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Summary

In these notes a new space-time discontinuous Galerkin finite element method for the solution
of the Euler equations of gas dynamics in time-dependent flow domains is discussed. The dis-
continuous Galerkin discretization results in an efficient element-wise conservative upwind finite
element method, which is particularly well suited for local mesh refinement. The upwind scheme
uses a formulation of the HLLC flux applicable to moving meshes and several formulations for
the stabilization operator to ensure monotone solutions around discontinuities are investigated.
The non-linear equations of the space-time discretization are solved using a multigrid accelerated
pseudo-time integration technique with an optimized Runge-Kutta method. In order to improve
the computational efficiency a new and efficient quadrature rule for the flux integrals arising in
the space-time discontinuous Galerkin discretization is presented and analyzed. The quadrature
rule is a factor three more efficient than the commonly applied Gauss quadrature rule and does
not affect the local truncation error and stability of the numerical scheme. The local truncation
error of the resulting numerical discretization is determined and is shown to be the same as when
product Gauss quadrature rules are used. Details of the approximation of the dissipation in the nu-
merical flux are presented, which render the scheme consistent and stable. The numerical scheme
is demonstrated with calculations of several model problems, an oscillating NACA 0012 airfoil
and the three-dimensional, transonic flow over a deforming wing.
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1 Introduction

These notes discuss a new discontinuous Galerkin (DG) finite element method for the adaptive so-
lution of the unsteady Euler equations of gas dynamics in three-dimensional time-dependent flow
domains. The algorithm results in a second order accurate finite element discretization on deform-
ing meshes and accuracy can be improved using local mesh refinenietypm mesh adaptation.

In the development of the numerical scheme the main objectives to be satisfied are obtaining a
conservative discretization on deforming meshes, the accurate capturing of flow discontinuities
using h-adaptation, while maintaining accuracy on locally refined meshes, and achieving good
computational efficiency on parallel computers. These requirements have been the main motiva-
tion to develop a discontinuous Galerkin finite element method. The main feature of discontinuous
Galerkin methods is the use of basis functions which are discontinuous across element faces. This
results in a finite element discretization with a very compact stencil, which can be combined well
with h-adaptation. These properties are important for many problems and the main reason why
discontinuous Galerkin methods presently are receiving significant attention.

Discontinuous Galerkin methods can be subdivided into two main classes, namely discretizations
with basis functions which are discontinuous either in space or in time. The first class of DG
methods, in combination with a TVD Runge-Kutta time integration method, has been thoroughly
investigated by Cockburn and Shu. Detailed surveys can be found in (Ref. 18, 19). The second
class of DG methods uses discontinuous basis functions in time and a streamline upwind Galerkin
or Galerkin least squares discretization in space. Both classes of discontinuous Galerkin methods
are also extensively discussed in Barth (Ref. 3) and Schwab (Ref. 36).

The separation between space and time becomes cumbersome for time-dependent domain bound-
aries, which require the mesh to follow the boundary movement. We will therefore not separate
space and time, but consider the Euler equations directly in four dimensional space, and use basis
functions in the finite element discretization which are discontinuous across element faces, both in
space and time. We refer to this technique as the space-time discontinuous Galerkin finite element
method. The space-time DG method provides optimal efficiency to adapt and deform the mesh,
while maintaining a conservative scheme which does not require interpolation of data after mesh
refinement or deformation. The space-time DG method presented in this notes is an extension
of our research on a solution adaptive discontinuous Galerkin finite element method for steady
three-dimensional inviscid and compressible flows, Van der Vegt and Van der Ven (Ref. 43). In
the first part of these notes we discuss the general formulation of the space-time DG method for
the adaptive solution of the Euler equations in time-dependent flow domains. In the second part
we discuss and analyze a new integration technique for the element face and volume integrals for
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discontinuous Galerkin discretizations, which results in a significant improvement in computa-
tional efficiency. We will also demonstrate the maturity of the space-time DG discretization with
three-dimensional aerodynamic applications, such as a deforming wing in transonic flow.

The combined use of space and time discontinuous basis functions in a discontinuous Galerkin
method has been proposed by Jaffre, Johnson and Szepessy (Ref. 26), which theoretically analyzed
this technique for multi-dimensional scalar conservation laws on non-deforming meshes. See also
Cockburn and Gremaud (Ref. 14). Until now, however, the use of space-time discontinuous basis
functions in DG methods has not been fully explored for non-linear hyperbolic systems of partial
differential equations, such as the Euler equations of gas dynamics. An initial study was conducted
by Lowrie, Roe and van Leer (Ref. 32). Their formulation results in a staggered space-time mesh,
which is quite different from the DG discretization presented in these notes, and does not easily
extend to local mesh refinement which is important for many applications.

In order to make the space-time DG method an accurate and efficient technique for the solution
of the Euler equations of gas dynamics we had to deal with a number of issues. First, we will
extensively discuss the weak formulation of the space-time discontinuous Galerkin finite element
method using the Arbitrary Lagrangian Eulerian (ALE) approach. This technique decouples the
grid motion from the motion of the fluid particles and is widely used in fluid-structure interac-
tion problems and ideally suited for deforming meshes. The discontinuous Galerkin discretization
which we present automatically satisfies the geometric conservation law, which states that a uni-
form flow field should not be influenced by the grid motion, since the element face and volume
integrals are calculated with sufficiently accurate quadrature rules. This problem was analyzed in
detail by Lesoinne and Farhat (Ref. 29), and is an essential condition to obtain at least first order
accuracy in time, as was proven by Guillard and Farhat (Ref. 24).

The space-time discontinuous Galerkin discretization results for each element in a coupled sys-
tem of non-linear equations. We will present and analyze a pseudo-time integration method with
multigrid acceleration which can efficiently solve these equations. In this technique the non-linear
equations of the DG discretization are augmented with a pseudo-time and marched to steady state
in pseudo-time. The pseudo-time integration is significantly improved by optimizing the Runge-
Kutta time integration method. The use of a multigrid technique for a DG discretization of hy-
perbolic partial differential equations is new and required a significant development effort. The
proposed algorithm works well on locally refined meshes and maintains the local structure of a
DG discretization, which allows a straightforward parallelization of the method.

Since the Euler equations of gas dynamics are hyperbolic and develop discontinuities in finite
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time it is important to ensure monotone solutions around discontinuities. In the TVD Runge-Kutta
discontinuous Galerkin method this is accomplished by using a slope limiter, for a survey see
Cockburn (Ref. 18). In our earlier work we also used this limiter (Ref. 43, 44), but the limiter in

a DG method prevents convergence to steady state and also has a negative effect on the numerical
accuracy. In these notes we will discuss the use of a stabilization operator instead of a slope
limiter to maintain monotone solutions. This technique significantly improved the accuracy and
convergence to steady state of the pseudo-time integration.

Applications of computational fluid dynamics techniques to real-life (time-dependent, three-dimensional)

applications, such as occur for instance in aerodynamics, require significant computational re-
sources. This certainly applies to the DG method, which is known to be computationally expen-
sive. The computational complexity of the DG method has been investigated by various authors,
e.g. Lockard and Atkins (Ref. 31) and Van der Ven and Van der Vegt (Ref. 48). The computation-
ally most intensive part of the method is the evaluation of the flux integrals. The standard approach
for the evaluation of these integrals is the application of Gauss quadrature rules. For second-order
accurate space-time DG methods a mixture of two-point and three-point product rules is required,
which implies twelve flux evaluations for the face fluxes and 27 flux evaluations for the volume
fluxes. This number is prohibitively large and would render DG methods impractical for real-life
applications.

Atkins and Shu (Ref. 2) presented a quadrature free implementation of the DG method, and in
earlier work, Van der Vegt and Van der Ven (Ref. 43) presented a DG implementation which
requires only one flux evaluation per face. In this latter work (Ref. 43) a slope limiter was applied
for stability which is replaced in these notes with a stabilization operator. This improves both
the convergence to steady state and the accuracy of the method. The quadrature rule presented in
(Ref. 43), however, proved to be unstable in combination with the stabilization operator.

This prompted the development of the so-called Taylor quadrature rule, which is discussed in the
second part of these notes. The Taylor quadrature rule is related to the quadrature-free approach
of Atkins and Shu (Ref. 2). As in the quadrature-free approach the flux is expanded in the basis
functions, but the coefficients are obtained from a direct Taylor expansion of the flux in the face
center. Since the expansion coefficients of the solution vector related to the linear basis functions
can be interpreted as first derivatives of the solution vector, these expansion coefficients occur
directly in the Taylor expansion of the flux. This demonstrates that DG methods provide a natural
setting for the Taylor quadrature rule.

For linear fluxes, this flux expansion is equal to the flux expansion in the quadrature-free approach,
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but for the nonlinear Euler flux the expansion is different since we only use as many terms as the
number of basis functions in the DG expansion, whereas in the quadrature-free approach the ex-
pansion would also include the second order terms in the Taylor expansion. The Taylor quadrature
rule significantly reduces the number of flux evaluations, reducing the flop count with respect to
the required product Gauss quadrature rule. Moreover, since only data in the face center is re-
quired, the data locality of the algorithm is improved, which enhances the computational speed on
cache-based computers.

The quadrature rule in the DG method must be chosen carefully, since it can negatively affect the
accuracy of the DG discretization. For the TVD Runge-Kutta space DG discretization of a multi-
dimensional scalar conservation law this has been analyzed by Cockburn, Hou, and Shu (Ref. 16)
when Gauss quadrature rules are used for the flux integrals. In these notes we analyze the accuracy
of the space-time DG discretization both for the Taylor and Gauss quadrature rules. The analysis
shows that the Taylor quadrature rule does not have an adverse effect on the accuracy of the DG
method, which is also confirmed by the numerical experiments discussed in Chapter 4.

Having established the accuracy of the numerical method, the next issue is the stability of the
discretization. Unlike the approach of Atkins and Shu (Ref. 2), the Taylor quadrature rule does
not presuppose a relatively simple numerical flux, such as the Lax-Friedrichs flux, which for our
applications is too dissipative. We use the HLLC flux (Toro (Ref. 41)) which has an accuracy
comparable to the Osher numerical flux, at considerably less computational cost. In our experience
the proper integration of the upwind dissipation of the numerical flux is also essential for the
stability of the gradient equations. This implies that the dissipative part of the numerical flux must
be linearized as well. The linearization of the HLLC flux in the Taylor quadrature rule is discussed
in detail, and is constructed such that it results in a stable scheme, with correct treatment of the
pressure term at contact discontinuities, and satisfies the Geometric Conservation Law for moving
meshes.

The outline of these notes is as follows. In Chapter 2 we discuss the main aspects of the space-time
discontinuous Galerkin finite element method (STDGFEM). After some preliminaries we discuss
in Section 2.2 the weak formulation of the space-time discontinuous Galerkin discretization and
show its relation with the ALE weak formulation. Next, we give a derivation of the non-linear
equations for the DG expansion coefficients and define the HLLC flux suitable for moving bound-
aries and the stabilization operator necessary to ensure monotone solutions around discontinuities.
In Section 2.3 the multigrid accelerated pseudo-time integration method for the solution of the
non-linear DG equations is presented and its stability is analyzed. The mesh adaptation is dis-
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cussed in Section 2.4 and we give a brief summary of the mesh deformation algorithm in Section
2.5.

In Chapter 3 we present the Taylor quadrature rule for the face and volume flux integrals. First,
we transform in Section 3.1 the flux integrals into a form suitable for the Taylor approximation.
The Taylor quadrature rule is discussed in Section 3.2 and the application to the HLLC scheme
in Section 3.3. In Section 3.3.4 the local truncation error of the DG scheme using the Taylor and
Gauss quadrature rules is analyzed. Numerical experiments are presented in Chapter 4, including
the simulation of the flow past an oscillating NACA 0012 airfoil using locally refined meshes and

a deforming AGARD 445.6 wing. Conclusions are drawn in Chapter 5. The Appendices give
background information for the error analysis and detailed expressions for the element face and
volume integration.
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2 Space-time discontinuous Galerkin formulation for the Euler equations of gas
dynamics in time-dependent flow domains

2.1 Space-time formulation of the Euler Equations of gas dynamics

We consider the Euler equations of gas dynamics in a time-dependent flow domain. Since the
flow domain boundary is moving and deforming in time we do not make an explicit separation
between the space and time variables and consider the Euler equations dirBétly.at £ ¢ R*

be an open domain. A point<c R* has coordinategry, - - - ,x4), but we will also frequently use

the notation(z,t) € R*, with # = (1,79, 23) € R3 the position vector at time¢andt = x4
representing time. The flow domai¥(t) at timet is defined asQ(¢) := {z € R? | (z,t) € £},

with tg and T the initial and final time of the evolution of the flow domain. The space-time
domain boundarg¢ consists of the hypersurfac@%ty) := {x € 0 | x4 = to}, UT) := {x €

0 |xzg=T}andQ :={x € 0E | to < xy < T'}.

Let F : R® — R®*4 denote the flux tensor, which is defined as:

puL pu2 pu3 p
pui +p PULU puIU3 pul
F = pUIU2 PU% +p puu3 puz |
puus puu3 puz +p  pus

(PE+plur (pE+pluz (pE+plus pE
with p, p, and E' the density, pressure, and specific total energy, respectively,;ahe velocity
components in the Cartesian coordinate directions < {1, 2, 3} of the velocity vectow : £ —
R3. Let the vectol/ : £ — R denote the conservative flow variables with components:

Ui = Fia,
then the Euler equations of gas dynamics are defined as:

divF(U(z)) =0, x €€, (1)
together with the initial and boundary conditions:

U(x) = Uo(ﬁ), T € Q(to),
Ulz) = B(U,Uy), z€Q.

HerelU, : Q(to) — R® denotes the initial flow field3 : R® x R — R the boundary operator

andU, : Q — R® the prescribed boundary flow field data. The divergence of a second order

tensor is defined astiv F = %J:’j , and the summation index is used on repeated indices in these

notes. The Euler equations are completed with the equation of state for a calorically perfect gas:
p = (v — 1)p(E — Susu;), with  the ratio of specific heats.
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2.2 Space-Time Discontinuous Galerkin Discretization of the Euler Equations

2.2.1 Geometry definition of space-time elements

Consider a partitioningy < ¢; < --- < T of the time intervalto, 7") and define the time interval
I, as: I, = (t,,tny1). The space-time domaifi c R* is split into a finite number of space-
time slabs:{z € £|z4 € I,}. The evolution of the flow domain during the time intervalis
represented by the mappidg', which is defined as:

O Qty) — Q) T BN(T),  te . @)

The mappingP} is assumed to be sufficiently smooth, orientation preserving and invertible in each
time intervall,,, but can be different in different time intervals. This makes it possible to generate

a new grid when elements become too severely distorted during the dynamic mesh movement. At
the time levek,, we use hexahedral elemerdtsto define the tessellatidﬁ”:

— Nn —n — n n P . ..
ZLn = {K]n| jL:JlKj = Qh(tn> andKj ij’ = Q) if J 7'&‘7/7 1 Sjvj/ < Nn}7

such thatQ,(t,) — Q(t,) ash — 0, with h the radius of the smallest sphere completely con-
taining each elemenk’ € 7,", and N,, the total number of hexahedra i, (¢,). Each element
K™ € T;" is related to the master elemeiit= (—1,1)3 through the mapping’i:

8
Fg K K": £ T = sz(Kn)Xl(g)v
i=1

with z;(K") € R3, 1 < i < 8, the spatial coordinates of the vertices of the hexahedf6n

at timet,, and x;(£) the standard tri-linear finite element shape functions for hexahedra, with
€ = (&4,8,8) € K. The elementss™t! are now obtained by moving the vertices of each
hexahedrork™ € 7,” with the mapping®} to their new position at timeé = ¢,,41, and we can

define the mapping:

8
Fprl K K™ gz =3 0 (2(K™) xilé).

tn+1
=1

The space-time elements are obtained by connecting the elemén(s,inand2(¢,, 1) by linear
interpolation in time. This results in the following parameterization of the space-time elements
K.

G K — K& (7,8) = (31 — &) FR(E) + 2 (1 + &) Fet L (€),

(tn + tn—i—l) + %(tn—O—l - tn)£4)7 (3)

N[ =
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with ¢ € K the computational coordinates in the master elem@&nwhich is defined asK =
(—1,1)%. The space-time tessellation is now defined as:

T = (K= G}(K) | K e T}

We will also frequently use the notatidki(¢) for the element at timet, which is defined as:
K(t) = {# € R®|(z,t) € K}. The space-time elemeit” is bounded by the hypersurfaces
K(t)) = 1611%1K(tn +e), K(t,,,) = leing(th —¢),andQ" = 9K" \ (K(t}) UK (t,,4)).
This notation is used to indicate that the mesh can change discontinuously at the timg,lanels

.

The boundary faces @™ can also be represented using the mapping (3).1Form < 8 define
the eight facess,,, of the space-time elemeftt, with 9K = LU _;S,,,, by:

Som—1={GK(&)|E €K, &m = —1},

Som ={Gr() 1€ € K, &m =1}, 1<m<4 4)
Note thatQ™ = US _ Sy, K (t}) = S7, andK (¢, ;) = Ss.
The reader is referred to Figure 1 for a two-dimensional illustration of the elements and mappings.

Remark 2.2.1 The tessellatiory,” does not impose a limitation on the number of elements which
can connect to a face of an element. This is important because during the simulations the compu-
tational mesh will be adapted by subdividing elements in space and/or time in regions where more
mesh resolution is required.

