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Executive summary

A stochastic backscatter model for grey-area
mitigation in detached eddy simulations

Problem area
Massively separated flows play an
important role in topics such as the
design of silent landing gear, the
study of stability and control prop-
erties of fighter aircraft in relation
to vortex breakdown, and the study
of aerodynamic loads on structural
aircraft components due to buffet-
ting. These flows are strongly tur-
bulent, involving a large range of
spatial and temporal scales, which
makes it difficult to model their dy-
namics with high physical accuracy
and reliability. Flow computations
based on the Reynold-averaged
Navier–Stokes (RANS) equations
are not able to capture the smaller
turbulent scales. Large-eddy sim-
ulations (LES), on the other hand,
do capture a significant range of
scales, but are computationally too
demanding for complex geometries.
In recent years, therefore, research

has focussed on hybrid RANS–
LES methods, also known as de-
tached eddy simulations (DES).
These methods improve the phys-
ical accuracy compared to RANS,
but without the cost of a full LES.

Description of work
An important issue in DES is the
capturing of free shear layers. Typ-
ically, free shear layers are present
between the attached boundary lay-
ers (computed with RANS) and
the separated flow regions (com-
puted with LES). A new stochas-
tic backscatter model is proposed
for DES that accelerates the devel-
opment of resolved turbulence in
these free shear layers. As a result,
the model significantly reduces so-
called grey areas in which resolved
turbulence is lacking after the com-
putation has switched from RANS
to LES. The new stochastic model
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adds stochastic forcing to the mo-
mentum equations with a rate of
backscatter from the subgrid to the
resolved scales that is consistent
with theory. The effectiveness of
the stochastic model is enhanced by
including spatial and temporal cor-
relations of the stochastic forcing
for scales smaller than the cut-off
scale.

Results and conclusions
The new stochastic backscatter
method strongly reduces the grey
area in DES as is demonstrated for
two cannonical test cases: the plane
free shear layer and the round jet.
For the plane free shear layer in
particular, 3D instabilities start im-
mediately at the onset of the shear
layer. This leads to a broad energy
spectrum, indicating fully devel-
oped turbulence, only little further
downstream as well as a correct
growth rate of the shear layer. Fur-
thermore, the new model is also
effective on relatively coarse grids,

reducing the grid dependence of
DES.

Applicability
The grey-area issue is most pro-
nounced in flows with little or no
recirculation of turbulence back to
the separation onset where it could
destabilize the shear layer. For ex-
ample, the prediction of the noise
generated by turbulent jets using
standard DES will fail due to this
problem, but it also limits the accu-
racy of standard DES for other ap-
plications involving separated thin
shear layers, such as vortical flows
around fighter aircraft or landing
gear wakes. Therefore, tackling
the grey-area issue is important if
DES is to fulfil its potential for ex-
tending the domain where accurate
and affordable CFD computations
can be performed towards strongly
separated flows and in particular
towards to the borders of the flight
envelope for aeronautical applica-
tions.
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Summary

A new stochastic backscatter model is proposed for detached eddy simulations that accelerates

the development of resolved turbulence in free shear layers. As a result, the model significantly

reduces so-called grey areas in which resolved turbulence is lacking after the computation has

switched from a Reynolds-averaged Navier–Stokes simulation to a large eddy simulation. The

new stochastic model adds stochastic forcing to the momentum equations with a rate of backscat-

ter from the subgrid to the resolved scales that is consistent with theory. The effectiveness of

the stochastic model is enhanced by including spatial and temporal correlations of the stochastic

forcing for scales smaller than the cut-off scale. The grey-area mitigation is demonstrated for two

canonical test cases: the plane free shear layer and the round jet.
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1 Introduction

Detached Eddy Simulation (DES) has been conceived as a way to improve the accuracy of the

simulation of turbulent flows with significant flow separation, which are still beyond the grasp

of Reynolds-Averaged Navier–Stokes (RANS) turbulence models, without the high expense

of a full Large Eddy Simulation (LES). In DES the attached boundary layers are captured with

RANS while the separated flow regions are captured with LES. These RANS and LES regions

are not specified a priori as in a zonal hybrid RANS–LES approach, but are determined by com-

paring the turbulence length scale of the RANS model to the subgrid length scale or filter width

of LES. Thus, no a priori knowledge of the flow topology is strictly required, which is one of

the advantages of the method. Since its original proposal by Spalart et al. (Ref. 42), DES has

seen much development, including improvements such as Delayed DES (Ref. 41) to shield the

boundary layers captured with RANS from so-called shear-stress depletion and Improved DDES

(Refs. 45, 37) to extend DES towards wall-modelled LES, as well as several variants such as

ZDES (Ref. 7) and X-LES (Ref. 15).

