are

nearly identical, where the difference in the lift coefficient can be attributed to the improved accu-

racy in the shock due to the mesh adaptation. This can be inferred from the pressure coefficients

Cp at the wing shown in Figures 20 to 22. The pressure coefficients for the fine and adapted mesh

are nearly identical, except in the shock, where the adapted mesh captures the discontinuity better.

The physical interpretation of the flow phenomena shown in Figure 22 at timet = 42.5 which ap-

pear at the lower side of the airfoil when the shock dissappears, is not clear. Even though smaller

time steps are used in the corresponding time interval, it may be numerical oscillations caused by

insufficient time resolution to capture the motion of the shock. This would be consistent with the

fact that the adapted mesh and fine mesh flow results predict the same phenomena, since equal

time steps are used.

The Figures 20 to 22 also show that the mesh adaptation does not negatively influence the time

accuracy and is very efficient in capturing the flow discontinuities, also for the weak shock at the

lower side of the wing which periodically disappears.

4.6 First torsion mode of the AGARD 445.6 wing

Transonic flow at a freestream Mach number of 0.96 is simulated over the deforming AGARD

445.6 wing. The geometry deformation corresponds to the first torsion mode of the wing. The

grid point displacements are only in thez-direction, and the average displacement is zero. Views

of the normally flat wing at the two extreme positions are shown in Figure 23. Maximum dis-

placement occurs at the tip and is of the order of 10% root chord. The normalized frequency of the

torsion mode is 0.192, normalized withL/a∞, whereL is the root chord anda∞ is the freestream

speed of sound. The wing deformations are accomodated by the grid using a standard grid defor-

mation algorithm to move the grid points. The deformation algorithm essentially solves a Laplace



- 86 -
NLR-TP-2003-342

equation for the grid point displacements (see Masud and Hughes (Ref. 33)). The grid contains

73,728 grid points. The time period is subdivided into 20 uniform time steps, which are chosen

such that the movement of the shock is captured accurately. Per time step theL2-residual for the

cell averages is reduced to the level of10−5, which required 150 multigrid cycles on average. Part

of the convergence histories are shown in Figure 24. Including postprocessing, the simulation of

a period required 15,000 seconds on a single processor NEC SX-5 at a speed of 3.5 Gflop/s. The

Mach number distribution on the upper side of the wing and in the symmetry plane att = 7
20 ,

whereT is the period of the torsion mode, is shown in Figure 25. The pressure coefficientCp

at 88% span is shown in Figure 26. Also shown is the shape of the cross section geometry.The

pressure coefficient shows strong variations during the oscillation cycle and a rapidly moving and

oscillating shock is captured without numerical oscillations. The results clearly demonstrate the

matureness of the discontinuous Galerkin method. Efficient simulation of the three-dimensional

unsteady flow over a deforming wing is possible using the space-time discontinuous Galerkin

finite element method described in these notes.
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Fig. 20 Adapted mesh around oscillating NACA 0012 airfoil, contours of density, and pressure

coefficient Cp on the airfoil surface for α = 0.5◦ (pitching downward) and α = −0.5◦

(M∞ = 0.8, ω = π/10).
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Fig. 23 Wing deformation at the two extreme positions. The vertical coordinate is multiplied with

a factor 5, to make the deformation visible. The flow comes from the right.
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Fig. 25 Mach number contours on wing and symmetry plane at time t = 7
20T , where T is the

period of the torsion mode.
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Fig. 26 Cp-distributions at a cross section at 88% span
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5 Concluding Remarks

In these notes we have presented a new space-time discontinuous Galerkin finite element method

for the time-accurate solution of inviscid compressible flows on dynamic, hexahedron type meshes.

The accuracy is improved using local mesh refinement and we have presented an efficient pseudo-

time integration technique with multigrid convergence acceleration to solve the non-linear equa-

tions for the expansion coefficients in the DG discretization.