Remark 2.2.2 Since we use a tri-linear representation of the elements in space, this implies that
we use a bi-linear representation of the geometry at slip flow boundaries. Recently, Bassi and
Rebay (Ref. 4), concluded that a higher order representation of a slip flow boundary is mandatory
in order to avoid strong numerical boundary layers and to obtain convergence. In Section 4.3.2
we show that under grid refinement the numerical boundary layer diminishes for hexahedral type
elements. Since local mesh refinement already is an integral part of our algorithm, we use this
technique to remove the numerical boundary layer at slip flow boundaries and it is not necessary
to use a higher-order accurate boundary representation.
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2.2.2 Space-time discontinuous Galerkin finite element approximation

2.2.2.1 Weak formulation of the Euler equations

In order to ensure that the different forms of the weak formulation of the Euler equations of gas
dynamics, which are discussed in this section, are well defined we introduce the broken space
V(TP

V(T = {U: T} = R [ (grad UY)" : F(U?)|xn € L'(K});
((gradU?)" - D(U")) : grad U'|xcr € L1(K});
YUY - (ng F(y7(U?) + i F(yT(U?))) € LH0KF);
YUY U U®) e V(T)), YK} € T)'},
with L! the space of Lebesgue integrable function§(U) = lim, o U(x + enx) the traces
of U at 0K, nx € R* the unit outward normal vector &C, © : R® — R*** the artificial
viscosity matrix, and superscrifit denotes the transposition of a vector. We will also frequently
use the notatio/* to denotey™(U). The gradient operatgirad : R® — R**? is defined as:

(gradU);; = 8—;]7 and the symbol represents the dyadic product of two second order tensors and
is defined for4, B € R"*"™ asA : B = A;;B;;.

The discontinuous Galerkin finite element discretization is obtained by approximating the test and
trial functions in each elemernit € 7, with polynomial expansions which are discontinuous
across element faces, both in space and time. First, in the master elerttembasis functions

g?)m : K — R are defined which are linear in computational space:

=&m, m=1,---,4.
Next, the basis functions,, : L — R are constructed through the parameterizafiga
(;Sm:qgmoGI_{l, m=20,...,4.
We also introduce the basis functiong, : £ — R, which are defined as:
UYm (Z,t) =1, m=0,

1

=pm (T, t) —
|Kj (tn—O—l) | K; (t;+1)

¢m(jat;+1)dK, m= 17 a4a (5)

since this will result in a splitting of the test and trial functions into an element mean at,fime
and a fluctuating part. This property will be beneficial in the definition of the stabilization operator
and the multigrid convergence acceleration, discussed in Sections 2.2.5 and 2.3.
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The finite element spadg! (7,") is now defined as follows:
Vi (T = {Un | Unlx € (P1(K))*} € V(T),

with the polynomial spac®!(K) = span{t,,,m = 0,--- ,4}. The trial functiondJ;, : 7,* —
R® are defined in each elemefite 7," as:

4
Un(Z,t)[x = PUEt)|k) = D Un(K)tom(Z, 1), (6)
m=0
with P : R® — V;1(7;") the projection operator onto the spagé and U, € R® the expansion
coefficients. The test function$’, : 7," — R5 are defined analogously, only with,, replaced
by W,,,. The weak formulation for the Euler equations of an inviscid compressible gas can now be
formulated as:

Find aU,, € V,!(7), such that for allW}, € V;}(7,"), the following variational equation is
satisfied:

Nt N,

> Y| Wh.divF(Uh)dlC+/ ((grad Wy)" - D(Uy)) : grad Up dK} =0, (7)

n=0j=1 YK} K3

with Npr+1 the total number of space-time slabs a¥igthe number of elements in the tessellation
7,". The second contribution in (7) is the stabilization operator and added to the weak formulation
to prevent numerical oscillations around discontinuities and in regions with sharp gradients, for
more details see Section 2.2.5.

2.2.2.2 Transformation of the space-time weak formulation into ALE form

The weak formulation (7) can be transformed into an integrated by parts form using Gauss’ theo-
rem. This has as main benefit that it does not result in loss of conservation under inexact quadra-
ture, see e.g. Hansbo (Ref. 25). This approach is for instance followed by Shakib et al. (Ref. 37).
It is, however, possible to establish a relation between the Arbitrary Lagrangian Eulerian (ALE)
formulation, commonly used on moving and deforming meshes, and the space-time approach.
This can be done either directly for the partial differential equations, as presented by Masud and
Hughes (Ref. 33), or for the weak formulation using Stokes’ theorem, see Bottasso (Ref. 9). In
this section we will establish the relation between the space-time and ALE formulation in a more
simplified way, which does not require the use of differential forms, and gives more insight into
the origin of the various contributions.

If we introduce

W, - div F(Uy,) = div (WL F(U)) — (grad Wi,)T = F(Uy,), (8)
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Fig. 1 lllustration of the geometry of two-dimensional space-time elements in both computa-
tional and physical space. Notations in the text.

into the weak formulation (7) and apply Gauss’ theorem to the contribution resulting from the first
term on the righthand side of (8) then we obtain:
| avEF@ ac= [ e (5)TFO;) dEK), ©)
K oK™
whereng is the unit outward normal vector at the boundéry™. The ALE formulation can now
be obtained by calculating the normal veciqy.

Given the parameterizatioix, t) = G () for the space-time element, the normal vecigrat
the boundary surface componedtgs_; andS,;, 1 < i < 4, defined in (4), is orthogonal to the
tangential vectors;, , ¢;,, andt,,, with the indices{i;, i2,i3} C {1,--- ,4} complementary to the
index{:}. The tangential vectors are defined &s= %, and are equal to (cf. (3)):

n (& n+1 &
3(1—& O 4 1 1+& O (©)
e TSR 02( o T
1 FEr () — FR(©) Az
4 =35 = 35 )
tnit — tn At

(also see Figure 1). The normal vectorsSatand Sg are simply(0,0,0,—1) and (0,0,0,1),
respectively, hence the boundary integrals over the surfgcandSg are equal to:

8
3 / i (W) F(U,)) dS = / Wy, U, dS — / Wy, - Uy dS, (10)
—7 . Kj(t7 Kj(ti)

n+1)

where we used the relations; = Fiy (U, ), S = K;(t,}) andSg = K;(t, ).
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For the remaining boundary terms remember that for gach (—1,1) the elementK(¢), such

that (K (t),&) = G%(&, &), is the space-element defined by the interpolated vertices of the
elementsk (t,}) and K (¢, ). Letni(z,t) € R?, (1 < i < 6), be the space part of the normal
vector at the boundary part c Q7. By definition, "' and 2™, (1 < m < 3), are
perpendicular to the tangential vectoys = %(1 - 54)2% + %(1 + 54)855;, with &k = 1 or 2,

such that{i1,i2,m} = {1,2, 3}. Hence, the vector@ii., ) € R* are orthogonal to the tangential

vectorst;, , if and only if the conditions:
$AZ - nf + JaAt =0,
are satisfied. The space-time normal veo:zt@ratsi, (1 <1 <6), therefore is equal to:

n;C = (ﬁ;@ N ﬁ;C)a

with the grid velocityv € R3 given by the relationy = Az/At. Since the space-time normal
vectorni has length one, the space normal veatgrhas a lengthng| = 1/v/1+v-v. The
boundary flux integral oves$;, (1 < i < 6) is now equal to:

6
;/S nic- (W) T F(U,)) dS = /Q;l [k (W) TFU;)) —nx- (W, -U;))]dQ, (11)

where the flux tensof : R® — R5%3 has component§;; = F;; with 1 < j < 3. If we
replace the righthand side of (9) with the sum of (10) and (11) using the faciAtfat= US_;S;,

and introduce this relation into (7) we obtain the weak formulation for the Euler equations of gas
dynamics in ALE form:

Find aU;, € V;'(7;*), such that for allW, € V;}(7,"), the following variational equation is

satisfied:
NT Nn
ZZ{—/ (gradWh)T:f(Uh)dlC+/ W, U, dK—
n=0 j—=1 K3 Kj(tyyq1)

/ W, Uy dK + | W, - (F(U, )k — i - vU,, ) dQ+
K;(t)) Qr

/n ((grad W)™ - D(Uy)) : grad Up dK} = 0. (12)

2.2.2.3 Introduction of numerical flux
In the summation over the space-time elements, the integrals over the internal fafedoft,, )
and K (t,+1) in the weak formulation (12) are counted twice, since two elements are connected
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to each side of the faces. (In case of mesh refinement this applies to subsets of these faces.) This
results in a multi-valued flux tensor at internal faces, since in gebgrag U," in the discontin-

uous Galerkin discretization, and this requires special care. If we use the fact that the normal flux
through the boundary faces must be continuous, almost everywhere, to ensure conservation then
we obtain the relations:

/ W U dK = W UFK, YWy € VAT,
K ()UK (t 1) K (6 )UK (t ntt1)

Wy - (FU))dQ = [ Wy - (FU)nk)dQ, Wi € Vi (),
Q7 Q7
(13)
with U;" the trace of;, at 9K of elements connected 6. The generalized flux tensor :
R® — R>*3 is defined as:

FU)=FU)-vaU,

wherev ® U = v;U;. The integrals over internal facés; (¢, ) then transform into:

WL +
2/(#)W Uy dK = Z/m U + UK,

j=1
with a similar relation fork; (¢, ;). The multivalued time flux is now replaced with a numerical
flux Hy which, in order to ensure the causality of the time flux, is defined as:

He(Uy U =Uf atK(e)
=U,  atK;(t,)

The numerical fluxt can also be used at the boundary fakgst, ), where the external trace is
provided by the initial condition at = ¢,. The numerical flux{ makes it possible to drop the
summation over the space-time slabs in the weak formulation (12), since each space-time slab only
depends on the previous space-time slab. The introduction of the time flux is an alternative to the
weak coupling between space-time slabs generally used in time-discontinuous Galerkin methods
and results in a uniform treatment of the space-time flux in the DG discretization. Using (13), the
integrals overQ7 in (12) can be transformed into:

Z x)dQ = Z W‘% FU; Y + F(UNag)dQ.  (14)

The representation of the flux in (14) as the average between the left and right states at the element
face results in a central discretization which suffers from numerical oscillations around disconti-
nuities. Monotone solutions are obtained by adding the stabilization operator and introducing a
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Godunov type upwind flux. The use of an upwind flux fits very well into a discontinuous Galerkin
discretization, since the staté% andU," can be considered as the left and right states in a Rie-
mann problem. We replace therefore thef%l(xi‘(U}j (i,t))ﬁ;c+}~'(U}j(:E,t))ﬁ;C) at the element
facesQ’' in the time intervalt, ¢ + At) with a monotone upwind fluxl (U, ", U;"), which is con-
sistent: H(U,, Uy) = F(Uy)nx, and conservativeH (U, ,U,") = —H(U,",U,"). At external
boundary faces we apply the same procedure, but at these faces the extenﬁ@j ssatentrolled

by the boundary operatot,” = B(U, ,Uy).

Any of the well-known (approximate) Riemann solvers, such as those from Godunov, Roe, Lax-
Friedrichs, or Osher, for a survey see Toro (Ref. 41), can be used as upwind numerical flux. In
earlier work, Van der Vegt and Van der Ven (Ref. 43), we used the Osher flux because of its
good accuracy and nice mathematical foundation, but the Osher flux is computationally expensive
and is replaced with the HLLC flux. The HLLC flux is introduced by Toro, Spruce and Speares
(Ref. 40) and further analyzed by Batten et al. (Ref. 5, 6). The HLLC flux provides solutions of
at least the same quality as the Osher flux, but at less than one quarter of the computational cost.
The definition of the HLLC flux for moving interfaces is provided in Section 2.2.4. An important
benefit of using an upwind numerical flux is that this already ensures nearly monotone solutions
without a stabilization operator. A relatively simple stabilization operator in comparison with
for instance the one used by Shakib, Hughes and Johan (Ref. 37) for the Galerkin least squares
finite element method then is sufficient to obtain monotone solutions. The weak formulation for
the space-time discontinuous Galerkin finite element discretization of the Euler equations of gas
dynamics now is equal to:

Find aU, € V;/(7,"), such that for allW,, € V,}(7;*), the following variational equation is

satisfied:
Ny
Z{—/ (gradWh)T:f(Uh)dlC+/ W, U, dK—
7j=1 K? K.i(t;+1)

/ Wy -UFdK + [ Wy - H(U; U )dO+
K (6) o

/Kn ((grad Wy)™ - D(Uy)) : grad U dK} = 0. (15)

2.2.3 Equations for the flow field expansion coefficients
An important element in the numerical discretization is the splitting of the test and trial functions
into an element mealy, : 7;» — R® at the time levet,,;; and a fluctuating pait}, : 7,* — R®:

Uh(i’t) = Uh(Kj(t;erl)) + ﬁh(f>t)a V(Eat) € IC;Z> (16)
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with:
Un(K;(t, 1)) = Uo, 17)

/ Up(Z,t)dK = 0. (18)
Kt

) :L+1)

The flow field can now be represented as:

4
Un(z,t) = Up(Kj(t, 1)) Z (KMm(2,1),  Y(z,t) € K.
This splitting is a direct consequence of the fact that the basis funatigis, ¢) are constructed
such that:

/ U (T, 1)dK =0, m > 1, (29)
Kj(t, 1)

and has several advantages. In the first place, the structure of the space-time discontinuous
Galerkin discretization becomes more clear, because the equations for the element mean are iden-
tical to a finite volume discretization. A second advantage of the splitting is that it makes it easier
to define the stabilization operator and the multigrid convergence acceleration procedure. The
stabilization operator does not act on the element mean, only on the fluctuating part. Any ad-
justment to the element fluctuations due to the stabilization operator will therefore not affect the
element mean, and preserve a conservative scheme. The multigrid procedure also benefits from
this splitting since it only uses the equations for the element mean at the coarse grid levels. This
results in a significant simplification of the multigrid algorithm, while maintaining good multigrid
performance.

If we introduce the polynomial expansions (6) fdy and W}, into the weak formulation of the
Euler equations (15), use (16)-(19) and the fact that the coefficiéhtare arbitrary, then the
following set of equations for the element mdaniK;(¢,,,)), 1 < < 5, is obtained:

| Kt )| Us(Kj(t ) — /K o Uni(,t,)dK + o H;(U, ,U;5)dQ = 0. (20)
J J

The coefficients for the fluctuating part of the flow fimi(K?) withm = 1,--- 4, are equal
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to:

4 _
S 0wt (- [P u@nac s [ et )iK) -

m=1 ot Kj(t, 1)
_ oy (z. t
| U@t ek - () [ 2
K;(t) kp Ot
oY (z,t) -
| w@ompupae- [ S0 g wac
o Ky Ok

4 _ _
fomi(lcy)/ Mgkp(Uh)MdlC:O, I=1,-,4i=1,--,5

Oz

(21)

The computational mesh can be discontinuous at the interface between two space-time slabs. This
implies that more than one elementjf ! can connect to the elemekit; € 7,". In that case

the polynomial representation bf,(z, ;) in the various elements @"‘1 which connect to the
elementC’’ must be used in the evaluation of the integrﬁ}?(tm Un(z,t;) ) (Z, ) )dK. Thisis
discussed in Sections 2.4.1 and 2.4.2. The different contributions in (21) are evaluated separately.
Define the geometric coefficients', A%, A € R>*® as:

A, = [ 2080y @ ar.
<

A2, = / @t o (),
Kj(t

1)
_ 1 2
Alm - - Alm + Alm’

and the coefficient® € R>*5, which couple the space-time slabs, as:

BulUi ryet) = | o, Uni(E ) 6K (22)
J\tn

The element face and volume flux contributidRs € R°*5, R2 € R°>*4 are defined as:

RY(UF |an Uyt lar) = /Q (@) H (U U} )dQ 23)
J
oz 1) -
Ra(Ulxy) = [ D 7 w3)ar, (2
IC;-’ Tk

and the integrals of the stabilization operafdoe R*** are denoted as:

O (Z, t . OUm(E,t
Din (Uil Uil = [ 20, ey, ey 2o 25)
Kn Tk Lp
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with Uy |c» the solution in the elements € 7, which connect to the elemekll}’. The evaluation

of the flux and stabilization operator integrals is discussed in Sections 2.2.4 and 2.2.5, respectively.
The system of non-linear equations (21) for the expansion coefficﬂégﬂ(gcg?) can be expressed

as:

Lo, 0" =0, (26)

with U™ = U,,:(K), K € 7", 0 <m <4, 1 <i < 5,andL : RP*® x R5*5 — R5*5 having
components in each space-time element:

Lio = [K;(t,) | Ui(Kj(th 1) = Bio(Uy i, i)) + Rio(Unliey, Up i), 27)
4
Li="Y  (Am(K}) + Din(Unlicy, Uplicy)) Uni(K}) = B (U |, 1))~

m=1
AUi(Kj(ty1)) + Riy(Uy lor, U lar) = RA(Unlicp),  1=1,-- 4. (28)

The space-time discontinuous Galerkin discretization results in a set of non-linear equations (26)
for the expansion coefficients”. This set of non-linear equations is solved with a Full Approx-
imation Storage (FAS) multigrid scheme, which is discussed in Section 2.3. Since the evaluation
of the coupling termsB between space-time slabs is fairly complicated for general meshes it is
also useful to consider the equations for continuous grid motion. In this case these integrals are
relatively simple:

le(U]j|K](tI)) = Blmﬁmi(K"?il)
with:

By, = / O (Z, ) (Z, 1, VK.
Kj(tn)

If we use the relationByy = | K (t,)] and(?Oi(IC;?‘l) = U;(Kj(t;)) then (27) is a standard finite
volume discretization for the element mean.

Remark 2.2.3 It would have been more convenient to define the element mean flow field for the
space-time elemeit instead of using the element mean flow fiel&if{t, . ;)), but this would not
resultin a decoupling of the equations for the element mean from the equations for the fluctuations
U, due to the weak coupling between the different time slabs in the weak formulation (15).

2.2.4 Flux Calculation

2.2.4.1 Extension of the HLLC scheme to moving meshes

In Section 2.2.2.3 we introduced the HLLC flux into the weak formulation in order to prevent
numerical oscillations around discontinuities. The formulation of the HLLC scheme discussed
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UL UR,

D ) A T
Xy, TR

Fig. 2 Wave pattern used in the definition of the HLLC flux function for an element face moving
with velocity v. Here S, and Sg are the fastest left and right moving signal velocities. The solution
in the star region U* is divided by a wave with velocity Sy, .

in Toro et al. (Ref. 40, 41) and Batten et al. (Ref. 5, 6) is, however, only valid for non-moving
meshes. In this section we will discuss the extension of the HLLC scheme to moving meshes.
This extension is most easily accomplished by considering the structure of the wave pattern in
the Riemann problem which is assumed in the HLLC scheme, see Figure 2. The HLLC scheme
assumes that we have two averaged intermediate $fdtaadUy, in the star region, which is the
region bounded by the waves with the slowest and fastest signal sfeea®l S, respectively.