The success of a DES computation depends on the speed of development of resolved turbulence

in the separated flow regions captured with LES. In some cases, a substantial so-called grey area

exists immediately after flow separation, consisting of a stable free shear layer containing no or

little resolved turbulence even though the computation is in LES mode (Refs. 17, 40). This grey-

area problem is most pronounced in flows with little or no recirculation of turbulence back to

the separation onset where it could destabilize the shear layer. For example, the prediction of the

noise generated by turbulent jets using DES will fail due to this problem, but it also limits the

accuracy of other DES computations involving separated thin shear layers. Therefore, tackling

the grey-area issue is important if DES is to fulfil its potential for extending the domain where

accurate and affordable CFD computations can be performed towards strongly separated flows

and in particular towards to the borders of the flight envelope for aeronautical applications.

One approach to overcome the grey area is to add synthetic turbulence at the RANS–LES in-

terface (Refs. 1, 8, 10). This is a natural approach in a zonal RANS–LES method, but fits less

well with the original non-zonal concept of DES where the location of the RANS–LES interface

is generally not known. Thus, there is a need to look for alternative approaches to mitigate the

grey-area issue.

Generally, two lines can be followed for non-zonal grey-area mitigation: reducing the level of

subgrid stresses in the initial free shear layer, allowing 3D instabilities to develop, or inducing

the development of 3D instabilities more directly by adding some form of stochastic forcing.
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In DES, the subgrid stresses are typically modelled by an eddy-viscosity subgrid-scale (SGS)

model and are therefore proportional to the product of the eddy viscosity and the rate of strain.

As shear layers are initially very thin, they contain high values of the mean velocity gradient, and

therefore of the rate of strain, which leads to high values of the subgrid stresses. Any instability

of the initial shear layer may then be damped by these high stresses, thus delaying the develop-

ment of resolved turbulence. A first approach to reduce these high subgrid stresses consists of re-

ducing the eddy viscosity by defining the subgrid length scale as the cube root of the cell volume

instead of the maximum of the mesh size (which is standard in DES), making use of the slender

cells typically present in initial free shear layers, as proposed in the original ZDES (Ref. 7). An-

other approach that uses the slender cells, sensitizes the subgrid length scale to the direction of

the vorticity vector, essentially excluding the mesh size in that direction from the definition of

the filter width (Refs. 5, 8, 38). There is something to be said, however, for more generic meth-

ods that are less dependent on the specific shape of the grid cells. The subgrid stresses can also

be significantly reduced in the initial shear layer by removing the dependence on the high ve-

locity gradients in the mean flow through a High-Pass Filtered (HPF) SGS model (Ref. 19). A

similar effect can be obtained by using algebraic eddy-viscosity SGS models that deliver zero

eddy viscosity in case of pure shear or nominally 2D flows such as the WALE and σ models

(Refs. 28, 29) as proposed by Mockett et al. (Ref. 27). Finally, Shur et al. (Ref. 38) recently pro-

posed to use a kinematic measure, based on the rate-of-strain tensor and the vorticity vector, to

identify nominally 2D flows to reduce the subgrid length scale. All these approaches have shown

some success in mitigating the grey-area issue, but room for improvement clearly remains. Here,

the HPF model is used as a baseline approach for reducing the level of subgrid stresses, as it is

independent of the shape of the grid cells and as the methods of Mockett et al. and of Shur et al.

were not yet available when this work was performed.