In order to improve the computational efficiency of the space-time disconitnuous Galerkin method

a new quadrature rule for the face flux and volume integrals arising in the discontinuous Galerkin

discretization of the Euler equations is presented and analyzed. The new quadrature rule expands

the flux in a Taylor series and uses the gradient expansion coefficients, which are readily available

in the DG method, to compute the flux integrals. This makes the Taylor quadrature rule very

natural and highly efficient within the DG framework. A speedup of three has been obtained

when comparing the computing times for the Taylor quadrature rule with the computing times

for the standard Gauss quadrature rule. Moreover, this gain in efficiency comes without any loss

in accuracy. Both numerical experiments and theoretical analysis showed that the new Taylor

quadrature rule yields a second order accurate local truncation error for linear basis functions, just

as the conventional Gauss quadrature rule does.

The space-time DG method has been demonstrated to combine well with local mesh refinement

in various simulations and maintains accuracy on non-smooth meshes. This makes the space-time

DG method an interesting technique for complex aerodynamic and aeroelastic problems. The

space-time discontinuous Galerkin discretization of the Euler equations combined with the Taylor

quadrature rule has successfully been applied to the simulation of unsteady transonic flow over a

deforming wing and oscillating airfoils. Application of the method to helicopter rotor flows are

presented elsewhere (Boelens et al. (Ref. 8) and Ven der Ven et al. (Ref. 50), the latter demonstrat-

ing four-dimensional grid adaptation in both space and time). These applications demonstrate the

matureness of the discontinuous Galerkin method.
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Appendices

A Sobolev spaces

• A domainΩ has the cone property if there exists a finite coneC such that each pointx ∈ Ω

is the vertex of a finite coneCx contained inΩ, which is obtained by rigid motion fromC

and is congruent toC, Adams (Ref. 1).

• Define the standard Sobolev spaceWm,p(Ω), with m ∈ Z, m ≥ 0, 1 ≤ p ≤ ∞, and

Ω ⊆ Rn, as:

Wm,p(Ω) :=
{
v ∈ L1

loc(Ω)
∣∣ ‖ v ‖m,p,Ω<∞

}
.

HereL1
loc(Ω) denotes the space of locally integrable functions:

L1
loc(Ω) :=

{
v | v ∈ L1(K), ∀ compactK ⊂ interior Ω

}
,

andL1(K) the space of Lebesgue integrable functions onK. The Sobolev norm‖ v ‖m,p,Ω

is defined as:

‖ v ‖m,p,Ω :=
( ∑
|α|≤m

∫
Ω
|Dαv|pdx

)1/p
, if 1 ≤ p <∞,

‖ v ‖m,p,Ω := max
|α|≤m

(
ess sup

x∈Ω
|Dαv(x)|

)
, if p = ∞,

and the semi-norms|v|m,p,Ω and[v]m,p,Ω are for1 ≤ p <∞ defined as:

|v|m,p,Ω :=
( ∑
|α|=m

∫
Ω
|Dαv|pdx

)1/p
,

[v]m,p,Ω :=
( n∑

k=0

∫
Ω

∣∣∣∂mv

∂xm
k

∣∣∣pdx)1/p
,

with α the multi-index symbol, and the usual modification forp = ∞. The derivatives in

the (semi)-norms have to be considered as weak derivatives.

• For a bounded or unbounded open domainΩ ⊆ Rn with the cone property the Sobolev

spaceW s,p(Ω), with s ∈ R, s ≥ 0, 1 ≤ p ≤ ∞, is defined as:W s,p(Ω) = Wm,p(Ω) when

s = m is a non-negative integer, and for nonintegers as the subspace ofWm,p(Ω) with a

finite Sobolev-Sloboděckij norm:

‖ v ‖s,p,Ω:=
(
‖ v ‖p

m,p,Ω +
∑
|α|=m

∫
Ω

∫
Ω

|Dαv(x)−Dαv(y)|p

|x− y|m+σp
dx dy

)1/p
, 1 ≤ p <∞

‖ v ‖s,p,Ω:=max
(
‖ v ‖m,∞,Ω, max

|α|=m
ess sup

x,y∈Ω,x 6=y

|Dαv(x)−Dαv(y)|
|x− y|σ

)
, p = ∞,
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with m the integer part ofs, andσ = s − m, with 0 < σ < 1. Note, with this defini-

tion fractional order Sobolev spaces coincide fors noninteger and1 < p < ∞ with the

Besov spaces defined in Triebel (Ref. 42), pages 310 and 323 (see also (Ref. 35)), for which

extensive imbedding theorems exist.

• Define the broken Sobolev spaceW s,p
B (T n

h ), with s ∈ R, s ≥ 0 and1 ≤ p ≤ ∞, as:

W s,p
B (T n

h ) :=
{
v ∈ Lp(T n

h )
∣∣∣ v|K ∈W s,p(Kn

j ), ∀Kn
j ∈ T n

h

}
, (88)

with the norm and semi-norms defined as:

|||v|||s,p,T n
h

=
( ∑
K∈T n

h

‖ v ‖p
s,p,K

)1/p

bvcs,p,T n
h

=
( ∑
K∈T n

h

|v|ps,p,K
)1/p

|bvc|s,p,T n
h

=
( ∑
K∈T n

h

|v|ps,p,∂K
)1/p

.

• The norms and semi-norms on product spaces are extended naturally. For instance ifv ∈
Rn, v = (v1, · · · , vn) then:

‖ v ‖m,p,Ω=
( n∑

i=1

‖ vi ‖p
m,p,Ω

)1/p
, if 1 ≤ p <∞, (89)

‖ v ‖m,∞,Ω= max
1≤i≤n

‖ vi ‖m,∞,Ω, (90)

|[v]|m,∞,Ω = max
1≤i≤n

sup
x∈Ω

∣∣∣∣∣∣∂mv(x)
∂xm

i

∣∣∣∣∣∣, (91)

with ‖ · ‖ the Euclidian norm.

• The product spaceLp
N is defined for1 ≤ p <∞ as:

Lp
N (Ω) = ΠN

j=1L
p(Ω),

with the associated norm given by (89).
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B Some facts from differential geometry

Given a parameterizationF : (−1, 1)n−1 → S, whereS is curved hypersurface inRn, integration

over the surfaceS is defined as:∫
S
f(x)dx =

∫
(−1,1)n−1

f(F (ξ))
∣∣∣∣∂F∂ξ1 ∧ · · · ∧ ∂F

∂ξn−1

∣∣∣∣ dξ,
where the outer productv = w1∧· · ·∧wn−1, forn−1 vectorswi in Rn, is defined component-wise

by the rule

vj = det(w1, . . . , wn−1, ej),

with ej thej-th basis vector inRn. From this formula it is clear that this concept is a generalization

of the outer product inR3.

Let Sm (1 ≤ m ≤ 6) be one of the six space-time faces of the elementK which is parameterized

by the mapGK . Let FSm be the parameterization ofSm obtained from the restriction ofGK to

the appropriate face of the boundary ofK̂ = (−1, 1)4. As computed in Section 2.2.2.2 we have:

∂FSm

∂ξm2

∧ ∂FSm

∂ξm3

∧ ∂FSm

∂ξ4
=

 1
2∆t∂FSm(t)

∂ξm2
∧ ∂FSm(t)

∂ξm3

−1
2∆x ·

(
∂FSm(t)

∂ξm2
∧ ∂FSm(t)

∂ξm3

)  , (92)

where the outer product on the right hand side is the usual outer product inR3 and ∆x =

Fn+1
K (ξ)−Fn

K(ξ). The parameterizationFSm(t) of the space faceSm(t) at timet is obtained by a

further restriction ofFS to a constant computational time coordinate. Note that
∂FSm(t)