The star region is divided into two parts by a contact wave which moves with velggityOutside

the star region the solution still is at its initial values at titgpg which are denoted’;, andUg

and are equal to the trac&§ (t,,) andU;r (tm), respectively. In the time intervidl,,,, t,, + At)

the solutionU 1.1, at an element face which moves with the velocitihen is equal to:

UL =U, (tm) if S;, > v,
Uz if SL§U<SM,
Unrie =4 © (29)
Us if Sy <wv< Sg,
UREU:(tm) if Sgp <w,

where depending on the grid velocitywe have to consider four different cases. The time interval
At is chosen such that there is no interaction with waves coming from other Riemann problems.

Assume thatS;, < v, Sg > v, andSy; > v, then we can calculate the flill ..o (UL, Ug)
in the time intervallt,,, t,, + At) by integrating the Euler equations over the control volumes
ODFEFC andOEABF as shown in Figure 2. Using Gauss’ theorem we obtain for the control
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volumeODFEFC the relation:

Sp At VAt
/ ULd$+/ Up(z,ty, + At) dz
xy, S At

0 tm+At tm+At
_ / Un(, te) dav + / F(Un(wr, 1)) dt — / FU; (vt 1)) dt, (30)
Ty, tm tm

and for the control volum&FEABF:

TR

Sy At SrAt
/ Up(z,tm + At) dx—l—/ Up(z,tm, + At) dw—{—/ Ugrdx
VAt Sy At SrAL

TR tm+At tm+O
= / Up(, tm) dz + / F(U;F (ot £))dt — / F(Un(zp,t))dt, (31)
0 tm tm

with F(U,) = axF(Uy). If we introduce now the averaged solutiobig and U%, which are

defined as:
1 Sy Nt
Uf =———— Up(x,tm + At)da,
LSy — Sp)At /SLAt n( )
1 SrAt
U*:/ Up(x, tm + At)dzx,
B (Sr—Sam)ot Js,, n )

and use the fact thajfiE is constant along the line = vt in the Riemann problem then we obtain
after subtracting (30) from (31) the following expression for the HLLC flux at the interface in the
time interval[t,,, t,, + At):

Hurre(Ur, Ur) = 3(F(U;, (vt,1)) + F (U (vt, 1))

(F(UL) + F(UR) + ((Sz. —v) + (Sar — 0)) Ui+

N[ =

((Sp—v) — (Sm —v))Up — SLUL — SrUR).

For the other three case$S; < v,Sgr > v, Sy < v), (Sp < v,Sgr < v,Sy < v), and

(S > v,Sg > v, Sy > v) a similar analysis can be made. If we combine the four cases then
we obtain the following expression for the HLLC flux at a moving interface in the time interval
[tm, tm + AL):

Hyppe(Up,Ug) = 2(F(UL) + F(Ur) — (ISt —v| — [Sar — v)Uj+
(|SR — 1}’ — ’SM — UDUE + ’SL — U‘UL — |SR — U‘UR—

v(UL, + Ur)). (32)
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In order to completely define the HLLC flux we still need to define the star stgtesdU7,, and

the wave speedS;, Sg andS),. This can be done in various ways, but since there is no difference
with the HLLC scheme for non-moving meshes, we only state the final results. We will follow the
approach of Batten et al. (Ref. 5) which assumed that:

Sy =y =up =14",

with 47 r = nx - ur, g, anda* the normal velocity calculated from the HLL approximation. This
results in the following expression féf:

pRUR(SR — URr) — prUr(SL — 4r) + pr — PR
PrR(SR — UR) — pL(SL — i)

Syv = (33)

The star states are obtained using the Rankine-Hugoniot relations across the waves moving with
the velocitiesSy, andSg:

0
S — 4y, 1
ol Sl _— * _ m 34
UL SL N SM UL + SL 7 S]w (p pL)”K ) ( )

p*Snm — priy
with an identical relation fot/;, only with L replaced withR. The intermediate pressures are
equal to:

pi =pr(St —ar)(Sm — 4r) + pr,
Pr =pr(Sr — UR)(Sm — UR) + PR, (35)

but the definition ofSy; ensures that; = p}, = p*, as is required for a contact discontinuity. The
wave speeds$; andSg are computed according to Davis (Ref. 20) as:

SL:min(ﬂL—aL,ﬂR—aR), SR:max(@L+aL,@R+aR), (36)

with a = /~vp/p the speed of sound. Batten et al. (Ref. 6) showed that it is better to use wave
velocities based on the Roe averaged velocities, but we did not notice any major difference with
the simpler waves velocities defined in (36) for the simulations discussed in these notes.

2.2.4.2 Evaluation of flux integrals

The flux integrals (23) and (24) are computed by transforming the integrals to the reference face
(—1,1) and reference elemett, respectively, after which the integrals are approximated with
product Gauss quadrature rules. For the element face flux integrals (23) a two-point product Gauss
quadrature rule is used for the integration in the local coordinate direciorgs andés, and a

three point Gauss quadrature rule for the integration in the local coordinate dirégtiorhe
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volume flux integrals (24) are computed with a three-point product Gauss quadrature rule. In
Section 3.3.8 Corollary 3.3.16, it is shown that these quadrature rules are sufficiently accurate
to ensure that the discontinuous Galerkin discretization discussed in these notes is second order
accurate in a suitable Sobolev norm. The product Gauss quadrature rules also evaluate the flux
integrals sufficiently accurate to satisfy the Geometric Conservation Law (GCL). The GCL, which

is originally formulated by Thomas and Lombard (Ref. 39), requires that a uniform flow field is
not disturbed by the grid motion and is an essential condition in order to obtain at least first order
accuracy in time, as was proven by Guillard and Farhat (Ref. 24).

The product Gauss quadrature rules are easy to implement, but require 12 flux evaluations per
element face integral and 81 flux evaluations per volume integral. This number can be slightly re-
duced using more sophisticated quadrature rules, as described by Stroud (Ref. 38), but the number
of flux evaluations remains large. In Section 3 we describe and analyze a technique to reduce the
number of flux evaluations in the flux integration to one, while maintaining the same second order
accuracy as obtained with the product Gauss quadrature rules.

2.2.5 Stabilization operator

The discontinuous Galerkin finite element method without stabilization operator does not guar-
antee monotone solutions around discontinuities and sharp gradients. In these regions numerical
oscillations develop when polynomials of degree one or higher are used. For the Runge-Kutta dis-
continuous Galerkin method Cockburn, Hou and Shu (Ref. 16) derived a local projection or slope
limiter which guarantees monotone solutions for multi-dimensional scalar conservation laws. This
approach was a major breakthrough for the numerical solution hyperbolic partial differential equa-
tions because initially discontinuous Galerkin finite element discretizations experienced severe sta-
bility limitations. The use of a slope limiter in combination with a DG method results in a robust
numerical discretization and has become quite popular. We have used this technique to compute
complex three-dimensional (unsteady) flows for aerodynamical applications in combination with
local mesh refinement, Van der Vegt, Van der Ven and Boelens (Ref. 43, 44). Other applications of
DG methods with limiters, including higher order discretizations, can be found in Cockburn and
Shu (Ref. 17), Cockburn, Karniadakis and Shu (Ref. 19), and Kershaw et al. (Ref. 27).

Despite its robustness the use of a slope limiter has serious disadvantages since it may result in
an unnecessary reduction in accuracy in smooth parts of the flow field and prevents convergence
to steady state. The accuracy problem has been an important motivation for Cockburn and Shu to
look at Total Variation Bounded (TVB) DG discretizations (Ref. 15), but these techniques are not
easy to apply in multiple dimensions and contain problem dependent constants which are difficult
to estimate. Recently, Burbeau, Sagaut and Bruneau (Ref. 12) proposed limiters for second and
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higher order accurate DG methods without problem dependent constants which look promising
but still need further testing on real applications.

The problems with the convergence to steady state caused by the limiter are more severe and
originate from an inconsistency in the combination of a discontinuous Galerkin discretization
and a limiter. Since the limited solution does not satisfy the steady state discontinuous Galerkin
equations, it is not possible to reduce the residual to machine accuracy. Instead, the scheme tries
to converge to the unlimited solution, which suffers however from numerical oscillations, and the
limiter must remain active to prevent this. This is particularly annoying for industrial applications,
since it is unclear when to stop the calculations. Convergence to steady state is also important
for unsteady problems. In Section 2.3 we solve the non-linear equations for the DG expansions
coefficients (26) by introducing a pseudo-time and marching the solution to steady state in pseudo-
time with a FAS multigrid algorithm.

The problems in obtaining steady state solutions with a limited DG method are well known, but
have received little attention since most applications of DG methods have been to unsteady prob-
lems in combination with an explicit Runge-Kutta time integration method. After extensive testing
we came to the conclusion that a better alternative is provided by stabilizing the discontinuous
Galerkin method by adding artificial dissipation. This approach is also followed by Barth (Ref. 3),
Baumann (Ref. 7), Cockburn and Gremaud (Ref. 14), and Jaffre, Johnson and Szepessy (Ref. 26)
for the discontinuous Galerkin method and is standard in the Streamline Upwind Petrov Galerkin
(SUPG) and Galerkin least squares methods. In this section we will discuss new stabilization oper-
ators for the space-time discontinuous Galerkin method and in later sections we will demonstrate
that this technigue provides excellent shock capturing and convergence to steady state in pseudo-
time. The stabilization operators use the jump in the polynomial representation at the element
faces in the discontinuous Galerkin discretization and the element residual. In this way optimal
use is made of the information contained in a DG discretization and we maintain the compact
stencil of the discontinuous Galerkin discretization.

The effectiveness of the stabilization operafddefined in (25), strongly depends on the artifi-
cial viscosity matrix@(Uh\,g;_z, U;:\;C;z) € R**4, The definition of the artificial viscosity matrix

is more straightforward if the stabilization operator acts independently in all computational co-
ordinate directions. This is achieved by introducing the artificial viscosity matrig R**4 in
computational space using the relation:

D(Uslicy, Uslir) = BT D(Uliy, Upley) R, (37)
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where the matrix® € R*** is defined as:
R=2H 'grad Gg. (38)

The matrixi € R*** is introduced to ensure that bathand® have the same mesh dependence
as a function ofy;, and is defined as:

H = diag (h1, ha, hs, h4),

with h; € R™ the leading terms of the expansion of the mappihg (3) in the computational
coordinatest;, (1 < i < 4). The multiplication with the factor two in (38) ensures that for
orthogonal cells the matriR is the rotation matrix from the computational space to the physical
space. The integrals in the stabilization operdgy, given by (25) can now be further evaluated,
resulting in:

ov,
K Ok

O dK
96l

Dy (Unlker, Uplicr) = 3

RpkDpq(Unlicy, Uy licy ) R

=4 /’C(H_l)lmépf]([]hbc?’ U;:’/C?)(H_l)qm’JGK ‘dl@v

= 5nm®nn(Uh|K;L’ Uh’K?)

(no summation om), where we used the relationgrad G );; = 0x;/0& andoy,, /0, = opp
and made the assumption titis constant in each element.

The stabilization operator should act only in areas with discontinuities or when the mesh resolu-
tion is insufficient. This requirement can be directly coupled to the jump in the solution across
element faces and the element residual, respectively, both of which are readily available in the
discontinuous Galerkin discretization. In regions with smooth solutions these contributions are of
the order of the truncation error and will therefore not reduce the accuracy in these regions. We
have tested two models for the artificial coefficients:

Model I. In the artificial viscosity model | only the jump in the pressure across the element faces

influences the stabilization matrix. This technique works very well in subsonic and transonic
flows with weak shocks. The artificial viscosity matrix is defined as:

] C Ay o 1" () — 0 ()| [
) =1,2,3,
PURE q

Dgq(Unlicr, Uplkr) = —, -
aq(Un| j | a) |Qj\ (m)) + 0~ (Z(m))

=0, otherwise

with pi(a:(m)) = ~* (p(x(m))) the pressure at the centers of the faSgsC Q”, andy the
trace operator. The scaling factois defined asA = |nx - (u—v)|+a, and is the maximum
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Model Il.

of the eigenvalues of the flux Jacobiahg /oU at the midpoints:,,,) of the facesS,,, with

nx the space normal &', « andv the fluid and grid velocity, and = \/’YT/P the speed

of sound. The constaiit’ is of order one. Other discontinuity sensors, based for instance

on the density, have also been tested, but the difference with the pressure sensor generally
was very small.

For problems with stronger discontinuities the artificial viscosity model proposed and ana-
lyzed by Jaffre, Johnson and Szepessy (Ref. 26) is used. In this model both the jumps at the
element faces and the element residual are used to define the artificial viscosity:

~ 3
Dq(Unlicy, Uplicr) = max(Cohig " Ry(Unlicr, Ulicr) , Cih), g =1,2,3,
=0, otherwise
with

2 OF (Uy) 0Uwi(G
8Uh7i 6xk

« 0 -
R(Uplkr, Uplkr) =’ ) ’ + Co|Uyt (2(ry) = Uy, (w(r))| / T+
k

=0

6
S L REFU ()~ REF U ). 39)

with hic = \/h? + h2 + h2 + h3 andUj, ; the components dff,. The coefficients3, Co,

C1 and (5, are positive constants and set equalip = 1.2, C; = 0.1, Cy = 1.0 and

B = 0.1. For stronger shocks the addition of the quasi-linear form of the conservation law
in (39), which is the first contribution on the righthand side of (39), significantly improves
the robustness of the numerical scheme, since this contribution detects discontinuities very
well. Numerical tests showed that the contributions of the element residual of the quasi-
linear equations and the contributions in the jump of the flux at the element faces are equally
important.

2.3 Solution of the non-linear DG coefficient equations

2.3.1 Multigrid algorithm for pseudo-time integration

The space-time discontinuous Galerkin discretization results in each element in a system of cou-

pled non-linear equations for the expansion coefficiéfits In this section we will describe an

efficient multigrid technique to solve these non-linear equations. The use of a multigrid scheme

is motivated by the fact that it maintains the local, element based structure of the discontinuous

Galerkin discretization when a proper relaxation scheme is chosen. This greatly facilitates the use

of a domain decomposition technique on parallel computers, which are our main target platforms.

The multigrid technigue has only been discussed for the linear advection-diffusion equation by
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Gopalakrishnan and Kanschat (Ref. 22), which theoretically analyzed its performance. Until now
multigrid techniques have not been used for DG discretizations of the Euler equations and on
locally refined meshes. The development of an efficient technique has turned out to be non-trivial.

The non-linear equations of the space-time discontinuous Galerkin discretization (26) are solved
by augmenting them with a pseudo-time derivative:

- 8U(’C?) 1 rm Frn—1
‘Kj(tn—f—l” T = _Kt‘c(U 7U )7 (40)

where the righthand side of (40) is divided Byt to make it possible to obtain also steady state
solutions asA\t — oo, becauseAl—tL is independent ofA¢. The system (40) is integrated in
pseudo-time using an optimized Runge-Kutta scheme in combination with a FAS multigrid algo-
rithm to accelerate the convergence to steady state. On the coarse meshes only the equations for
element mean are used. Depending on the type of artificial dissipation we must, however, modify
the Runge-Kutta scheme.

We define the following five stage semi-implicit Runge-Kutta scheme as relaxation operator for
the multigrid procedure:

Procedure S¥(k, £, Fl, W*):
1. Initialize the first Runge-Kutta stage: V(0 = Wk,
2. Do for all stages s =1 to 5:

(1+ ﬁ;j' (1K1 + D)) )7 =
¥ OZS;‘ n Nk (Y7 (s— Cr(s— r(s— 3 n—
V(O)+W((|K [+ DFED) VD — gh( e grpen 1) + 75
(41)
3. End do

4. Update solution: Wk = v ),
End Procedure S¥,

with K" = Kj(t, ;). In this procedurdV* are approximations to the expansion coefficients
U(K™) at the different grid levels, U* (K1) are the expansion coefficients of the restriction
of U,(K"~1) to the grid levelk, and F% represents the forcing function, which is defined in
Procedure FAS. At the fine grid levelk = M, the non-linear operatag™ : R5*5 x R5*% —
R%*5 satisfies:LM = £, with £ defined in (27)-(28), and we haig, VM, WM FAM ¢ R5*5,
At the coarse grid levels < k < M the components of the operatat§ : R®> x R> — R are
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equal to: £F = L, and we have’*, W*, 75 < R®. The coefficientd/* € R> only consist

of the coefficients of the mean flow field,; and the coefficiend is defined as\ = %, with

AT the time step in the pseudo-time integration. The Runge-Kutta coefficigrage defined as:

a1 = 0.0791451, as = 0.163551, a3 = 0.283663, oy = 0.5, andas = 1.0, and optimized with a
searching technique to improve the stability and smoothing properties of the Runge-Kutta scheme.
The matrixDM € R5*? is defined as:

sv_ (00
0 D)’

at the fine grid level, with the dissipation matrix € R*** given by (25), andD* is zero at

the coarse grid levels. Note, the dissipation operators discussed in Section 2.2.5 both result in a
diagonal matrix, hence the implicit treatment of this contribution is straightforward. The matrix

I € R>*° represents the identity matrix.

The Runge-Kutta scheme (41) is obtained from a second order accurate five-stage Runge-Kutta
method:

e o _ ’i§2|£k(v<s—1>,0k(;cn—l)), fors=1,--- .5, (42)

by treatingV’ in £¥(V, U*(K"1)) semi-implicitly. This is accomplished by approximatifd +

D)V as: (|K"|I + D)V + (A — |[K"I)V—1D, HereA is the coefficient matrix multiplying

V in (27) and (28). The contribution A(|K™|I + D)V (s~ /|K™| then is added and subtracted

to the righthand side of (42) to restore the operatbr This makes it possible to have a residual
L’“(U”, U”‘l) ~ 0 when the solution converges to a steady state, which facilitates the definition
of the multigrid algorithm.