This paper focusses on inducing 3D instabilities through a stochastic SGS model. The stochastic

model is included in the X-LES method, which is a k–ω based DES method, but it can be used

in other DES methods as well. In earlier work, a simple stochastic eddy-viscosity model had

been proposed and tested (Ref. 17). This model had been formulated ad hoc and consisted of

multiplying the eddy-viscosity coefficient (in LES regions) with a stochastic variable ξ2 (where ξ

has a standard normal distribution).

Here, a new stochastic SGS model is proposed that has a more physical grounding. It is based on

the stochastic models of Leith (Ref. 23) and Schumann (Ref. 35). These models include energy

backscatter from the subgrid scales to the resolved scales at a rate consistent with theory such as

EDQNM (see for example Lesieur (Ref. 24)): for wave numbers κ smaller than the cut-off wave
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number, the power spectrum of backscatter scales as κ4. As a consequence, the backscatter will

mainly affect the resolved scales close to the cut-off wave number. If the stochastic forcing is

formulated as the gradient of a stochastic variable that is uncorrelated in space, as is the case in

the Leith and Schumann models, then the correct scaling of the backscatter rate is obtained. Note

that the stochastic eddy-viscosity model, although formulated ad hoc, also essentially consisted

of the gradient of a stochastic variable and therefore had the correctly scaled backscatter rate as

well.

An additional reason for replacing the stochastic eddy-viscosity model is that it was less effective

when combined with the HPF SGS model that reduces the level of subgrid stresses (Ref. 19). Re-

ducing the subgrid stresses also reduced the stochastic forcing as it was part of the same subgrid

stress tensor. The new stochastic model adds an additional stochastic forcing term, independent

of the deterministic subgrid stress and therefore does not have this disadvantage.

The new stochastic backscatter model is based on the model of Leith, but includes aspects of

the Schumann model as well as other modifications to combine it with the X-LES method and

to make it suitable for grey-area mitigation. The main advantage of the Leith model is that the

stochastic forcing is solenoidal and therefore does not function as a noise source. To determine

the velocity scale of the stochastic subgrid stresses, the Leith model uses the magnitude of rate

of strain and the filter width ∆. As the X-LES method employs a k-equation SGS model, with k

the subgrid kinetic energy, it is more natural to use
√

k as velocity scale, as is also done by Schu-

mann.

As the stochastic forcing represents the backscatter effect of the subgrid scales, which are by def-

inition not resolved on the computational grid, it is natural to define the stochastic variables to be

uncorrelated in space. Leith also defines them to be uncorrelated in time, but Schumann intro-

duces temporal correlation for time scales smaller than the subgrid time scale or eddy turn-over

time ∆/
√

k, using a Langevin-type stochastic differential equation. Schumann’s main argument

is that typically the numerical time step (based on a Courant number of order one) will be signif-

icantly smaller than the subgrid time scale. Along the same line, spatial correlation should be in-

troduced when the mesh size is significantly smaller than the subgrid length scale or filter width

∆, which is the case for the slender grid cells typically used to capture shear layers. Furthermore,

as noted by Schumann, only the subgrid scales close to the cut-off wave number contribute sig-

nificantly to backscatter, because backscatter decreases rapidly with increasing wave number of

the subgrid scales (as κ−6 in the inertial subrange). Thus, a backscatter model will be most effec-

tive if the spectrum of the stochastic variables is not uniformly distributed (white noise), but is

7



NLR-TP-2016-233

concentrated near the cut-off wave number (that is, if the stochastic variables are spatially corre-

lated over distances smaller than the filter width). In the new stochastic backscatter model, spa-

tial correlation is obtained by an additional, purely spatial, stochastic differential equation that

effectively applies implicit smoothing to a spatially uncorrelated stochastic variable. At present,

this implicit smoothing is defined by factoring in the three spatial directions, which makes it very

efficient on structured grids. To make the method applicable to unstructured grids, a non-factored

formulation would have to be defined, for which a suggestion is made.

Although this is not the aim of the present work, stochastic forcing may also be used to resolve

the log-layer mismatch when using DES as a wall model in LES, as shown by Piomelli et al.

(Refs. 30, 11). Their formulation of the stochastic forcing, however, differs from the present

approach in that it is not based on the gradient of a spatially uncorrelated stochastic variable,

but rather on the stochastic variable itself, and therefore does not have the proper scaling of the

backscatter rate.