∂ξm2
∧ ∂FSm(t)

∂ξm3

is aligned with the space normal ofSm(t) ⊂ ∂K(t) ⊂ R3. By construction the outer product is

aligned with the space-time normaln of Sm:

n = s

∂FS
∂ξm2

∧ ∂FS
∂ξm3

∧ ∂FS
∂ξ4

| ∂FS
∂ξm2

∧ ∂FS
∂ξm3

∧ ∂FS
∂ξ4

|
,

wheres = ±1 is such that the normal is outward pointing. By definition,∫
Sm

fndx = s

∫
Ŝ
f
∂FSm

∂ξm2

∧ ∂FSm

∂ξm3

∧ ∂FSm

∂ξ4
dξm2dξm3dξ4, (93)

hence theR4-valued measuredŜm, 1 ≤ m ≤ 6, is defined as:

dŜm = s
∂FSm

∂ξm2

∧ ∂FSm

∂ξm3

∧ ∂FSm

∂ξ4
dξm2dξm3dξ4.

Define theR3-valued measuredSm
on Ŝ by:

dSm = s
∂FSm(t)

∂ξm2

∧
∂FSm(t)

∂ξm3

dξm2dξm3dξ4.
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Using the integral rule (93) for the space-time faceSm and relation (92) we find for an integrable

R4-valued functionf onSm:∫
Sm

4∑
k=1

fknkdx =s
∫
Ŝ

1
2
∆t

3∑
k=1

fk

(
∂FSm(t)

∂ξm2

∧
∂FSm(t)

∂ξm3

)
k

dξm2dξm3dξ4

−s
∫
Ŝ

1
2
f4

3∑
k=1

∆xk

(
∂FSm(t)

∂ξm2

∧
∂FSm(t)

∂ξm3

)
k

dξm2dξm3dξ4

=s
1
2
∆t
(∫

Ŝ
f · dSm −

∫
Ŝ
f4v · dS

m
)

=
(∫

Sm

f · ndx−
∫
Sm

f4v · ndx
)
.

Hence the geometric face integrals containing the space normal and grid velocity are evaluated as

follows: ∫
Sm

φlφkndx =s
1
2
∆t
∫
Ŝ
ξlξkdS

m
, (94)∫

Sm

φlφkv · n̄dx =s
1
2
∆t
∫
Ŝ
ξlξk

∆x̄
∆t

· dSm
(95)

For the faceS7 the parameterization is given byF (ξ) = (tn, FK(ξ)) for K = K(t+n ). A simple

computation shows that for this face we have:

dŜ7 = −|JK |e4dξ,

wheree4 = (0, 0, 0, 1)T is the last unit vector inR4. Hence,∫
Ŝ
f · dŜ7 = −

∫
Ŝ
f4|JK |dξ = −

∫
K(t+n )

f4dx.

Likewise we have: ∫
Ŝ
f · dŜ8 =

∫
K(t−n+1)

f4dx.
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C Geometric integrals

The parameterization of the space-time faceS is the linear interpolation in time of the isoparamet-

ric parameterization of the space facesSn = S(tn) andSn+1 = S(tn+1). Let xn
1 , . . . , x

n
4 be the

four vertices of the faceSn. Then the isoparametric mapping ofSn is given by:

FSn : (ξ1, ξ2) 7→x̂n
1 + x̂n

2ξ1 + x̂n
3ξ2 + x̂n

4ξ1ξ2

:=
1
4
(x1 + x2 + x3 + x4) +

1
4
(−x1 + x2 − x3 + x4)ξ1+

1
4
(−x1 − x2 + x3 + x4)ξ2 +

1
4
(x1 − x2 − x3 + x4)ξ1ξ2.