The semi-implicit Runge-Kutta scheme is necessary because the pseudo-time integration would
otherwise become unstable for values\asf the order of one. The use of a semi-implicit Runge-
Kutta scheme was proposed by Melson, Sanetrik and Atkins (Ref. 34) for time-accurate calcula-
tions with multigrid acceleration using a Jameson type finite volume discretization of the com-
pressible Navier-Stokes equations. In Section 2.3.2 we analyze this procedure and show that for
small values of) it also greatly enhances the stability of the pseudo-time integration method for
the space-time discontinuous Galerkin discretization.

The multigrid procedure also requires the definition of the coarse grid meshes and the restriction
and prolongation operator. The unadapted mesh is generated such that it has a sufficient number of
coarse grid levels. For most calculations at least three levels are used. In general the mesh is also
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Fig. 3 Coarsening based on refinement tree. The numbers at the nodes of the tree refer to the
number of leaves in the subtree. The dashed lines show where the tree is pruned. The
fine grid cells and the resulting coarse grid cells are shown to the right.

locally refined, and starting at the leaves of the refinement tree, we traverse the tree backwards
untill a sufficiently large number of cells is merged into coarse grid cells. The ratio of the number
of cells between two grid levels is approximately eight in three dimensions. In Figure 3 an example
of this process is given. This process results in a number of tesselléqgcmsl < k< M, for

each grid level, which are defined as:

noo.__ n n — n n n
T =Kk | K = Uyer, K50, Kj € T},

with I; ;. the indices of the elemeniégl, which agglomerate into the coarse grid elemlélj{;c.
Note, at the fine grid levet = M we haveT,",, = 7,". An example of tree multigrid levels in a
locally refined mesh is given in Figure 4.

We also have to correct for the fact that the agglomerated coarse grid cells are not necessarily hex-
ahedronal elements. This does not give serious problems since at the coarse grid levels we only
use equations for the element mean. These equations are identical to a first order accurate finite
volume discretization for which it is straightforward to obtain a discretization on agglomerated
elements. This is considerably more complicated for a second or higher order accurate discon-
tinuous Galerkin discretization, which also uses the equations for the flow field fluctuations, and
is one of the main reasons for only using the equations for the element mean on the coarse grid
levels.

For the discretization at the coarse grid levels we introduce the approximation $fpaceshich
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Fig. 4 Multigrid levels in an adapted mesh about the NACA 0012 airfoil.
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are defined as:

{Uh ’ Uh|]C:U(K(t;L+1)), VKGT}:k} if 1<k< M,
Vi (Tp'y) =
Vi) if k=M.
The restriction operataf; Vi (Thlk) — Vak—1(7"_) is a volume weighted average and is
defined as:
> irer, , Uoi (K3 [
Zj/eljyk "C;” 7

with 7 € 7,7,.. The prolongation operatdy;_, : Vi.x—1(7"_,) — Vax(7",) is @ pure injec-

I]]:_th|IC;? = (43)

tion and defined as:
L1 Unlier, = U(Kjr(t, 1)), (44)

for all fine grid element&’; € 7,", which agglomerate into the coarse grid elem€fif. We can
now define a FAS multigrid algorithm for the space-time discontinuous Galerkin discretization on
locally refined meshes:

Procedure FAS(k, £*, F&, W*):
1. Do m; Runge-Kutta steps S*(k, £F, F& W*) at grid level k.
2. Compute forcing function:

F(l;—l _ ﬁk—l(I]/Lc—ka:’I’l:—lUk(’Cn—ln +I]]:_1 (F(I% - £k(Wk7Uk(,Cn—1)))7

with FAf = 0.
3. If k > 0 Do Procedure FAS(k — 1,£F1, F&=t Wwk-1)
4. Update element mean solution at grid level k: Wk = Wk + IF  (Wh™ — IF=1wk).
5. Do my Runge-Kutta steps S*(k, £*, &, W*) at level k.
End Procedure FAS.

In the definition of theProcedure FAS we used (17)-(18), which allow us to apply the restriction

and prolongation operator directly to the coefficieitsvithout first projectingl;, to the basis
functions,,. TheProcedure FAS uses a V-cycle multigrid strategy. Other cycling strategies,
such as the W-cycle can be obtained with minor changes t®tbeedure FAS. The present
multigrid algorithm makes rather crude assumptions at the coarse grid levels, but has a good per-
formance in practice. An example is given in Figure 5 for calculations of the transonic flow about
a NACA 0012 airfoil on a locally refined mesh. This figure shows that after each adaptation step,
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Fig. 5 Convergence rate comparison of the residual for the element mean and fluctuating DG
coefficient equations using single and multigrid computations (dark lines) on a twice
adapted mesh of a NACA 0012 airfoil.
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which result in the peaks in the residual, the residual is efficiently reduced by the multigrid pro-
cedure, both for the equations of the element mean and the fluctuations. We have extensively
tested several other multigrid strategies, including solving the equations for the flow field fluctu-
ationsU,,;, m > 1 also on the coarse meshes and more elaborate restriction and prolongation
operators. Although some of these methods were promising in a two-level smoothing analysis,
and their theoretical performance was verified in calculations on simple model problems, none of
these techniques came close to the performance of the multigrid algorithm for the solution of the
Euler equations discussed in this section.

2.3.2 Stability analysis of pseudo-time integration
In this section we investigate the stability of the pseudo-time integration method discussed in
Section 2.3.1. As a model problem we use the linear advection equation:

ou ou

e + Ao = 0,
with a > 0 a positive constant. This results in a relatively simple linear system, which is useful for
analyzing the properties of the numerical discretization. The space-time discontinuous Galerkin
discretization for the linear advection equation using a mesh with grid velogities a, j =
1,--- N, with N the number of mesh points, can be represented in matrix form as:

AU(K7) — BU(K}_y) = CU(KI™Y),

with:
Az e oy —c"
J .7"!‘5 ]"!‘5 ]"!‘5
1 n n
A= 2a1 +c” | —2a/l\t za9 +c" +d —2a1 — " | + 2a/\t
1 j+% n 302 J+% 11 1 ]+% n
—Ag” — AT e —cn 203 + 2cn d
J J i+3 i+3 3081 3 j+% + a2
7 7 _.n n
" c” " A"
-1 G-t i1 T Y
B = —c" —c" c” C = 1 n
-1 -1 -1 | 0 3A:p] ol,
n n 4 n n
—c" —" =c" - ?
j—% J—% 3 j—% 2A$] 0 0

; n_ .,n _ .n zn _ 1 n _ an+l _ =n _ n+l n _

with Az? = 27, — 2}, 27 = 5(2f +27,,), a1 = 7] T}, ag = 2017 Ax%, a3 =
n n+l n _ . n n+l _ ..n n n

20z% + Az, 1 = Aty (a Sji%)’ andsj% T — @)/ Aty Herex anda?

denote the begin and end points of the element at timeespectively. The terms;; anddss are

:(CC

determined by the artificial dissipation operator.
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For the stability analysis we assume that the time step, element size, and velocity remain constant,

ie. At = Aty,, Az = Ax?“ = Az}, ands = s}[l = s;?+l for all j andn, and set the artificial
2 2

viscosity coefficients equal to zero, then the operdtoan be expressed as:
L™, U"Y) = AU(K}) — BU(K} ) = CU(K; ™), (45)

with the matrices4, B,C € R>*3 defined as:

1+6 4 -6 5 & =4 1 00
A=| -5 146 6 |, B=|-6 -5 6|, C=|0 % 0],
—2-8 -6 24360 -5 =6 26 -2 0 0

with 6 = At(a — s)/Az ands < a. The Runge-Kutta scheme (41) is used for the pseudo-time
integration. Consider now the spatial Fourier mode:

U(ky) =e®0r,
with 6 € [0, 27) and: = +/—1. Since the stability of the pseudo-time integration is determined by
the transients we only consider the homogeneous part of the equation for the Fourier coefficient
Ur:

au’ 1

= rF
T A Ou (46)

with P(6) = A — e B. The matrixP € R**3 is non-singular and we can wrif@ as: P =
QMQ~!, with Q the matrix of right eigenvectors ard the diagonal matrix with the eigenvalues
(i (0), (m = 0,1,2) of P(). Introducing a new vectov” = Q~'U* then (46) becomes a
system of uncoupled ordinary differential equations:

dVE  pm(6)

7 Ay Vmo form =0,1,2.
.

This system of ordinary differential equations is solved with the semi-implicit Runge-Kutta scheme
(41), which has an amplification fact6#(z), with z € C. The pseudo-time integration method

is stable if the amplification facto® satisfies the conditionG(z,,(0))| < 1, form = 0,1,2;

0 € [0,2m) with z,,(0) defined as:,,, () = —%um(e). The stability is analyzed for different
values of the physical and pseudo-time stéL-numbers (defined aSF Loy = a/At// Az and
CFLa, = aAT/Az, respectively), and the ratig/ a.

In Figure 6 contour values of the stability dom&i#(z)| < 1 for the 5-stage semi-implicit Runge-
Kutta scheme (41) with optimized coefficients are shown for the physical CFL nufilbéts,; =
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Fig. 6 Locus of the eigenvalues z,,(9), 6 € [0, 27), (dots) of the DG discretization of u; +au, =0
and the stability domain of the 5-stage semi-implicit Runge-Kutta method with optimized
coefficients. CF LAy = 1.0, CFLa,; = 1.8 (top), CFLa; = 100.0, CF LA, = 1.8 (bottom),
no grid velocity.
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1 and 100, respectively. Also shown are the locus of the eigenvalyéd), 6 < [0, 27), which

must be inside the stability region to ensure the stability of the pseudo-time integration. For
CFLa; = 1the Runge-Kutta scheme is stable ©F LA, < 1.94 and forCFLA; = 100 the
pseudo-time step CFL number must be less &, < 1.85, which is unchanged for larger
values of CF'La;. The large stability domain and excellent smoothing properties of the semi-
implicit Runge-Kutta method for small values of the physical time step CFL nhumber is important
for time-accurate simulations.

In Figure 7 the effect of the semi-implicit treatmenti6fin (41) is shown forCFLa, = 1. For

small physical time step CFL numbers the stabilizing effect of this technique is very large and the
pseudo-time step CFL number must be reduced to 1.08 to ensure stability when the semi-implicit
technique is not used. For physical CFL numbers larger than 100 the effect of the semi-implicit
Runge-Kutta scheme is, however, negligible. The effect of using optimized coefficients in the
Runge-Kutta scheme (41) is also large, as can be seen in Figure 7 where the stability contours

for the semi-implicit Runge-Kutta scheme with coefficieats= {, ¢, 2, 1,1 for the stages =
1,---,5 are shown. This are the coefficients for the Jameson Runge-Kutta scheme, which is

a popular Runge-Kutta method in computational fluid dynamics and also frequently used as a
smoother in multigrid algorithms. For this Runge-Kutta scheme the pseudo-time CFL number
must be reduced t6'F LA, < 0.88, when the physical CFL number is equal@# LA, = 1.

When the physical CFL number is equal@¥ L; = 100 then the pseudo-time CFL number
must be reduced t6'F' Lo, < 0.95 for the Jameson Runge-Kutta scheme. The effect of grid
velocity is stabilizing if the grid velocity is in the range< s < a. This is a direct consequence

of the relationd = CFLa(1 — s/a). When the grid velocity is in this range then it reduces

the effective physical time step CFL number and since the pseudo-time integration has a larger
stability domain for smaller values 6t F'L 5, this improves stability.

2.4 Mesh adaptation
In order to improve the accuracy of the discontinuous Galerkin discretization the computational
mesh is adapted to provide more resolution in important flow structures. The mesh adaptation pro-
cedure is based on anisotropic refinement and coarsening of the mesh by subdividing and merging
elements, independently in each of the local coordinate direcgjofis < i < 4), of the reference
element. The data structures and searching techniques for local mesh refinement and coarsening,
which are suitable for the space-time discontinuous Galerkin finite element discretization, are es-
sentially the same as discussed in Van der Vegt and Van der Ven (Ref. 43). The mesh adaptation
is controlled with a sensor function which is based on the following quantities:

e shock sensor, which measures differences in flow quantities and total pressure loss across
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Fig. 7 Locus of the eigenvalues z,,(9), 6 € [0, 27), (dots) of the DG discretization of u; +au, =0
and the stability domain of the explicit 5-stage Runge-Kutta method (42) with optimized
coefficients (top) and the five stage semi-implicit Jameson Runge-Kutta scheme (bottom).
CFLa; =1.0. CFLA, = 1.8, no grid velocity.
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cell faces;

e vorticity sensor, which measures the vorticity within an element;

e grid sensor, which either measures the anisotropy of the mesh or the mesh width of a cell.
We do not control the adaptation procedure using a-posteriori error estimates, since this technique
presently is not sufficiently well developed for the Euler equations. After the mesh adaptation the
coupling coefficients (22), which link the old and new space-time slabs, have to be computed in
order to preserve time accuracy. In the next two sections we will discuss the evaluation of this
contribution for element refinement and coarsening.

2.4.1 Space-time slab coupling for element refinement

Given a refinement between two space-time slabs, where an element is divided in half in one of
the computational coordinate directions, A&t ! be an element in the space-time s“lajbfl, and

K, K two space-time elements ify* such that K} := Kj(t,,) = Kj,(t;}) U K}, (t}). The
solutionUy(z, t,, ) in elementC?™ !is approximated as:

4
Ung(Z,t) = Y Un(K} ™ )hmj(2, 1),

m=0
where the element indexis added td/;, and the basis functiong,, to indicate to which element
they belong. The space-time slab coupling coefficients (22) for the ele¢nts = 0 or 1, can
now be evaluated as:

BV iy i) = [ Uni® ) )R

Kj, (tn

3
Z m( ]C" 1 / Q/Jm’j(jvt;)wl,jk(ﬂ_?,t:)df(" 1=0,--- 4.
m=0 Kjk(tz)

(47)

The summation over the DG expansion coefficients is from zero to threesin¢e, ¢,,) = 0 (cf.

(5)). The evaluation of the integrals on the right hand side of (47) requires an explicit expression
for ¢, ;(z,t;,) in the elementl;,. Since the basis functions,, are defined in the reference
elementK using the basis functions,,, we must linkeyp, ;(Z,t,,) to its representation in the
reference element. Introduce the mappilﬁéswith 1 < <3, andk = 0 or 1, which are defined

as:

n—3+k  ifi=m

Em if i #m,
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with:

K'=(=1,1) x ...x(=1 4k, k) x ... x (=1,1).
i-th entry
Here the subscript denotes the coordinate direction in which the element is refined. Note that
Gk;, andGg; o L} are identical isoparametric mappings/of,. We can use this property to
relate the basis function in the elemédi to the basis functions in its childré6;, andC;,. The
basis functions),, ;, restricted tak;, and K, in (47), transform to:
U jx if i #m,

and we can use (48) to define the basis functipps; in the elementds;, . If we introduce (48)

wm,j = &m © G]_{i = %m o Lf © G]_(ik = { (48)

into (47) and transform back to the reference elentétiten we obtain simple expressions for the
element integrals which can be evaluated with a product Gauss quadrature rule with three points
in each coordinate direction.

2.4.2 Space-time slab coupling for element coarsening

Given a de-refinement between two space-time slabslcj”r&?t1 and IC;‘;1 be two elements in
the space-time sla," ", andK7 € 7,", the space-time element such that := K;th) =
K, (t;)) U Kj, (t,). The integral for the coupling coefficients (22) then can be evaluated as:

Bu(Uy lieity) = /K - U jo (%, b7 )01,5(%, 1) dK +
Jjo\tn

/ Unjy (2,1, );(Z, 65 dK
o

J1 (tn )

3
Al RN RER

Onli3) [ gt (6K, (49)

K (tn)
with 1, ; restricted taC;, andC;, given by (48). After transformation to the reference element it

is straightforward to calculate the integrals in (49) with a product Gauss quadrature rule with three
points in each coordinate direction.

2.5 Grid deformation
The grid in the time slabs is constructed using the motion of the boundary, following the procedure
proposed by Masud and Hughes (Ref. 33). For a given time level ¢,, let 0Q2(t,,) be the
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boundary of2(t,,) C R3. Decompos@®(t,) = I';, UT' into a moving boundary,,, and a fixed
boundaryl'y, with ', N I'y = (. The position ofl",,, at time levelt = ¢, is prescribed by a
displacement functiop, which describes the movement of the boundary. The grid is deformed to
accomodate the movement of the boundary by solving the following equation for the displacement
functions : Q(t,) — R3:

V-([14+7m]Vs) =0, x€Q(ty) (50)
s= g, z el

s =0, xz eIy,

with 7,,, : Q(¢,) — R* U {0} a function designed such that small elements mainly experience
solid body motion in order to prevent grid inversion at sharp corners. For the Euler simulations
discussed in these notes this term was, however, not necessary to preserve grid consistency. The
mesh at time levet = ¢, then is obtained by adding the displacemertb the position of

the grid points at time,,. The system (50) is discretized using a standard (continuous) Galerkin
discretization with linear tetrahedron elements. The resulting linear system of equations is solved
using a diagonal preconditioned conjugate gradient method.

The grid deformation procedure can deform elements in such a way that the isoparametric mapping
F7 from the master elemerdt is not invertible. In order to detect these elements the conditions
derived by Knupp (Ref. 28) and Van der Vegt (Ref. 47) on the invertibility of the isoparametric
mapping are used. If elements are detected which do not fullfil this condition then their defor-
mation is limited by increasing the value of but in most practical simulations this has not been
necessary.
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3 Efficient Flux Quadrature

The computation of the element face and volume flux integrals is by far the most computing in-
tensive part in the space-time discontinuous Galerkin finite element method. The use of Gauss
guadrature rules for the evaluation of the flux integrals, as discussed in Section 2.2.4.2, is straight-
forward but requires a large number of flux evaluations and makes the algorithm unnecessarily
expensive. In order to improve the computational efficiency we discuss and analyze in this section
an alternative flux quadrature technique. This technique is based on a Taylor series expansion
of the flux and uses also information of the flow field gradients, which is readily available in a
discontinuous Galerkin discretization.