The baseline detached eddy simulation method employed here, X-LES, is briefly described in

section 2, together with the high-pass filtered SGS model. Then, the stochastic backscatter model

is presented, both in continuous and discretized forms, in section 3. Finally, the effectiveness

of the stochastic method in mitigating the grey-area issue is considered in section 4 for two test

cases: the plane free shear layer and the round jet. These two cases suffer strongly from the grey-

area problem, as there is no turbulence recirculating back to the onset of the shear layer that

could diminish the grey area by destabilizing the shear layer. In that sense, they form essential

test cases for any method for grey-area mitigation. The proposed method, however, is applicable

to more complex test cases. First, promising results have been obtained for a delta wing at high

angle of attack (Refs. 14, 16) and a three-element airfoil (Refs. 14, 32), with both computations

displaying no significant grey areas in the separating shear layers.

2 Detached eddy simulation: X-LES

In non-zonal DES methods such as X-LES (Ref. 15), a single set of turbulence-model equations

is used to model both the Reynolds stresses in RANS mode and the subgrid-scale (SGS) stresses

in LES mode. An eddy-viscosity model is used for these stresses, which are then given by the

Boussinesq hypothesis:

τi j = 2νt
(
S i j −

1
3∂kukδi j

)
− 2

3 kδi j (1)

8
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(using the summation convention), with νt the eddy viscosity, S i j =
1
2 (∂ jui + ∂iu j) the rate-of-

strain tensor, ui the velocity vector, k the turbulent or subgrid-scale kinetic energy, and δi j the

Kronecker delta.

The X-LES method in particular is based on the TNT k–ω model (Ref. 12). The method switches

to LES when the RANS length scale, l =
√

k/ω, exceeds the LES length scale C1∆ (with C1

a model constant). The RANS length scale is then replaced by the LES length scale in the ex-

pression for the eddy viscosity as well as in the expression for the dissipation of turbulent kinetic

energy ε:

νt = lb
√

k,

and

ε =
βk3/2

lb
,

with β = 0.09 and lb = min{l,C1∆}. The filter width ∆ is defined at each grid point as the max-

imum of the mesh width in all directions. Note that effectively a k-equation SGS model is used

in LES mode (where lb = C1∆), as ω drops out of the expressions for νt and ε. In practical sim-

ulations, the shielding function fd as defined for Delayed DES must be employed to protect the

(attached) boundary layers from inadvertently switching to LES (with fd varying between 0 in-

side attached boundary layers and 1 away from the wall; see Spalart et al. (Ref. 41) for the pre-

cise definition of fd). The shielding function is included in (delayed) X-LES by redefining the

blended length scale as

lb = (1 − fd)l + fd min{l,C1∆} = (1 − f̃d)l + f̃dC1∆

with

f̃d =

 0 if l ≤ C1∆ ,

fd if l > C1∆ .

The modified shielding function f̃d is identical to zero in the original RANS zones. It is used as

an indicator to effectively distinguish between RANS mode ( f̃d → 0) and LES mode ( f̃d → 1),

allowing to switch on specific modifications of the SGS model only in LES mode.

As a first step to mitigate the grey-area issue, a high-pass filter (HPF) is applied to the veloc-

ity field prior to computing the subgrid stresses (Ref. 19). Thus, the subgrid stresses essentially

depend on the gradient of the velocity fluctuations and not on the gradient of the mean velocity

field. As a result, the subgrid stresses are substantially reduced in thin free shear layers which
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are characterized by high mean velocity gradients. The high pass filter consists of subtracting the

running time average of the velocity from the instantaneous velocity:

u′i(x, t) = ui(x, t) − f̃dūi(x, t),

with the running time average given by

ūi(x, t) =
1
t

∫ t

0
ui(x, s)ds.