(96)

Define the vectors (inR3):

an
00 =x̂n

2 ∧ x̂n
3 =

1
8
(xn

1 − xn
4 ) ∧ (xn

2 − xn
3 ),

an
10 =x̂n

2 ∧ x̂n
4 =

1
8
(xn

3 − xn
4 ) ∧ (xn

2 − xn
1 ),

an
01 =x̂n

4 ∧ x̂n
3 =

1
8
(xn

1 − xn
3 ) ∧ (xn

4 − xn
2 ),

c00 =x̂n+1
2 ∧ x̂n

3 + x̂n
2 ∧ x̂n+1

3

c10 =x̂n+1
2 ∧ x̂n

4 + x̂n
2 ∧ x̂n+1

4

c01 =x̂n+1
4 ∧ x̂n

3 + x̂n
4 ∧ x̂n+1

3

n00 =an+1
00 + an

00 +
1
2
c00,

n10 =an+1
10 + an

10 +
1
2
c10,

n01 =an+1
01 + an

01 +
1
2
c01,

d00 =an+1
00 − an

00,

d10 =an+1
10 − an

10,

d01 =an+1
01 − an

01.

(97)

We find:

∂FS(t)

∂ξm2

∧
∂FS(t)

∂ξm3

=
1
4
(1 + ξ4)2(an+1

00 + ξm2a
n+1
10 + ξm3a

n+1
01 )

+
1
4
(1− ξ4)2(an

00 + ξm2a
n
10 + ξm3a

n
01) (98)

+
1
4
(1− ξ24)(c00 + ξm2c10 + ξm3c01),

and the geometric integrals (94) obtained using this formula are tabulated in Table 4.
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Table 4 The integrals s
∆t

∫
S φlφmndx. The sign form = m1 is equal toφm1 |S .

m = 0 m = m1 m = m2 m = m3 m = 4

l = 0 4
3n00 ±4

3n00
4
9n10

4
9n01

2
3d00

l = m2
4
9n10 ±4

9n10
4
9n00 0 2

9d10

l = m3
4
9n01 ±4

9n01 0 4
9n00

2
9d01

l = 4 2
3d00 ±2

3d00
2
9d10

2
9d01

8
15n00 − 2

15c00

Table 5 The integrals s
∆t

∫
S φlφmn · vdx. The sign form = m1 is equal toφm1 |S .

m = 0 m = m1 m = m2 m = m3 m = 4

l = 0 v000 ±v000 v100 v010 v001

l = m2 v100 ±v100 v200 v110 v101

l = m3 v010 ±v010 v110 v020 v011

l = 4 v001 ±v001 v101 v011 v002

The grid velocityv is given by:

v =
∆x
∆t

= b̂1 + b̂2ξm2 + b̂3ξm3 + b̂4ξm2ξm3 , (99)

with b̂i = (x̂n+1
i − x̂n

i )/∆t. Note that the grid velocity does not depend on the computational time

coordinate.

Define the numbers:

v000 = 4
3 b̂1 · n00 + 4

9 b̂2 · n10 + 4
9 b̂3 · n01,

v100 = 4
9 b̂2 · n00 + 4

9 b̂1 · n10 + 4
27 b̂4 · n01,

v010 = 4
9 b̂3 · n00 + 4

27 b̂4 · n10 + 4
9 b̂1 · n01,

v200 = 4
9 b̂1 · n00 + 4

15 b̂2 · n10 + 4
27 b̂3 · n01,

v020 = 4
9 b̂1 · n00 + 4

27 b̂2 · n10 + 4
15 b̂3 · n01,

v110 = 4
27 b̂4 · n00 + 4

27 b̂3 · n10 + 4
27 b̂2 · n01,

v001 = 2
3 b̂1 · d00 + 2

9 b̂2 · d10 + 2
9 b̂3 · d01,

v101 = 2
9 b̂2 · d00 + 2

9 b̂1 · d10 + 2
27 b̂4 · d01,

v011 = 2
9 b̂3 · d00 + 2

27 b̂4 · d10 + 2
9 b̂1 · d01,

v002 = 8
15 b̂1 · n00 + 8

45 b̂2 · n10 + 8
45 b̂3 · n01

− 2
15 b̂1 · c00 − 2

45 b̂2 · c10 − 2
45 b̂3 · c01.