3.1 Preliminaries

The evaluation of the flux integrals will be performed in a reference element, and to this end
the following notation is introduced. LekS™ (resp.dS"") be theR* valued (resp.R? valued)
measure o = (—1,1)? such that:

/S : frgdr = /S fds™,
/S : frxds = /S fdS"™,

(1 < m < 6), wheref is a function onS,, C 9K anddz is the Euclidean measure &,. The
precise expression for the two measures is given in Appendix B. In Appendix B it will be shown
that the vector-valued measurs™ anddS™ satisfy the following relation fot < m < 6:

/Sf-dﬁm:;At</§f-d8m—/$f4v-d§m>, (51)

for any integrable functiorf : S,,, — R*, wherev = (Fj:™* — Ft)/At is the local grid velocity.
Taking f = W, F we have:

/ W Frxds = %At (/ WE?-dW—/WEUU-d8m>, (52)
Sm S S

in which we recognize the ALE formulation containing the grid velocity. In the remainder of these
notes we will drop the subscrif from the space-time normal

For the analysis of the local truncation error Section 3.3.4 it is beneficial to rewrite the weak
formulation (15) by introducing the space-time numerical filgp as:

H(U];,U;_,ﬁjc) ifﬁ]c;ﬁo,

Hgsp Uf,UJr,TZ]C = .
SO 35Uy +Up)nca = 5lnalUy = Uy)  if g =0,
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The weak formulation (15) then is equal to:

Np,
Z{—/ (grad W,)T - F(U,)dK + ; W, - Hsp(U, ,U;5,nic)d(0K)+ (53)
j=1 K3 Ky

/Kn ((grad W)™ - D(Uy,)) : grad U, dK} = 0. (54)

3.2 Taylor quadrature rule

In an attempt to improve the computational efficiency of the second order accurate DG method
a novel approximation of the flux integrals is proposed. The flux function in the integrand is
replaced by the second order Taylor series of the flux evaluated at the face center. Terms containing
the gradients transversal to the face are introduced into the discretized equations, enhancing the
stability of the discretized system. Moreover, second order accuracy of this Taylor approximation
of the flux integrals is proved in Section 3.3.4. Based on a flop count analysis (not presented here)
it is estimated that this approximation is computationally more efficient than Gauss quadrature,
because of the reduction in the number of flux evaluations. Also, the locality of the required
flow data (only data in the face center is required) will improve the speed of the flux quadrature
algorithm.

First, we will explain the basic concept of the so-called Taylor quadrature for the face flux in-
tegrals, after which we will present the general formulation for both face and volume flux inte-
grals. In the Taylor quadrature rule, the central part of the HLLC flux, namely the contribution
LFUL) + F(Ur)) in (32), is approximated as:

o F o (U inde ~Fan(U-(E,)) /SsmdSZ“

8fzk z 8U>sz = =m
b (ULE, . ndST
2 G g € | s

Sm
(55)

whereU, = Up, or Ug, &, is the computational face center of the fagg defined byémyi =

+dim, andI(S,,) is the ordered index set defined b§S,,,) = {mq, m3, ms}, mo < mg < my,

the complement ofm} in {1,2,3,4}. These are the first four terms in a Taylor expansion of the
integrand onS. The remaining integrals, which depend solely on the geometry of the face, are
evaluated exactly — only the flux terms are expanded in a Taylor series. The exact evaluation of
the geometric terms is crucial in order to maintain the second order accuracy of the DG method.

The flow derivatives necessary for the quadrature rule can be easily computed, since in computa-
tional coordinates the solution vectby, in cell IC, restricted to the facé,,,,, can be written as:
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=
U|Sm1 = U(gml) + fmg Umg (IC) + fmg Umg (IC) + §4ﬁ4(K)§ (56)

hence, the flow derivatives are equalg‘gél(éml) = U, forl € I(S,,,). The fact that the gradi-
ents occur directly in the approximation of the face flux integrals, demonstrates that DG methods
provide a natural setting for the Taylor quadrature rule.

For the general formulation of the Taylor quadrature rule for both face and volume flux integrals
we return to the weak formulation (54) of the Euler equations using the space-time flux. This
allows us to treat the space-time fluxes through the different element faces in a uniform way.

The first step is to transform the integrals in physical space to integrals in computational space,
8
/ W, - FEnldQ=>" [ W, - FidS;. (57)
Q b
Likewise the volume flux integrals are transformed to computational space:

/VWh:]-'dIC: /th:fJGK|d/€. (58)
K K

Subsequently the flux in the integrand is expanded in a second order Taylor series, and the follow-
ing Taylor quadrature rules for the face and volume integrals are obtained:

W, CFEongedok ~
oK

8 i

OF 1 (&m)

Z [FE(En) /W ST Y 5& /ngldsk} (59)
-1 1€1(Sm) !

8?@‘ (0) (‘)Wm
8& K (9:1:]-

oWy, i -
/ VW, : FdK = ﬂj(O)/ 3 hii ]JGK\d/C—i- & | Jag |dIC, (60)
K K
with 7+ = F(U*).

In Section 3.3.5, Lemma 3.3.3, the conditions for the flux tensor will be given such that the ap-
proximations above are well defined.
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3.3 Taylor approximation

For the stability of the discretization, it was found to be essential to not just expand the central

part of the numerical flux, but also the dissipative part. This has been one of the main reasons
to apply the HLLC flux, where one can hope to obtain reasonably simple expressions for the

derivatives of the dissipative part. Note that in smooth parts of the flow field the dissipative part

of the numerical flux is of higher order than the central part, hence the approximation of the face
integrals of the dissipative part does not affect the local truncation error analyzed in Section 3.3.4.
This section only deals with the numerical flux through the space-time faces. The time-numerical
flux, including the dissipative part of the time-numerical flux, is computed analytically, which is

consistent with the Taylor quadrature rule, since the time-flux is linear.

The application of the Taylor quadrature rule to the HLLC flux can be most easily accomplished

by rewriting the intermediate states (34) as:

0
Sr —ur, 1
U* :7(]’ - - *_ —
L SL—SM L+SL—S]W (p pL)Tf
p*Sm — priy,
[ 0
Sty L UL + 7 P ol
e —— _ | u -
Sp— Sy F S =Sy | FF PL An SL_SMp Sn
uy, M

(right intermediate state is computed likewise). Recognizing the second term between square
brackets on the right hand side as a flux term, the HLLC flux can be expressed as:

A A 1
Huuc(Ur,Ug,n) = cr.Fr + crFRr — §U(UL + Ur)
1[ & 1S — |Sum] I 1Sk| — |Su|
+5 (!SL| Stog g, ) UL 5 19— 5k Sy 5., ) UR (61)

1 <15L|—|SM| SR|—|SM|) \
-5 - P Up,

2 S, — Sy Sr— Su

whereF;, = F(Ur) = F(Uy) - @ is the normal flux. The corrected wave speeds are defined as
S, = S, — v, the constants;, andcp, are given by the relations:

1 52| = |Su|
—= (14 2 OM]
°L 2( R

oo L (y ISkl=1Su]|
" Sr—Su )’
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and the vector, € R® is defined by:

0
Vp = n
Swm
The term%(ﬁ(UL) + F(Ug)) in (61) is referred to as the central part of the numerical flux, the
remaining terms as the dissipative part of the numerical flux.

A complete linearization of the HLLC flux would require the linearization of all wave speeds.
Linearization of the wave speeds is a tedious exercise, not only because the expressions for the left
and right wave speeds are complex, but also because of the upwind character of the HLLC flux.
An efficient linearization of the flux integral would be a linearization where the left and right wave
speeds are assumed to be constant, while retaining certain desirable properties of the HLLC flux.
These properties are stability of the discretization scheme, preservation of uniform flow, and the
contact wave analogy for the contact wave speed. Such a linearization is presented below, for a
given space-time facé = S,,, (1 < m < 6), using the following assumptions:

Assumption 1 The wave speeds; and Si are assumed constant in the face, the contact wave
speedS), is allowed to vary with the flow. Variations with respect to the face normal are ignored
for all wave speeds.

Assumption 2The wave speeds are computed based on the face average rfgrmhi/ | . 5 ndz|.

Assumption 3 The face moments are approximatedfasP Jsd¢ ~ | [s PdS|, for an arbitrary
polynomialP on S, whereJs is the Jacobian of the parameterization®f

Assumption 4 The coefficients in the dissipative flux containing the contact wave speed are as-
sumed constant.

As will be shown in Section 3.3.1, the first assumption is sufficient to ensure that the intermediate
pressures are equal across the contact wave up to second order in the left and right states. In
Section 3.3.2 it will be shown that the other assumptions are sufficient to ensure the preservation
of uniform flow when the Taylor quadrature rule is used. The stability of the scheme will be
demonstrated experimentally in Section 4. It is important to note that the Taylor quadrature rule
puts no restriction on the specific choice of the left and right wave speeds.

Using Assumption 1 to 4 and the formulation of the HLLC flux in (61) we obtain the following
approximation of the face flux integrals:

/S bnHy c(Ur, Ur, M)dx ~ (62)
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1, - f — . —m
5 (cLFi(UL(Em)) + crFi(Ur(Em))) /fndsk
1 OF;
+§CL Z 8Uﬂk( gm Ll/flfndsk
1€1(S)
tien S Yk, o, / €160dS]
GUJ ’ S
1€1(S)

1 =m
-3 / (UL + Un)énvrdS,
S
1[5 1S2] = |Sum] / :

o180 = s REE MY [ prie gs g 63
2(I Ll =St S 5w ) Js 1&n s, d€ (63)
1[5 |S&| = |Su] / i
2<|SR| R — SURﬁanmdﬁ (64)

1(1St] = |Sml 1Skl —|Suml 2
_ _ FZ k .
2<SL—SM Sk — Sy (")

The first three terms on the right hand side of (62) follow directly from (55). In the last term the
functionsF*(p*) are defined as:

Fl(p*) =0
Fi(p") =p*(§m)/§nd5§nl+ (2<i<4)
+Z< 6pUJ>/£l£dS
Ll R, n 1—1
e \ou] U

ﬁ5(p*) :S]V[(fm)p*(ém)/fnjsmdf—f_

op*
3 Su) ( o7t U}“> [ s e

1e1(S)

OSwm OSn A
+ U+ =2 / nds, d€,
16%;9 <8U] o BUJ Rl) el e

which essentially is the differentiation product rule applieghto, in (61). The integrals in (63)
and (64) are written out using (56) and Assumption 3 for the face moments:

/Sm UtnJs,,d =U(E,,) /éanmngr Z Ul/ﬁlfanmdf

lelI(S
wU@m)‘ /3 £nd5m' U / §€,dS™ ‘

1€1(S)
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The grid velocity term is treated in the same way:

[ V- wisds =UE) [ gw-aS™ + 3 0 [ o dS™

S S lers) 7S
(note that this is not an approximation). The analytical expressions for the geometric integrals
[ &6,dS™ and [ &&,v - dS™ are presented in Appendix C.

3.3.1 Contact wave analogy
The intermediate pressures defined in (35) are equal if all flow quantities are evaluated at the same
point. If we assume all wave speeds to be constant in a face, we woulcgﬁ%ve 0, whereas

op*%
clearly -
intermediate pressure, so the intermediate pressures will in general not be equal across the face.

is nonzero. Hence a variation in the left state would have no effect on the right

Since the introduction of the contact wave analogy into the HLL flux has significantly improved
the accuracy of the HLLC flux, we want to preserve the contact wave analogy within the quadrature
rule. We will show that taking the variation 6f; into account, but assumirtgy, andSr constant

across the face, implies that the left and right intermediate pressures are equal up to second order
(compare with Batten et al. (Ref. 6)), which is consistent with the Taylor quadrature rule.

Lemma 3.3.1 Given Assumption 1, we have:

(p;, — pR) (UL + AUL,Ug + AUR) = O(|AUL*,|AUR|?), (|AUL|, |AUR| — 0).

Since the intermediate pressures are equal in the face center by the construction of the contact
wave speed,, it is sufficient to prove that the linear variations of the intermediate pressures are
equal.

Definep = pr(Sr — ur) — pr.(Sr — 4r). Given the definition ofS,, in (33) the derivative of
S with respect to the left state is obtained as follows:

0Sy  Su 0p 1 0 ) )
au, ~ 5 oup T pouy Prin(St i)+ pr)
Sy 0p 1 0 . .
5 aU;, ;M(m prSm(SL —4r))
__Su 0p  10p, pr(Sp —ar) 0Sm  Sum 0p
p oUr paoUg p our, p oUL
:1 3})2 B pL(SL - @L) OSy
poUr, p our,
which is equivalent with: 5 5
. 0S5 7
pr(Sk —g) L = Pr

ou,  oUL’



-54 -

2 NLR-TP-2003-342
@
P
Hence, 5 95 9
PR . M _ Opp

where the first equality follows directly from (35). Likewise it can be proven that the derivatives
with respect td/i are equalD

3.3.2 Consistency of the approximation
Lemma 3.3.2 Given Assumption 2 to 4, the Taylor approximation of the flux integrals preserves
uniform flow. Hence the flux evaluation satisfies the Geometric Conservation Law for moving

meshes.

To prove the preservation of uniform flow, it is sufficient to show that the dissipative part of the
HLLC scheme vanishes in uniform flow, since the geometric terms in the central flux are evaluated
exactly.

Without loss of generality we may assuig < v < Sy < Sgr. The dissipative part of the
HLLC scheme is given pointwise by (compare with (61))

SLﬁLSM (SMU+pvp —J’:") ,
where the subscript® and L are omitted from the flow variables sinég, = Ur = U. For
uniform flow, the contact wave speét; is equal to the normal velocity. With the definition of
the normal in the definition of the wave speeds, Assumption 2, we have:

Sur — u- [¢nde
’fsﬁd$| ’
hence,
u-/nda::SM /ndm AS:S'3SM/dx.
s S S

If we now use Assumption 4 in the first equality, we obtain:

5 A
/SS’L—SJW (S]y[U—l-p’Up—]:) dr =

:SL€LSM/S<SMU+pvp—]:"> dz

:SL(Uu-/ndx+/pvpdx—f-/ndm)
Sp = Sum s s s
g pu'fsﬁd:v
__°L = —F. | ade) =
_SL—SM( (puu + p) [gndx F /Sndx) 0,

(PE +p)u - [sndx
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hence, uniform flow is preserved. Combined with the exact evaluation of the geometrical coeffi-
cients this proves that the Taylor quadrature rule satisfies the Geometric Conservatian Law.

3.3.3 Boundary conditions

The Taylor quadrature rule described above is extended to boundary faces by consistently expand-
ing the boundary conditions in Taylor series. Since the flux for a boundary face is computed using
a right state based on the left state, the expansion only depends on the left state. To be more pre-
cise, for a specific boundary condition gt R> — R® define the mapping describing the dummy

state as function of the left state:

Ur = fuw(UL) = B(UL, Uy),

then
4 FU —F U
96,7 UR) =g F(fulUL)
OF of -
aUk( )8UJ

It is natural to approximate the integrals of the dissipative flux using the Taylor expansjfon of

v o D)
| Vktnda ~Ui(En) [ st + 3 34 Ofi gy o [ ndse

leI(S)

The above two formulas show that the Taylor quadrature rule for boundary faces is equal to the
Taylor quadrature rule for internal faces if we define:

Ari f'w
Uhi = 5775 2w . (65)

It is straightforward to expand the boundary conditions into a Taylor series. For the slip wall
boundary condition for strongly curved surfaces it may be beneficial to incorporate the variation
of the face normal and grid velocity.

An unexpected benefit of using the Taylor quadrature rule at slip flow boundaries is that it results
in considerably smaller entropy and total pressure losses near the slip flow boundary. This will
be demonstrated in Section 4.3.2 and more details can be found in Van der Vegt and Van der Ven
(Ref. 46).
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3.3.4 Local truncation error

In this section we will analyze the accuracy of the Taylor and Gauss quadrature rules for the flux
integration. The Gauss quadrature rules are straightforward to implement but computationally ex-
pensive in comparison with the Taylor quadrature rules. The main result, Proposition 3.3.12, pro-
vides an estimate for the truncation error of the space-time discontinuous Galerkin discretization,
including the effect of the Taylor quadrature rules. The analysis shows that the Taylor quadrature
rules result in the same truncation error for the space-time DG discretization of the conserva-
tion laws, when linear test and trial functions in the reference element are used, as is obtained
with Gauss quadrature rules. Both quadrature rules result in a second order truncation error of
the discretization in the same properly chosen norm. Also, conditions on the flux tEnaod
implicitly also onU, are given which guarantee the applicability of the Taylor and Gauss quadra-
ture rules. These conditions and the error estimates require a high degree of smoothness. The
required smoothness is, however, not available when discontinuities are present in the flow, but in
these areas the numerical discretization will have a reduced accuracy anyway, independent of the
guadrature rule. Definitions of the various Sobolev spaces and (semi)-norms used in this section
can be found in Appendix A.

3.3.5 Validity of the approximation
Sufficient conditions on the flux tensor such that the Taylor quadrature rules (59) and (60) are
applicable are given by the following lemma:

Lemma 3.3.3 LetG : K — K be aC! diffeomorphism for alk € 7,2 If F € (W5*(T,))”,
with s,q € R, 1 < ¢ < oo, s integer wheny = 1, and(s — 1)g > 4, then the Taylor quadrature
rules presented in (59) and (60) are well defined.