The (subgrid) stresses given by equation (1) are then computed from the filtered velocity u′i in-

stead of the instantaneous velocity ui. In LES mode ( f̃d → 1), the filtered velocity equals the

velocity fluctuations, whereas in RANS mode ( f̃d → 0) the filter is effectively switched off. A

similar HPF approach has been followed by Stolz (Ref. 43) and by Lévêque et al. (Ref. 26) using

a spatial filter instead of a temporal filter in order to improve the Smagorinsky model for LES of

wall-bounded flows. High-pass filters have also been used in the context of the structure-function

model (Ref. 25). It should be stressed that as the HPF approach already effectively reduces the

subgrid stresses in initial shear layers, there is no need to use the alternative definitions of the

filter width ∆ that were mentioned in the introduction.

A limitation of the current HPF is that it does not filter out any low-frequency oscillations that

are outside of the turbulence spectrum. For example, in the case of smooth-surface separation,

the shear layer may oscillate as a whole. This leads to a lower time-averaged velocity gradient

compared to a non-oscillating shear layer and therefore the filtering gives a less strong reduction

of the subgrid stresses. Nevertheless, also in these case the HPF approach results in some grey-

area mitigation and it has been applied to cases with smooth-surface separation such as a bump

in a square cylinder (Ref. 20), a tandem cylinder (Ref. 18), and a three-element airfoil (Ref. 14).

A possible improvement would consist of using high-pass filters that filter out all frequencies be-

low a certain cut-off frequency. For the objective of the present work, however, the time-average

based HPF suffices as a baseline to test the stochastic backscatter model, in particular because in

the essential test cases considered below, the shear layers do not oscillate.

The model constant C1 has been calibrated to a value of 0.08 for decaying isotropic homoge-

neous turbulence using a fourth-order numerical method. In particular, a fourth-order low-dispersion

symmetry-preserving finite-volume scheme (Refs. 13, 34) is used for X-LES computations. This

method is based on the skew-symmetric form of convection, ensuring the exact, discrete con-

servation of kinetic energy by convection, even for compressible flow. Thus, numerical errors

stemming from the discretized convection terms do not interfere with the dissipation of kinetic

energy by the subgrid stresses. Additionally, the numerical dispersion of the method has been
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minimized, along the lines of the DRP scheme of Tam and Webb (Ref. 44), allowing accurate

capturing of acoustic and vorticity waves with only eight grid cells per wavelength.

3 Stochastic backscatter model

A new stochastic backscatter model is considered that is based on the models of Leith (Ref. 23)

and Schumann (Ref. 35). These models include energy backscatter at the correct rate. The sub-

grid stress tensor is redefined as

τi j = 2νt
(
S i j −

1
3∂kukδi j

)
− 2

3 kδi j − f̃dRi j,

with Ri j a random stress tensor that is responsible for the backscatter. This tensor is not modelled

directly, but, following Leith, its divergence is modelled as the curl of a stochastic vector poten-

tial,

∇ · R = ∇ × (CBkξ), (2)

with CB a model constant (CB = 1 by default) and ξ(x, t) a vector of three independent stochastic

variables with standard normal distribution: ξi = N(0, 1).

The additional stochastic term f = ∇ · R is effectively a random acceleration that is added to the

momentum equation. As it is solenoidal, it does not induce pressure fluctuations and therefore

will not function as a noise source. This can be understood from Lighthill’s acoustic analogy

(Ref. 33), in which a wave equation for the density perturbation ρ′ relative to the far-field density

is obtained from the Navier–Stokes equations (without any approximation), given by

∂2ρ′

∂t2 − c2
0
∂2ρ′

∂xi∂xi
=
∂2Ti j

∂xi∂x j
−
∂ fi
∂xi
,

with c0 the far-field speed of sound, Ti j the Lighthill stress tensor, and f any acceleration added

to the right-hand side of the momentum equation. In this analogy, all aerodynamic noise sources

are contained in the terms on the right-hand side. When f is solenoidal, it drops from the right-

hand side of this equation and therefore it will not produce any acoustic fluctuations.

Note that the magnitude of the backscatter term is proportional to the subgrid kinetic energy k.

In X-LES, a single equation is solved for k in the entire flow domain. Thus, the value of k in an

initial shear layer will be influenced by the value of k in the upstream, attached boundary layer.