Using these expressions the integrals (95) are computed and tabulated in Table 5.
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D Discrete conservation

In order to stay conservative at the discrete level, the face fluxes are computed for one cell connect-

ing to the face, and added to the other cell using only some permutation relations. These relations

are the generalization of the principle that for general finite volume schemes the flux added to the

one connecting cell is substracted from the other.

Let S connect the cellsK andK′. The local face coordinate system(ξ′m′
2
, ξ′m′

3
, ξ′4) of the face de-

rived from the topology of cellK′ is connected with the coordinate system(ξm2 , ξm3 , ξ4) through:
ξ′m′

2

ξ′m′
3

ξ′4

 =

(
Ai 0

0 1

)
ξm2

ξm3

ξ4

 , 1 ≤ i ≤ 8, (100)

whereAi is one of the eight following rotation/mirror matrices:

A1 =

(
1 0

0 1

)
, A2 =

(
0 1

−1 0

)
, A3 =

(
−1 0

0 −1

)
, A4 =

(
0 −1

1 0

)
,

A5 =

(
−1 0

0 1

)
, A6 =

(
0 1

1 0

)
, A7 =

(
1 0

0 −1

)
, A8 =

(
0 −1

−1 0

)
.

Letmi, resp.m′
i, (1 ≤ i ≤ 3) be the ordering of the space gradients in cellK, resp.K′, such that

(compare with (56)):

UK|S(ξm2 , ξm3 , ξ4) = U(ξm1
;K) + ξm2Ûm2(K) + ξm3Ûm3(K) + ξ4Û4(K)

UK
′

|S (ξ′m2
, ξ′m3

, ξ′4) = U(ξm′
1
;K′) + ξ′m′

2
Ûm′

2
(K′) + ξ′m′

3
Ûm′

3
(K′) + ξ′4Û4(K′).

Using (100) we find that in the computational coordinates of faceS the latter equality is equivalent

with:

UK
′

|S (ξm2 , ξm3 , ξ4) = U(ξm′
1
;K′) + ξm2Û

′
m2

(K′) + ξm3Û
′
m3

(K′) + ξ4Û4(K′).

where the transversal gradients are defined by:(
Û ′m2

(K′)
Û ′m3

(K′)

)
= AT

i

(
Ûm′

2
(K′)

Ûm′
3
(K′)

)
.

By definition of the basis functions, (100) implies: φK
′

m′
2
|S

φK
′

m′
3
|S

 = Ai

(
φKm2 |S

φKm3 |S

)
.
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The remaining basis function is constant on the face:φKm1 |S = sS andφK
′

m′
1
|S = s′S .

The numerical flux is consistent, and hence:

FHLLC(UR, UL, n) = −FHLLC(UL, UR,−n).

LetU ′L andU ′R be the left and right states as seen from cellK′ and letn′ be the outward pointing

normal of faceS for cellK′. Then,∫
S
FHLLC(U ′L, U

′
R, n

′)dx =
∫
S
FHLLC(UR, UL,−n)dx

= −
∫
S
FHLLC(UL, UR, n)dx,∫

S
φK

′

m′
1
FHLLC(U ′L, U

′
R, n

′)dx = −s′S
∫
S
FHLLC(UL, UR, n)dx,

∫
S

 φK
′

m′
2

φK
′

m′
3

FHLLC(U ′L, U
′
R, n

′) = −Ai

∫
S

(
φKm2

φKm3

)
FHLLC(UL, UR, n)dx,

∫
S
φK

′
4 FHLLC(U ′L, U

′
R, n

′)dx = −
∫
S
φK4 FHLLC(UL, UR, n)dx.

(101)

So, the face fluxes for cellK′ easily follow from the fluxes for cellK.
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