The proof of this lemma is immediate using a Taylor series expansion of the Facasd the flux
tensorF, if we can ensure that we can consider pointwise valueg-ofat 9K and F in K, and
also for their derivatives. This requires that we can imbed the flux te;ﬁsi;mCl(fC), the space of
continuously differentiable functions db the closure oK. Sincek is a bounded domain with

the cone property (see Appendix A) afid— 1)q > dim(K) = 4, withs € Randl < ¢ < oo, s
integer whery = 1, the following imbedding exists:

W*4(K) — C'(K). (66)

For integer values of this is part of the Rellich-Kondrachov theorem, see Adams (Ref. 1) Theorem
6.2 part Il, page 144. For fractional order spaces, witiot an integer and < ¢ < oo, this is
a direct consequence of Theorem 4.6.1/6 in Triebel (Ref. 42), pages 327-328, using the relation
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between fractional order Sobolev spaces and Besov spaces, see Triebel (Ref. 42), page 323 and
also Nikol'skii (Ref. 35). This means that pointwise valuesfoand its derivatives exist and the
quadrature rules (59)-(60) are well defined, because the Jacébjais finite whenG is aC
diffeomorphism.0

Remark 3.3.4 For the error estimates in Section 3.3.6 we must know to which Sobolev space the
tracesF* belong. The imbedding theorem (66) ensures #ratc Cl( 'm), but we can also apply

the imbedding theorem directly &),,. If we compare the imbedding conditiofis— 1)q > 4 for

F in the domaink and the equivalent conditiofs’ — 1)q > 3 for the imbedding ofF* in S

then we see thaf* e W*~1/94(S,,). This result can also be obtained from the trace theorem
whens — 1/q is not an integer, see Grisvard (Ref. 23). In the present analysis also integer values
s — 1/q are required and we need to use (66) to determine the Sobolev spacgs for

3.3.6 Analysis of element face quadrature errors
Combining (57) and (59) we can now define the quadrature error functi¢yrafor the integration
of the element face fluxes afC as:

+ +oF OF i (Em)\  am
Eoxc (W, F%) § j WM sz(f) ~FiEn) - &7>d8k . (67)
z 9&
€I(Sm)
An upper bound for the quadrature error of the flux integrals 6¥@fts provided by the following
lemma:

Lemma 3.3.5 Let the tessellatiory;" satisfy the conditio) < h7 < 1, with h7 the diameter
of the smallest ball containing the elemefits= 7,". Suppose that for alC € 7, the mapping
Gy is a C! diffeomorphism withJg1| < C/h}. LetF € (I/Vf;ﬁ(?}f))g’X4
1 < g < oo, sinteger whery = 1, (s — 1)g > 4, (s — 2)q > 1, and W}, € V,!(7,;"), then the
quadrature error| Esx| can be estimated for akl € 7," as:

, With s,q € R,

_ 2—1
|Boxc (Wi, F=)| < CRE V2|2, ol W

1,p,K»

with % + % = 1, andC a positive constant independent’of, 7+ and ¥}, but dependent on the
grid velocity.

Remark 3.3.6 The bound on the inverse of the JacobiarGgf' stated in Lemma 3.3.5 is trivial

for a square hexahedral space-time element and also valid for mappings close to the identity.
Geometric conditions to ensure this condition for general elements are discussed in van der Vegt
(Ref. 47).
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Using the triangle inequality in (67) we obtain the following estimate:
| Eaxc (W), , F5)]

i ) OFE(Em) | 4
Z/S Wi (€ [FE(€) — FE(Em) - Z < OF i &m), | 4gm
m=1 m

lel(S 5

IN

IN

2, +
CIT I Wy Nlg e 8l 7 I o s

where we used in the second step the estingate /3 for ¢ € Sy, and

A 1 =m =m
/ |d8m|§At</ 1S |+/ v d3 \)
Sm 2 Sm Sm

< CAth% < Ch3, form=1,--- .6,

which can be obtained directly from the geometric integrals discussed in Appendix C. The esti-
mates for the integrals oveé¥ andSg follow directly from Appendix C. The constant depends

on the grid velocitys. We also used the fact th&= e W1>°(S). This is a direct consequence of

the imbedding (66), which is applicable singe- 1)q > 4 and the relatior (K) < W1 (K).

This implies, as discussed in Remark 3.3.4, thate W*~1/44(S) — W'>°(S) and we obtain

the estimate:

|Eoxc (W, , FE)| < COF | Wy llgsosl F= 1ozt /gqs

We can further improve the estimate fd#yx | using the generalized Bramble-Hilbert lemma, see
Bramble and Hilbert (Ref. 10).

First assume that — 1/¢ = 2. Define the set of polynomial®;, such that? 4 fkﬂ = 0 for
J

j =1,---,4. For any fixediW,(z) = W,(Fs(¢)) € (W™4(S))®, with m > 0, integer, the
bounded linear functiondly satisfies the relation:

Eoc(W, , F¥) =0, VFE € (Q1(S))>4.

The Bramble-Hilbert lemma (Ref. 10) then states that there is a positive congidtsuch that
for all F= € (W%4(S))***, we have the inequality:

|Boxc (W), , F5)| < CS) || Box I}, s [F 715,86 (68)

with:

N |Eoxc (W, F5)]
I Eoxc II3,, 6= sup ” J—'i}ﬂ -
w 0AFEe(W24(8))574 24,8
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The semi-norm:{ﬂ-’j[]2 0.6 1 < m < 8, can be expressed as a semi-norm with respest,to

using the following inequality (Ciarlet (Ref. 13), p. 246):

1
F 06, < C|‘]F§1’0,/oqo,$m(‘[F5] ioo,gm\fib,q,sm +1[Fs)ly 08, | F 10.5m)-  (69)

The semi-norm${Fs]|, ¢ , k € {1,2} can be directly estimated from the isoparametric map-
ping Gk:

s, s, < Chr, (70)
sy, = O. (71)

Introducing (69)-(71) into (68) and using the assumption on the Jacobi@n frestricted tasS,
as stated in Lemma 3.3.5, we obtain an improved estimaté-sgs|:

| Boxc (Wi, F5)| < Ch M FE [y g | Wi llg oo (72)
where the positive constatis independent of -, 7+ and,, but depends on the grid velocity.

For (s — 2)g > 1 we havelV*~1/24(S) € W24(S), which implies that inequality (72) is also

valid for £ € Ws—1/249(S). This provides more flexibility to choose optimal valuessafndg

in the estimates for the truncation error discussed later, but does not improve the Bramble-Hilbert
estimate.

The test functiondV/,, are chosen from the finite dimensional sp&ge7,"), which implies that

Wy, € (WEP(T,)° with ¢ > 1 and + ¢ = 1, because¥ € (W3?(7;"))>**. Since all norms

are equivalent in a finite dimensional space we can use a homogeneity argument (see Brenner and
Scott (Ref. 11)) to obtain the following inequality:

= 1
| Wh Ny e o= Clg 162 e (I Wi llopic +1Gicly o W

1,pJC)
<Ch*™ | Wi 11 pics if 0<hr <L (73)
Together with the trace theorem, we can use (73) to obtain the following estimatesfalr
|Box (W, F5)| < Ch M| FE g | Wy Nl s
<Oy N g0 | Wi Il ok
<ChT P\ FE a0 | Wi lpk (74)

with 0 < h7 < 1. In the last step we used the relatignk % =1.0
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As discussed in Section 2.2.4.2 we can also use a product Gauss quadrature rule to approximate
(57). A two-point quadrature rule is applied for the three spatial computational coordinafes

and¢s, and a three-point quadrature rule for the temporal computational coordinddefine the
quadrature error functiondl§j- for the integration of the element face fluxesidt in the same

way asFEyi in (67) with the Taylor quadrature rule replaced with the product Gauss quadrature
rule. An upper bound for the quadrature error of the flux integrals 6¥@wusing the product

Gauss quadrature rule is provided by the following lemma:

Lemma 3.3.7 Let the tessellatior?;" be as in Lemma 3.3.5. LeE € (W59(7;))”™, with
5, €R, 1< ¢ < oo, sinteger whery = 1, sq > 4, (s — 2)g > 1, andW}, € V;}(T;"), then the
quadrature error| E§,-| can be estimated for al € 7," as:

_ 2—1
|ESc (Wi, F5)| < Cha P\ FE | goxc | Wi ll1pcs

with % + é = 1, andC a positive constant independent’of, F* and 1V}, but dependent on the
grid velocity.

Given the expressions of the geometric quantities in Appendix C, the product Gauss quadrature
rule with two points in the spatial directions and three in the temporal direction is eXagt i
(Q1(S))? andF* € (Q1(S))*** and we can apply the Bramble-Hilbert lemma in the same way

as for Lemma 3.3.5. The remaining part of the proof is nearly identical to Lemma 3.3.5 and is not
repeated herel

Remark 3.3.8 The product Gauss quadrature rule with two points in the spatial directions and
three in the temporal direction uses the minimum number of quadrature points in a product Gauss
guadrature rule necessary to satisfy the requirements of the Bramble-Hilbert lemma, which is used
in the proof of Lemma 3.3.7.

Remark 3.3.9 Since the Gauss quadrature rule does not use derivatives we can relax the condi-
tion (s — 1)g > 4 to sq > 4 to ensure the validity of the quadrature rule. For more details, see
Lemma 3.3.3.

3.3.7 Analysis of element volume quadrature error
The quadrature error function&l for the integration of the element volume fluxes can be defined
as:

OWh.;

Ex(Wy, F) = //c o, (inj(f) — Fi;(0) — glaﬂj(o)

o9&

) e |dK (75)
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using (58) and (60). The following lemma provides an upper bound for the error in the approxi-
mation of the volume flux integrals:

Lemma 3.3.10 Let the tessellatior¥,” be as in Lemma 3.3.5. L&t € (qum))m, with
s, €R, 1< g<o0,(s—1)g>4,(s—2)g>1,sinteger whery = 1, andW}, € V;}(7,}), then
the quadrature errof Ex| can be estimated for all € 7" as:

| Bc(Wh, F)| < Chy )\ Flaguer | Wi llLpc, (76)

with % + % =1, andC a constant independent bf,, F and W},.

The quadrature errdtx (W}, F) can be estimated as:

OWh; .
B Wh P < [ |G 173(6) = 53 0) = 652 1 ik
J

0Fi;(0)
o€

SChT | F Iy o el Wi 00
S Ch%— H f HS,(],KH Wh HI,OO,K:7

where we used the imbedding (66), which is valid sifee- 1)q > 4. In addition we used fact
that|¢| < 2for € € K and the estimaté,. |Jq |dK < Ch, which can be obtained directly from
the geometric integrals discussed in the appendix.

The estimate of the quadrature error functional can be improved with the generalized Bramble-
Hilbert lemma (Ref. 10). Due to the close resemblance with the analysisgieronly the main

steps will be discussed. For any fixed valuéiof € (W™4(K))® with m > 1, the bounded linear
functional Ex satisfies the relation:

Ex(Wn, F) =0, YF € (Qu(K))™,
hence there is a constafitK), such that for allF € (W24(K))5*4, we have the inequality:

B (Wi F)| < CK) || B 15, ¢ [Flagx

with:

[Exc (W, F)
| Exlly, g=  sup  oemm

v < ChT || Wh [|1,00. -
ozrewzaysxs | F llagr

Using the following inequalities (69)-(71), which are also valid wih replaced withC andsS,,,
with /C, we obtain the following estimate:

| Bic(Wa, F)| < ChT | Flaguer | Wi 10 - (77)
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The estimate (76) then results from the fact thatifig are chosen from the finite dimensional
spaceV,! (7,") in which all norms are equivalent)

We can also approximate (58) with a three point product Gauss quadrature rule and define the
quadrature error functiondI,Cg for the integration of the element volume fluxes in the same way
as Fx in (75) with the Taylor quadrature rule replaced with the product Gauss quadrature rule.

An upper bound for the quadrature error of the volume flux integrals using the three point product
Gauss quadrature rule is provided by the following lemma:

Lemma 3.3.11 Let the tessellatior;” be as in Lemma 3.3.5. L& € (W5%(7,)"", with
s, €R,1 < ¢q<o00,sq >4, (s—2)q>1,sinteger wheny = 1, and W}, € V;}(7,}), then the
quadrature error| E¢| can be estimated for akl € 7, as:

|[EE(Wh, F)| < ChY | Flagen | Wi ll1px, (78)
with % + % = 1, andC a constant independent bf,, F andW,.
The three point product Gauss quadrature rule is exdéhife (Q1(S))® andF e (Q1(8))>4

and we can apply the Bramble-Hilbert lemma in the same way as for Lemma 3.3.10. The remain-
ing part of the proof is nearly identical to Lemma 3.3.10 and is not repeatedere.

3.3.8 Truncation error of space-time discontinuous Galerkin discretization

The effect of the quadrature rule on the accuracy of the discontinous Galerkin discretization can
be investigated by analyzing the truncation error. If we integrate (54) by parts, and introduce
the numerical discretization operatdy, : V,(7,") — V,}(7;*), then we can write the weak
formulation for the DG discretization as:

Find anF;, € V,!(7,"), such that for allV}, € V,}(7,"):

(Ln(Fr), Wh) g, =0,

with £, = UJT, UM K7 and:
NT Nn
(U V)e, = ZZ/ U-VdK, YU,V € Vi(T").
n=0 j=1" K7}

The operatorLy (F},) therefore is an approximation wivF. We can state now the following
proposition, which provides information about the truncation error of the numerical discretization,
including the effect of the Taylor quadrature for the flux integrals.
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Proposition 3.3.12 Let the tessellatiory," be as in Lemma 3.3.5, with; the diameter of the
smallest ball containing the elements € 7,*, with hy < 1. LetW,, € V,}(T,}) and F €
(WEI(T,)>* 4 with s, t,q € R, 1 < ¢ < 00, (s —1)g > 4, (s —2)¢ > 1,and0 < s < t, then the
truncation error of the approximation tdiv.F in each space-time elemefite 7," is equal to:

i (F) = divFllsqzr < Cohl*WFO)lesrgzy + Cihs U F(U) |oqzr+
Coh2 P (L FH ) ogze + |LF () og.r0)s (79)

with }10 + % =1,andC;,i =0,--- , 2, positive constants independent®fand 7. The constant
C5 depends on the grid velocity.

We split the truncation error in each elem&ht 7," into a contribution related to the interpolation
error and a contribution related to the discontinous Galerkin discretization:

| Li(F) = divF ||s,qc< || divF — ]Pjv}}(f]’hn)<divf) ls.q.c +
| Ln(F) — PVhl(T,:’)(diV]:) .,k (80)

with Py (zn) the projection onto the spadé!(7,"). The contributions:; ande, are provided
by Lemmas 3.3.13 and 3.3.14. If we sum (81) over all elemgnts7," and use the Minkovski
inequality then we obtain the estimate (79), with the norm and semi-nori&;it(7,") defined
in Appendix A

Lemma 3.3.13 Let the tessellatiorY;* be as in Lemma 3.3.5 and assume that elick 7," is
star shaped with respect to some ball. Supposgy € Rwith1 < ¢ < oo and either(t—1)qg > 4
wheng > 1 ort > 5wheng = 1. Then for allF € (W%4(K))*** and0 < s < t we have:

| divF — Py o) (divF) g < CHE | F gk - (82)

For integer values of andt this lemma is a direct consequence of Theorem 4.4.4 in Brenner and
Scott (Ref. 11), because the conditib@;\ < C/h% also ensures thatc = hic/pxc > 0, with
pk the radius of the smallest sphere completely containdd. iffor non-integer values afand
t we use Banach space interpolation between the estimates for integer valuasdf. If we
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define the operatdfv := v —Pyignyv and use the Banach space interpolation theorem for linear
operators (Prop. 12.1.5 in (Ref. 11)) then we obtain with- [t] andi = [s] the estimate:

1T oo ooy, wms o (1), —[Wr () Wit 2 ()], < CHE

with 0 < 0 < 1. Using Theorem 12.2.3 in (Ref. 11), which states i@t 02 (KC) = [W™P (), WmHLP(K)]g .,
if the domain/C has a Lipschitz continuous boundary, we obtain the estimate (82)with + 6,
t = m + 0 andv = divF. The Lipschitz condition o is satisfied becaus€ is Lipschitz and

the mapping~r, used to defindC € 7, from K, is aC! diffeomorphism.0

Lemma 3.3.14 Let the tessellatiod,", flux tensorF, and test functio;, be as in Proposition
3.3.12, then for eaclt € 7, we have the estimate:

| Ln(F) = Pya gy (v F) [0 < Crhy I F(U) 000+

Cohy P (|FH(U)o,gox + |F~(U)|2g0x)

P R
mm§+a—L

DefineE(W},) = Egxc(Wy,) + Exc(W},) as the error functional, witiy and Ex: defined in (67)
and (75), respectively. To eadl, € (W™4(K))3, with m integer,K € 7", we can associate the
vector P W), := (D*W},) € (L%(K))°, (see Appendix A), by ordering th% multi-indicesa,
satisfying|a| < m, in a convenient way. Let < p < co. The representation theorem for linear
functions in the dual space of the Sobolev spec&?(K) (Adams (Ref. 1), Theorem 3.8), states
that there exists an elemente (L%(K))?, with % + % = 1, such that writing the vectar in the
form (Uoc)gg\a|gm we have for allW}, € (W™P(K))? the following representation for the error
functional E(W}):

EWy) = Y, / DOW), vq dK. (83)
0<lal<m *F
Moreover,
it v e, geys=Il E [l px> (84)

with B the set of allv € (L%,(K))® for which (83) holds for every¥;, € (W™?(K))>. For
1 < p < oo the element € (L% (K))® satisfying(83) and(84) is unique. If we integratd by
parts then we obtain the representation:

E(Wy) = /IC Wi - (Lu(F) — divF))dk

K
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Sincev € (L%,(K))® is unique forl < p < oo, we must have the relation:

v=Ly(F)— th?(T,f)(diV]:)' (85)
Hence, the minimum is attained whersatisfies (85), and using (84) we have the relation:

| La(F) = By iz (v F) a3, 605=N B upiic - (86)

The spacgW™4(K))° is a closed subspad& of (L%,)°> and there exists an isometric isomor-
phism from(W™4(K))> ontoW C (L%(K))® (see Adams (Ref. 1), page 46). Sinbg(F) —
divF € (W™4(K))?, becauseF € (W5(7,%))>*4, we can therefore transform (86) into:

I Li(F) = Py (zny (AivF) g k=l E [ px -

Using Banach space interpolation we can extend this relation also to noninteger valueBaf
more details, see Lions (Ref. 30) and Adams (Ref. 1).