This boundary layer is typically in RANS mode and therefore k will represent the total turbu-

lent kinetic energy there. A high value of k will be convected into the initial shear layer if the
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upstream boundary layer is turbulent, whereas k will be practically zero if the boundary layer is

laminar. In the former case, the stochastic model may destabilize the shear layer, whereas in the

latter case the stochastic model will be effectively switched off, allowing a natural laminar-to-

turbulent transition of the shear layer.

Another consequence of the scaling with k is that when a fully developed shear layer is well re-

solved by LES, implying low subgrid kinetic energy, then the backscatter term will be relatively

small. Hence, also only a relatively weak effect of the backscatter model is expected there. Re-

member that the aim of the present work is in the first place to mitigate the grey area and not to

accurately model backscatter in a well-resolved LES. Nevertheless, the backscatter model will

also be active in such regions and therefore the theoretical consistency of the backscatter model,

as discussed in the introduction, is required so that the backscatter model behaves appropriately

there.

To ensure the backscatter model is switched off when in RANS mode, the tensor Ri j is multiplied

with the shielding function f̃d. The shielding itself is not directly impacted by the backscatter

model. There may be an indirect effect, as the backscatter is intended to induce fluctuations in

the LES regions. If strong fluctuations are induced close to the effective RANS–LES interface,

diffusing to some extent into the RANS region, then the value of fd may be influenced, as it de-

pends on the magnitude of the velocity gradient (both directly and indirectly through the eddy-

viscosity coefficient). This influence can only be assessed in practice. In the first computations

for more complex test cases indicated at the end of the introduction, no significant impact on the

shielding was observed.

By construction, each stochastic variable ξi will be uncorrelated in space over distances larger

than the filter width ∆ and uncorrelated in time over time intervals larger than the subgrid time

scale τ ∼ ∆/
√

k. When the filter width is defined as the maximum of the mesh width in all di-

rections, however, then the distance between grid points can be smaller than the filter width. In

particular, this is the case for grid cells with high aspect ratios as typically found in initial shear

layers. As motivated in the introduction, for distances smaller than the filter width, the stochas-

tic variables will be correlated. Similarly, temporal correlation is introduced when the time step

is smaller than the subgrid time scale τ, as is the case for the Schumann model. These correla-

tions are obtained by solving stochastic differential equations for the stochastic variable ξ, as

detailed below. Essentially, these stochastic differential equations result in the following spatial

and temporal correlations, which rapidly decay for distances larger than the filter width and time

intervals larger than the subgrid time scale:〈
ξi(x, t)ξ j(y, s)

〉
= δi je−d2/2e−|t−s|/τ, (3)
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with d = |x − y| /b, b =
√

C∆∆, and τ = Cτ∆/
√

k, and with 〈.〉 the expectation of a stochastic

variable. As stressed by Schumann, for the model to be Galilean invariant, this correlation should

be interpreted in Lagrangian sense, i.e., x and y are the time-dependent coordinates of fluid par-

ticles. The default values for the model constants are C∆ = 0.1 and Cτ = 0.05. These default

values, including the value of CB given above, have been calibrated in practice for the plain free

shear layer considered in section 4.2 below. Subsequently, the same values have been used for

the round jet.

The stochastic subgrid-scale models of Leith and Schumann include energy backscatter at a rate

that scales as κ4 for wave numbers κ smaller than the cut-off wave number. Introducing spatial

correlation may possibly alter this backscatter rate. For the spatial correlation of equation (3),

this is not the case, as is shown in appendix A.

3.1 Continuous stochastic differential equations
To create a stochastic variable ξi with temporal and spatial correlation, a stochastic Langevin-

type differential equation is solved, given by

ξidt + τ
(
∂ξi
∂t
+ u · ∇ξi

)
dt =

√
2τdWi, (4)

with dWi(x, t) the differential of a Wiener process Wi(x, t) with the properties

dWi(x, t) = N(0, dt)

and 〈
dWi(x, t)dW j(y, s)

〉
= δi je−d2/2δ(t − s) dt ds. (5)

Loosely speaking, dWi is an infinitesimally small stochastic variable, with zero mean and vari-

ance dt, that is correlated in space but uncorrelated in time. Using the continuity equation, the

Langevin equation can also be written in conservative form:

ρξi dt + τ
(
∂ρξi
∂t
+ ∇ · (ρuξi)

)
dt =

√
2τρ dWi.