The proof is completed using the estimates provided by Lemmas 3.3.5 and 3.3.10 and the inequal-
ity || Wh

Lok S| Wh [spxc fOr s > 1.

| Ln(F) =Py (zny (divF) [ls,qx
E %% Egic (W, FT
< sup “IC(I/VVH}“}—)’—'— sup %| TICI;/ ]r’ )’
oWy e (Wer ()" PP pwe (wer ) n sk
sup 1 [Eax(W,, , F7)|
2 ” Wh s,p,KC

0£ WL e (Wsr(K)) °

<O F(U) g + Coby P (FF(U) agox + 17 (U)l2.gox) (87)
: 1 1 _
with 5 + 1= 1.0

Remark 3.3.15For ¢ = 1/(1 —¢), s > 5 andt > 7 in Proposition 3.3.12, withh € R*
an arbitrary positive number, the trunction error of the discontinuous Galerkin discretization,
including the effect of the approximation of the element surface and volume integ@(&s°)
in the W;9(7;*) norm. This shows that the Taylor quadrature rule does not negatively influence
the second order accuracy of the numerical discretization, since we can chadsiérary small.

Corrolary 3.3.16 Let the conditions of Proposition 3.3.12 be satisfied, \th 1)¢ > 4 replaced

by sq > 4, then the product Gauss quadrature rules defined above Lemma 3.3.7 and Lemma 3.3.11
result in the same truncation error as obtained for the Taylor quadrature rule in Proposition
3.3.12.
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The proof is immediate if one uses the estimates provided by Lemmas 3.3.7 and 3.3.110n (87).

Remark 3.3.17 The reader is referred to Section 4.2 for an experimental verification of the error.
For a steady subsonic entropy preserving flow a glab&kerror of the orderh25 was found from

numerical experiments, using data at superconvergence points, even on locally refined meshes.
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4 Application of Space-Time Discontinuous Galerkin Methods to Aerodynamics

The space-time discontinuous Galerkin finite element method has been tested on a number of
problems with increasing complexity. First we discuss results of simulations aimed at verifying
and validating the algorithm and subsequently we present two and three-dimensional simulations,
including a deforming wing, which demonstrate the applicability of the space-time DG method to
unsteady aerodynamics.

4.1 Sod's shock tube problem

Sod’s problem is one of the classical shock tube problems, see Toro (Ref. 41). Its solution con-
sists of a left moving rarefaction wave and a right moving contact discontinuity and shock. Two
simulations have been performed, one with and one without mesh adaptation. Both simulations
start on a uniform mesh with 100 cells in space. The time step is chosen such that the physical
CFL numberCF'L 5, is less than or equal to 0.9. For the simulation with mesh adaptation, in the
first time step two refinements have been carried out, resulting in 21 extra cells. The minimum
mesh width is now one quarter of the mesh width of the original mesh. The mesh adaptation on
the initial solution is crucial because the error generated in the first time step cannot be recovered
with adaptation during the simulation and a result similar to the uniform mesh solution would be
obtained. In the subsequent time steps as many cells were added as removed, so the total number
of cells remained constant in time. The maximum number of refinement levels has been restricted
to one, which implies that no new cells with mesh widths less than half the mesh width of the orig-
inal mesh are created. The adapted space-time mesh is shown in Figure 8. The space-time mesh
clearly shows the structure of the solution and the adaptation based on coarsening and refinement
of elements follows the discontinuities without smearing. The flow solutions on the uniform and
adapted mesh at= 0.2531 are shown in Figure 9. Clearly, the solution on the adapted mesh
compares better with the exact solution. The flow solutions for Sod’s problem have been obtained
with dissipation model Il, which results in nearly monotone solutions around the discontinuities.
For all other subsonic and transonic problems the simpler dissipation model | is sufficient.

4.2 Accuracy study of the discontinuous Galerkin discretization

The local element-wise discretization obtained with discontinuous Galerkin methods combines
well with local mesh refinement and the discretization does not strongly depend on the mesh
smoothness. It must, however, be verified if the DG method maintains its accuracy on non-smooth
meshes resulting frorh-refinement. In order to verify this an accuracy study has been conducted
using different meshes and comparing the numerical solution with the exact solution. For this
purpose the subsonic two-dimensional flow through a channel witi*dump is simulated on a
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Fig. 8 Space-time mesh for the adaptive solution of Sod’s shock tube problem.
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Table 1 Number of mesh points in uniformly and adaptively refined meshes
coarse grid medium grid fine grid

original 800 3200 12800
one adaptation 1120 4480 17920
two adaptations 1568 6272 25088

sequence of meshes with 800, 3200, and 12800 elements. The coarsest mesh is shown in Figure
10.

At the inflow boundary total pressure, total temperature, and the velocity direction (normal to the
inflow plane) are prescribed. At the outflow boundary the freestream pressure is prescribed. Since
the entropyp/p” should be conserved in subsonic isentropic flow, BRenorm of the difference
between the computed entropy and the freestream value is taken as a measure for the discretization
error. In Figure 11 thd.?-norm of the error is plotted for uniformly refined meshes. Tite

error is proportional witth5/2, which is better than the theoretical results presented by Cockburn
(Ref. 18) for the linear advection equation. This can be attributed to the fact that we use the data
in the element center &, ,, which can be shown with a simple wave analysis for the linear
advection equation to b@(h) more accurate than the data at the element faces.

Each of the three meshes is also locally refined in two steps in order to test the accuracy of the
method on non-smooth meshes with hanging nodes. At each adaptation step, the mesh size is
increased with 40%. Since the mesh adaptation parameters are the same for all three grids, the
fine to coarse meshes have the following property: for an arbitrary region of the mesh the average
mesh width is halved with respect to the average mesh width in the next coarser mesh for the same
region. Hence the series is suited for a grid convergence study to obtain the discretization error of
the DG scheme on hanging nodes. A survey of the number of mesh points is given in Table 4.2.
In the adaptation the correct geometry of the bump is preserved. A view of the one time adapted
mesh, which initially has 800 mesh points, is shown in Figure 10. haorm of the error on

the adapted meshes is shown in Figure 11, which clearly demonstrates thatg¢h®r on locally

refined meshes in the discontinous Galerkin discretization has the same mesh depetdaxe

on the uniformly refined meshes, despite the fact that the adapted mesh contains hanging nodes
and is non-smooth.

4.3 Comparison of Taylor and Gauss quadrature

4.3.1 Aerodynamic forces

A first comparison of the two point product Gauss quadrature rule and the Taylor quadrature rule
is presented in Figure 12. Transonic flow over a NACAO0012 airfoil has been simulated with a
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Fig. 9 Results of Sod’s shock tube problem at ¢ = 0.2531 on a uniform (top) and adapted mesh
(bottom). Computed results plotted as circles, exact solution plotted as lines.
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freestream Mach number of 0.8, and an angle of attack of 2 degrees. Both the Taylor and product
Gauss quadrature rules have been used. Clearly, the results in Figure 12 show hardly any difference
in the pressure distribution over the airfoil. The lift coefficient are computed to be 0.5387 for the
Taylor quadrature rule, and 0.5348 for the Gauss quadrature rule. The small increase in lift is most
probably caused by the fact that the Taylor quadrature rule is slightly less dissipative.

4.3.2 Slip flow boundary

In an interesting article, Bassi and Rebay (Ref. 4) found that the second order DG method using
first order polynomials for both the flow representation and the geometry elements produced a
severe numerical boundary layer for the inviscid subsonic flow past a cylinder. Bassi et al. apply
the standard steady-state RKDG algorithm of Cockburn et al. (Ref. 16), but without the use of a
limiter, since the flow is subsonic. In their simulations they used an exact Riemann solver, the
equations were discretized on a triangular mesh, and a Gauss quadrature rule was used to evaluate
the flux integrals.

The numerical experiment of Bassi and Rebay has been repeated. Subsonic flow past a cylinder has
been simulated at a Mach number, = 0.38, on a fine64 x 96 mesh and a coars2 x 48 mesh,
both with rectangular elements, which are described using the bilinear isoparametric map. On the
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Fig. 10 Original and one time adapted mesh for converging-diverging channel.
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Fig. 11  L2-Error in flow calculations for converging-diverging channel on uniform and adapted
meshes.
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Fig. 12 Comparison of pressure distribution for the transonic over a NACA0012 foil.
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coarse mesh also a quadratic superparametric representation of the boundary has been used. Both
the Gauss and Taylor quadrature rule have been applied. No artifical dissipation has been added,
and all simulations have been converged to machine accuracy. The numerical boundary layers
are presented in Figure 13; the numerical boundary layer is represented by the total pressure loss,
defined as:

e
s — 1 - 2 (LE20Z DM
08s Poo 1+%(7—1)M§o )

whereM is the local Mach number, andis the ratio of specific heats. Clearly, the Taylor quadra-
ture rule results in a significant reduction of the numerical boundary layer. This difference can
be attributed to the fact that in the Gauss quadrature rule the normal flux is computed at different
locations in the element face. At each quadrature point we consider a one-dimensional Riemann
problem and neglect the tangential variation of the solution in the element face. The tangential
vectors at the quadrature points are slightly different and this results in different shear wave con-
tributions from the quadrature points, which manifest themselves in spurious entropy generation
near the wall. The Taylor quadrature rule considers the Riemann problem only at one point and
therefore results in a more consistent discretization when combined with one-dimensional (ap-
proximate) Riemann solvers.

Bassi and Rebay reported that it was mandatory to use higher order boundary representation in
order to get correct results. In particular, their numerical boundary was foottt dissappear

under grid refinement. This may have been caused by the fact that their computation failed to
converge on the finer meshes. Though they do not present a total pressure loss distribution for
linear boundary elements, the strength of the numerical wake shown in the Mach field plots, would
imply a total pressure loss far exceeding 10%, which is more than experienced in our simulations.
As shown in Figure 13, a superparametric boundary representation does improve the flow results,
but since the numerical boundary layer on the coarse mesh is not all that bad, the improvement is
not as dramatic as with Bassi and Rebay.

Actually, the accuracy improvement under grid refinement, uniform or local, is greater than when
using superparametric elements. This is already clear from Figure 13 where the fine grid results are
more accurate than the coarse superparametric results. The grid refinement efficiency is demon-
strated more strongly in Figure 14, where the previous results are compared with results obtained
under local grid refinement. The coarse mesh has been refined three times and the Mach number
distributions are shown. The adapted meshes are obtained through local grid refinement near the
cylinder, and at each adaptation the number of boundary cells in the circumferential direction is
doubled. Accuracy on the one time refined mesh is comparable to the fine mesh computation, and
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Fig. 13

Comparison of the total pressure loss at the wall for the flow around a circular cylinder
(M4 = 0.38) using Gauss and Taylor flux quadrature rules for isoparametric elements
on a coarse (32 x 48 elements) and fine mesh (64 x 96 elements) and superparametric
elements on a coarse mesh (32 x 48 elements).
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Fig. 14 Comparison of the Mach number field of a circular cylinder at M., = 0.38 using Gauss
(upper left) and Taylor quadrature with (locally refined) linear isoparametric elements
(coarse mesh with 1536 cells (upper right), fine mesh with 6144 cells (lower left), and
three times adapted coarse mesh with 8358 elements (lower right)).
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Table 2 Performance comparison of the different methods.

method computing time [s] speed [Gflop/s]
Osher scheme with Gauss quadrature 1628 2.2
HLLC scheme with Gauss quadrature 754 2.9
HLLC scheme with Taylor quadrature 274 3.4

the numerical boundary layer all but disappears on the three times refined mesh (maximum total
pressure loss of 0.2 percent). Hence it is not necessary to use a higher-order accurate boundary
representation in order to obtain accurate simulation results. More details can be found in Van der
Vegt et al. (Ref. 46).

4.3.3 Computational efficiency

Steady, subsonic flow over an ONERA M6 wing is simulated with a freestream Mach number of
0.4 and an angle of attack of six degrees. Even though the flow is stationary, it has been simulated
with the space-time discretization. This example is chosen to measure the computational efficiency
of the Taylor quadrature rule. Not only the quadrature rules are compared but also the numerical
flux. The original version of the flow solver applied the Osher approximate Riemann solver. As
explained above, for the development of the Taylor quadrature rule it proved necessary to change to
the HLLC approximate Riemann solver. In Table 2 computing times and speeds for the complete
execution of the flow solver are compared for three of the four combinations of quadrature rule and
Riemann solver. Computing times are on a single processor NEC SX-5, for 100 multigrid cycles
with one pre- and postrelaxation on a coarse mesh with 55,000 grid cells. In the transition from the
Gauss quadrature rule combined with the Osher scheme to the Taylor quadrature rule combined
with the HLLC scheme a speedup of six has been obtained. This is partly due to the reduced
number of computations, and partly due to the data locality, which allows higher computational
speeds.

4.3.4 Computational complexity of DG methods

As mentioned in the introduction, the prime motivation to develop the Taylor quadrature was to
decrease the computational complexity of the DG method. In Section 4.3.3 the computational
complexity of the Taylor quadrature rule has been compared with the complexity of the Gauss
guadrature rule. So far, few authors have dared to compare DG methods with conventional CFD
methods. In the following we will compare the DG methods with the finite volume method of
Jameson, which is a very efficient algorithm for transsonic aerodynamics.

For both schemes the computationally most intensive part is the flux calculation. In Table 3 flop
counts and memory I/O are presented for both methods. The analysis of the DG method is based
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Table 3 Comparison of computational complexity of the space-time DG method and a Jameson
finite volume scheme. The flop count is the number of floating point operations required to com-
pute the flux through one element face. The memory access is the number of reads and writes,
measured in words, required for this computation. The ratio of the flop count and memory access
is also presented.

discretisation scheme flop count memory access [w] ratio

finite volume 48 33 15

DG 885 178 5

on the Taylor quadrature rule, including the dissipative part of the HLLC flux. The analysis of the
finite volume method neglects the artificial dissipative fluxes, and only the central differences are
counted. Note that the finite volume method has five unknowns per cell, whereas the space-time
DG method has 25 unknowns per cell.

Per cell the required flop counts is three times the tabulated flop counts (half of the six faces, since
the above counts include residual updates of both cells connecting to the face). Hence a finite
volume solver requires 144 flop per 5 unknowns, that is, 30 flop per unknown. The DG methods
requires 2655 flops per 25 unknowns, that is, 105 flop per unknown. To balance the increase of
flop with an increase in speed, a DG solver should run at four times the speed of a finite volume
solver. For the DG discretisation the computation to communication ratio is more than three times
larger than for the finite volume scheme. This implies that DG solvers will be less sensitive to
unbalanced processor speed and bandwidth, and are expected to run at higher speeds than finite
volume solvers. The average speed of the current DG solver on the NLR NEC SX-5 is 3 Gflop/s
per processor, which is 37.5% of the peak speed. A typical run of a finite volume solver on the
same machine runs at 1 Gflop/s per processor. For steady state simulations the convergence rate
of both flow solvers are comparable. Based on the comparitive speeds we can conclude that the
increased number of flop counts of the DG method is balanced by its increased speed on current
computer architectures.

The high computation to communication ratio of the DG method is also beneficial for cache-based
scalar machines. Without any modification of the code, which has been optimised for vector
architectures, the code has run at 20% of the peak speed on the Origin O3000 series. This again
demonstrates that while the DG method may have a large computational complexity in terms of
floating point operations, the throughput time per unknown is comparable to standard finite volume
schemes.



-79 -
NLR-TP-2003-342

Fig. 15 Pressure coefficient C), at 65% and 90% span for the ONERA M6 wing. Experimental
results are shown with dots.
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Fig. 18 Adapted mesh on ONERA M6 wing.
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4.4 Steady transonic flow

In order to demonstrate the shock-capturing capabilities of the present DG method, transonic flow
around the ONERA M6 wing has been computed. The ONERA M6 wing has a trapezoidal plan-
form with 30° leading edge sweep and a taper ratio of 0.56. The wing sections are based on the
symmetrical ONERA-D profile with 5% thickness/chord ratio. The wing tip is rounded by rotat-
ing the tip section around its symmetry axis. The free stream Mach number is 0.84 and the angle
of attack is3.06°. Calculations are performed on two meshes, a mesh of 440,000 cells (Mesh 1)
and an adaptively refined mesh with a different mesh topology (Mesh 2). In Figure 15 the pres-
sure distribution at the cross sections at 65% span and at 90% span in Mesh 1 are compared with
experiments. The pressure coefficient is define@;as= (p — pso)/3pV2, With po and Vi the
freestream pressure and velocity, respectively. The pressure distribution on the wing and at the
symmetry plane is shown in Fig. 16 and shows that the two shocks merge at 87% span and sepa-
rate at approximately 94% span. Considering the fact that in the simulations the flow is considered
to be inviscid, the agreement is good.

The same computations are also performed on the adapted locally refined Mesh 2. The grid adap-
tation was started by first calculating a steady solution on the initial grid, which consists of 131072
elements. The grid is subsequently adapted three times, independently in all three directions and
the final grid consists of 339226 elements. This adaptation process is completely controlled by
the adaptation sensor. The only user interaction is the specification of the increase in number of
elements during each adaptation step, which is done before the simulation started.

The pressure coefficients at 65% span and at 90% span are shown for the various adapted meshes
in Figure 17. The adaptation process clearly improves the sharpness of the captured shocks. Fig.
18 shows the final adapted grid which clearly shows the lambda shock structure. The mesh adapts
to regions with large flow activity and significantly improves resolution in the shock regions and
around the tip. For efficient adaptation it proved to very important to be able to both add and delete
elements, because initially the grid is primarily refined in the stagnation and rear shock regions
which tend to become overresolved in the initial adaptation stages. The position of the shocks also
significantly changes during the adaptation process when the flow field becomes better resolved.
The shock sensor is, however, qualitative and further improvements in sensor functions based on
some estimate of the numerical error will contribute to improved efficiency in the grid adaptation
process.

4.5 Oscillating NACA 0012 airfoil in transonic flow
The performance of the space-time discretization and mesh adaptation algorithm on unsteady tran-
sonic flows has been investigated with the simulation of the flow field about an oscillating NACA
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0012 airfoil. The freestream Mach number is 0.8, the pitching angle ranges betWeeand4.5
degrees and the oscillation periodlis= 20 (normalized withZ /a.., whereL is the chord length
anda, is the freestream speed of sound), which results in a circular frequereyr/10. The

flow field is computed both on a fine mesh with 32,768 elements and an adapted mesh, which has
approximately 9,400 elements during the simulation. During each time step the coarse mesh is
adapted, with first coarsening followed by refinement. Both simulations used a time step of 1.0 for
the interval[3.0, 13.0] of a period, and a time step of 0.5 in the remaining part of the period. The
smaller time steps during this part of the oscillation period are necessary since the shock at the
lower side of the airfoil has a greater velocity than the shock at the upper side. If the shock moves
through several cells during a time step this will result in numerical oscillations, since no artificial
dissipation or limiting is applied in the time direction. In Figure 19 the hysteresis curves of the lift
and drag force coefficients;, andCp are shown. The results on the fine and adapted mesh are
nearly identical, where the difference in the lift coefficient can be attributed to the improved accu-
racy in the shock due to the mesh adaptation. This can be inferred from the pressure coefficients
C,, at the wing shown in Figures 20 to 22. The pressure coefficients for the fine and adapted mesh
are nearly identical, except in the shock, where the adapted mesh captures the discontinuity better.
The physical interpretation of the flow phenomena shown in Figure 22 at timé2.5 which ap-

pear at the lower side of the airfoil when the shock dissappears, is not clear. Even though smaller
time steps are used in the corresponding time interval, it may be numerical oscillations caused by
insufficient time resolution to capture the motion of the shock. This would be consistent with the
fact that the adapted mesh and fine mesh flow results predict the same phenomena, since equal
time steps are used.

The Figures 20 to 22 also show that the mesh adaptation does not negatively influence the time
accuracy and is very efficient in capturing the flow discontinuities, also for the weak shock at the
lower side of the wing which periodically disappears.

4.6 First torsion mode of the AGARD 445.6 wing

Transonic flow at a freestream Mach number of 0.96 is simulated over the deforming AGARD
445.6 wing. The geometry deformation corresponds to the first torsion mode of the wing. The
grid point displacements are only in theadirection, and the average displacement is zero. Views

of the normally flat wing at the two extreme positions are shown in Figure 23. Maximum dis-
placement occurs at the tip and is of the order of 10% root chord. The normalized frequency of the
torsion mode is 0.192, normalized witlY a., whereL is the root chord and., is the freestream

speed of sound. The wing deformations are accomodated by the grid using a standard grid defor-
mation algorithm to move the grid points. The deformation algorithm essentially solves a Laplace
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equation for the grid point displacements (see Masud and Hughes (Ref. 33)). The grid contains
73,728 grid points. The time period is subdivided into 20 uniform time steps, which are chosen
such that the movement of the shock is captured accurately. Per time steptbsidual for the

cell averages is reduced to the levellof °, which required 150 multigrid cycles on average. Part

of the convergence histories are shown in Figure 24. Including postprocessing, the simulation of
a period required 15,000 seconds on a single processor NEC SX-5 at a speed of 3.5 Gflop/s. The
Mach number distribution on the upper side of the wing and in the symmetry pIa&n&a},
whereT is the period of the torsion mode, is shown in Figure 25. The pressure coeffi¢ient

at 88% span is shown in Figure 26. Also shown is the shape of the cross section geometry.The
pressure coefficient shows strong variations during the oscillation cycle and a rapidly moving and
oscillating shock is captured without numerical oscillations. The results clearly demonstrate the
matureness of the discontinuous Galerkin method. Efficient simulation of the three-dimensional
unsteady flow over a deforming wing is possible using the space-time discontinuous Galerkin
finite element method described in these notes.
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Fig. 23  Wing deformation at the two extreme positions. The vertical coordinate is multiplied with
a factor 5, to make the deformation visible. The flow comes from the right.
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5 Concluding Remarks

In these notes we have presented a new space-time discontinuous Galerkin finite element method
for the time-accurate solution of inviscid compressible flows on dynamic, hexahedron type meshes.
The accuracy is improved using local mesh refinement and we have presented an efficient pseudo-
time integration technique with multigrid convergence acceleration to solve the non-linear equa-
tions for the expansion coefficients in the DG discretization.

In order to improve the computational efficiency of the space-time disconitnuous Galerkin method
a new quadrature rule for the face flux and volume integrals arising in the discontinuous Galerkin
discretization of the Euler equations is presented and analyzed. The new quadrature rule expands
the flux in a Taylor series and uses the gradient expansion coefficients, which are readily available
in the DG method, to compute the flux integrals. This makes the Taylor quadrature rule very
natural and highly efficient within the DG framework. A speedup of three has been obtained
when comparing the computing times for the Taylor quadrature rule with the computing times
for the standard Gauss quadrature rule. Moreover, this gain in efficiency comes without any loss
in accuracy. Both numerical experiments and theoretical analysis showed that the new Taylor
quadrature rule yields a second order accurate local truncation error for linear basis functions, just
as the conventional Gauss quadrature rule does.

The space-time DG method has been demonstrated to combine well with local mesh refinement
in various simulations and maintains accuracy on non-smooth meshes. This makes the space-time
DG method an interesting technique for complex aerodynamic and aeroelastic problems. The
space-time discontinuous Galerkin discretization of the Euler equations combined with the Taylor
guadrature rule has successfully been applied to the simulation of unsteady transonic flow over a
deforming wing and oscillating airfoils. Application of the method to helicopter rotor flows are
presented elsewhere (Boelens et al. (Ref. 8) and Ven der Ven et al. (Ref. 50), the latter demonstrat-
ing four-dimensional grid adaptation in both space and time). These applications demonstrate the
matureness of the discontinuous Galerkin method.
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Appendices
A Sobolev spaces

e A domain2 has the cone property if there exists a finite c6hguch that each point € Q2
is the vertex of a finite con€', contained irt2, which is obtained by rigid motion fror®
and is congruent t6¢’, Adams (Ref. 1).

¢ Define the standard Sobolev spdd&™?(Q2), with m € Z, m > 0,1 < p < oo, and
) C R", as:

W) := {v € Lig (V)| || v |

m,p,Q< OO} .

HereL!

loc

(©2) denotes the space of locally integrable functions:
L},e(Q) :={v|v e LY(K), Vcompact K C interior Q},

andL!(K) the space of Lebesgue integrable functiongsriThe Sobolev nornfj v ||, .0

is defined as:
H v ||mp, / |Dav|pd$ , if 1<p< oo,
\oz|<m
| v |lmp0 = max (ess sup |[D%v(x )|), if p= o0,
la|<m e

and the semi-norm®|,,, , o and{v},, , o are forl < p < oo defined as:

/p
hupsi= (3 [ 1070an) .
Ia\

- Z / ‘ &UZL 1/p

with « the multi-index symbol, and the usual modification fo= co. The derivatives in

the (semi)-norms have to be considered as weak derivatives.

e For a bounded or unbounded open dom&irC R”™ with the cone property the Sobolev
spacelV*P(Q2), withs € R, s > 0,1 < p < o0, is defined asiW*?(Q2) = W™P(Q2) when
s = m is a non-negative integer, and for nonintegexs the subspace oF"™?(Q2) with a
finite Sobolev-Slobodkij norm:

[Du(z) = Dw()P U
o lopor=(1l v I, vt z // |$_ P D g ay)”, 1<p <o

|D%(z) — D(y)|
| v ||sp0:=max(|| v |[m,oco0, max ess sup )

p=0
|a|=m 4 WYEQ, xHY |=T - y|U 7
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with m the integer part o, andoe = s — m, with 0 < o < 1. Note, with this defini-

tion fractional order Sobolev spaces coincide f§aroninteger and < p < oo with the

Besov spaces defined in Triebel (Ref. 42), pages 310 and 323 (see also (Ref. 35)), for which
extensive imbedding theorems exist.

e Define the broken Sobolev spad&;”(7,"), with s € R, s > 0 and1 < p < oo, as:

Wiz = {v e L(Ty)

vl € WHP(KD), VK € Th"} , (88)

with the norm and semi-norms defined as:

1
olllsprr =( 3 T2, )"

KeT
1
[0)sprr =( D o2,
Ke1,r
1
)lsmrr =( 3 2, o) P
ICeTh”

e The norms and semi-norms on product spaces are extended naturally. For instarce if

R™ v = (vy,--- ,vy) then:
1o o= (3 10 pe) ™. i 1<p <. (89)
=1
10 2= 255 1 0 e (90)
[[0]lm,00.00 = max sup Hag;;ﬂm , (91)

with || - || the Euclidian norm.

e The product spacg’; is defined forl < p < co as:
LR(Q) = L, LP(9),

with the associated norm given by (89).
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B Some facts from differential geometry

Given a parameterizatiofi : (—1,1)"~! — S, whereS is curved hypersurface R", integration
over the surfacé is defined as:

oF oF
o= [ e |G nn e e

where the outer produet= w1 A- - -Aw,_1, for n—1 vectorsw; in R™, is defined component-wise

by the rule

v = det(wi, ..., wy—1,€j),

with e; thej-th basis vector itR™. From this formula itis clear that this concept is a generalization
of the outer product ifR3.

LetS,, (1 < m < 6) be one of the six space-time faces of the eleniemthich is parameterized
by the mapG k. Let Fs,, be the parameterization &},, obtained from the restriction a¥ 5 to
the appropriate face of the boundarykof= (—1, 1)%. As computed in Section 2.2.2.2 we have:

OF OF
1At Sm (t) A 85m(i)

OFs,  OFs, , OFs

m 0&m
A - > , 92
8§m2 8§m3 854 _ %Af . (aggm (t) A 8§§m<t) ) ( )
m2 7773

where the outer product on the right hand side is the usual outer prodikt and Az =

FErH(€) — FR(€). The parameterizatiof, ) of the space facs,, (t) at timet is obtained by a
further restriction ofF's to a constant computational time coordinate. Note X m“) A %

is aligned with the space normal 6f,(t) C 9K (t) C R3. By construction the ofjter prodact is
aligned with the space-time normabf S,,,:

OFs OFs 5 OFs
Dby |\ Demy |\ 084

| OFs OFs 8F OFs |
Dy |\ DEmy | 61

n=s

wheres = +1 is such that the normal is outward pointing. By definition,

0Fs 0Fs 0Fs
dz — m mop LS ge e déy, 93
[ e = s/fa% S N ey (93)

hence thék*-valued measuréSm, 1 < m <6, is defined as:

0Fs O0Fs 8F5

DT A T
Define theR3-valued measuréS™ on S by:
—m  OF OF.
48" = 5o p T ge i g des.

Ems IEms
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Using the integral rule (93) for the space-time fat® and relation (92) we find for an integrable
R*-valued functionf on S,,,:

OFs, ) 9Fs,.)

/ Z frngpdr =s / Atz fk< 8£m2 T > A&y A€y déy

mkl

8FS GFSm(t)
/ f4ZAxk< ang ) A T )kd§m2d§m3d§4

:siAt <[§f-d§”—/§f4v-dsm)

:< f - ndx — f4v-ndx) .
Srn SnL

Hence the geometric face integrals containing the space normal and grid velocity are evaluated as

follows:
1 =m
dibunde =s > At / 66,dS™, (94)
Sm 2 S
B 1 AT —m
/Sm (;Sl(;ﬁkv . nd:z: —SZAt/SflgkAt . dS (95)

For the faceS; the parameterization is given @y(¢) = (t,, Fx(€)) for K = K(t,). A simple
computation shows that for this face we have:

dS” = —|Jk|esd€,

wheree, = (0,0,0,1)7 is the last unit vector iiR*. Hence,

[§f-d57= /Sf4|JK|d§=/K(tmf4dx.
/Sf-déﬁ‘:/m )f4dx.

n+1

Likewise we have:
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C Geometric integrals

The parameterization of the space-time f&ads the linear interpolation in time of the isoparamet-

ric parameterization of the space fac®s= S(t,,) andS™"*! = S(t,.1). Leta?, ..., =} be the
four vertices of the fac8™. Then the isoparametric mapping.t is given by:

Fan i (§1,82) =27 + 2561 + 256 + 276162

1 1

:21(381 + x99+ 23+ ZL‘4) + 1(—:E1 + 20 — 3+ 1'4)514— (96)
1 1
Z(—m — o+ 3+ 24)62 + 1(931 — 29 — 23+ 24)&160.

Define the vectors (ilR?):
no_an A AT 1 A
Qpp =T N T3z = g(ﬂfl —zy) A (75 — 2%),
n _an n n n n n
ayg =Tg N Ty = §($3 —zy) A (25 —27),
1
n o __an n n n n n
agy =Ty N T3 = é(xl —x5) A (z) — 75),
Coo :.C%S—H VAN .Cﬁg + ig VAN .ﬁg+1
C10 :@3""1 AN .@Z + .@g A .@Z—H

bl s A A antl
co1 :xT' /\x?%—xﬁ/\x?ﬁ'

. (97)
noo :CLS’Jl + ago + ECOO,
n+1 n 1
nip =ayg  +ajg+ 5610,
n+1 n 1
no1 :a’Ol + any + 5601,
doo =agy ' — agy,
do =aliy" — afy,
do1 =ag; — afy.
We find:
OFswy  OFsw 1 2/ ntl
_ +1 +1
8€m2 A af’mg _1(1 + 54) (ago + meG?O + §m3a81 )
1
+1(1 — &1)%(afly + Emoaly + Emsaly) (98)
1
+Z(1 — &) (co0 + &maC10 + Emscor),

and the geometric integrals (94) obtained using this formula are tabulated in Table 4.
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Table 4 The integralsg; fS d1omndz. The sign form = m; is equal top,,, s

m=0 m=mp; m=mg Mm=mg3 m=4
I=0 3noo  +3n00 3n1o Ino 2doo
l=my §gnio Egnio anoo 0 2dyo
l=ms gnor  Egno 0 $n00 2doy
=4 2dyo +3do 2dyo 2do1  Enoo — oo

Table 5 The integralsy; [s ¢i¢m - vdz. The sign form = m; is equal todm, |s-

m=0 m=m; m=mg m=m3 m=4

=0 wooo +v000 V100 V010 V001
l=ms wino +v100 V200 V110 V101
l=m3  wvo10 +vo10 V110 V020 V011
I=4 w1 +vo01 V101 V011 V002

The grid velocityv is given by:

T ~ o ~ o
= bl + b2§m2 + b3£m3 + b4£m2£m37 (99)

YT A

with b; = (:&?“ —27)/At. Note that the grid velocity does not depend on the computational time
coordinate.

Define the numbers:

vooo = 3 binoo + § bormio + 3 byonon,
V100 % by -ngo  + % bi-nio + % by - not,
V010 % b3 -noo  + % by-nio + % b1 - no1,
V200 % bi-noo + % by ni + 2% bs - nou,
V020 % bi-noo + 2% by -n1o + % bs - nou,
V110 % by -noo  + % by -nio + % by - not,
V001 2 biodey + 2 by-dio + % b3-don,
V101 2 bydyy + 2 bi-dio + £ by-don,
V011 2 by-dyg + £ birdio + 2 bi-do,
Voo2 = % bi-noo + % by n1o + 4% bs - noy

- £ bi-coo — Z by-clo — Z b - co1.

Using these expressions the integrals (95) are computed and tabulated in Table 5.
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D Discrete conservation

In order to stay conservative at the discrete level, the face fluxes are computed for one cell connect-
ing to the face, and added to the other cell using only some permutation relations. These relations
are the generalization of the principle that for general finite volume schemes the flux added to the
one connecting cell is substracted from the other.

Let S connect the cell& andK’. The local face coordinate syste(mmé,fgl%, ¢)) of the face de-
rived from the topology of celk’ is connected with the coordinate systéfn,,, m., §4) through:

/!
571’2 (A0 o 1<i<8 (100)
gmé - 0 1 ‘Smg ) ~1xX0,
&) €4

whereA; is one of the eight following rotation/mirror matrices:
10 0 1 -1 0 0 -1
Al = ) A2 = ) A3 = ) A4 = )
0 1 -1 0 0 -1 1 0
-1 0 0 1 1 0 0 -1
As = , A= ; A7 = , As= :
0 1 10 0 -1 -1 0

Letm;, resp.m;, (1 < i < 3) be the ordering of the space gradients in é&lresp.X’, such that
(compare with (56)):

Uls (Emas €mgs €a) = U &y ) + EmaUnng () + &y Uy (I0) + €40 (K)
ULS (6 €y €0) = UGy K') &0y Ung (K1) €1 Upy (K) + €404 (K.

Using (100) we find that in the computational coordinates of &tiee latter equality is equivalent
with:

Ul (G &ms €4) = UEny s K) + &ma Upy (K) + iy Uy (K') + E4Ua(K).

where the transversal gradients are defined by:

By definition of the basis functions, (100) implies:

¢7’—Cn/’2‘5 :Az ( qbﬁz‘s > )
q%/g\s Do s
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The remaining basis function is constant on the fage; s = ss anddﬁ’,ﬂg = sl.
The numerical flux is consistent, and hence:
Fuuc(Ur,Ur, 7)) = —Fuuc (U, Ug, —n).

Let U; andUy, be the left and right states as seen from &Zland let’ be the outward pointing
normal of faceS for cell K’. Then,

/FHLLC(UL,Uﬁ,n/)diL‘Z/FHLLC(UR,UL—??)de
S S
= —/FHLLC(UL,UR,n)d%
S

/S¢Q,1FHLLC(U£,U1’3,7L’)dx: —s’S/SFHLLC(UL,UR,n)dx, (101)

or, oK
/ "2 | Fuuc(Ur, U, ') = _Ai/ "2 | Fuc (U, Ug, n)dz,
s\ Dy s\ o,

/ﬁbleHLLc(Ui,Uzlz,n/)d%: _/¢4ICFHLLC(UL7UR7n)dx-
S S

So, the face fluxes for cell’ easily follow from the fluxes for celC.
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