To create a stochastic differential dWi with the spatial correlation of equation (5), a purely spatial

stochastic differential equation is solved, given by

dx
I − b2 ∂

2

∂x2
1

 I − b2 ∂
2

∂x2
2

 I − b2 ∂
2

∂x2
3

 dWi = 8b3/2 dVi, (6)
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with I the identity operator and dx = dx1dx2dx3. The stochastic differential dVi(x, t) has the

properties

dVi(x, t) = N(0, dx dt)

and 〈
dVi(x, t)dV j(y, s)

〉
= δi jδ(x − y)δ(t − s) dx dy dt ds, (7)

that is, it is completely uncorrelated both in space and time.

In practice, one will start with drawing values for the stochastic differential dVi independently at

each spatial location (i.e., grid point) and at each time instance. Then, the stochastic differential

dWi is determined by solving equation (6) and finally the stochastic variable ξi is obtained by

solving equation (4).

It is shown in appendix B that the solution ξi of these stochastic differential equations essentially

has the spatial and temporal correlation as defined in equation (3), interpreted in Lagrangian

sense.

Note that equation (6) can be seen as an approximation of the following equation using the Lapla-

cian operator:

dx
I − b2

 ∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

 dWi = 8b3/2 dVi,

with an error of order O(b4) = O(∆4). Although more expensive to solve, this equation would

be applicable to any type of grid, either structured or unstructured. Before using this formulation,

however, the spatial correlation of its solution would have to be verified, similar to appendix B,

which is not a trivial matter.

3.2 Discretized stochastic differential equations
The stochastic differential equations are discretized in space and time by the following algo-

rithm. First, a vector of three independent stochastic variables ζn
i, j,k = N(0, 1) is defined on a

structured grid, with (i, j, k) the grid cell indices and n the time-step index. At each time step,

new values of the three components ζm of ζn
i, j,k are drawn at each grid cell, independently of the

values of ζm at previous time steps and at other grid cells, so that they have the property〈
(ζm)n

i, j,k(ζm′)n′
i′, j′,k′

〉
= δmm′δii′δ j j′δkk′δnn′ ,
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that is, they are uncorrelated both in space and time. This stochastic variable constitutes the dis-

crete equivalent of the stochastic differential dVm, which is approximated by

dVm(xi, j,k, tn) ≈
√
δix δ jx δkx δt (ζm)n

i, j,k,

with δt the time step and δix the mesh size in i-direction. For notational simplicity, the subscript

m for the three components of ζn
i, j,k will be dropped in the remainder of this section.

Next, at each time step, a spatially correlated stochastic variable ηn
i, j,k is obtained by smoothing

the stochastic variable ζn
i, j,k in space. This is done by solving the following set of implicit differ-

ence equations:

(I − βiδ
2
i )(I − β jδ

2
j)(I − βkδ

2
k)(λi, j,kη

n
i, j,k) = ζn

i, j,k, (8)

with I the identity operator, βi = (b/δix)2 the smoothing coefficient in i-direction, λ a suitable

scaling coefficient defined below, and δ2i the second-order difference operator in i-direction,

δ2i fi, j,k = fi+1, j,k − 2 fi, j,k + fi−1, j,k.

The implicit smoothing requires solving a tridiagonal system per computational direction, which

can be done efficiently using the Thomas algorithm. At the boundaries, Dirichlet boundary con-

ditions (η = 0) are applied.

Equation (8) is in fact a discretization of the spatial stochastic differential equation (6) by central

differences, with the stochastic differential dW approximated by

dW(xi, j,k, tn) ≈
√
δtηn

i, j,k,

implying that η essentially has the same spatial correlation as dW. Furthermore, it implies that η

should have zero mean and a variance equal to one, just like ζ. Thus, the implicit smoothing op-

erator should preserve both the mean value and the variance of ζ. The mean of η satisfies equa-

tion (8) with zero right-hand side and homogeneous boundary conditions, and therefore is equal

to zero. Preserving the variance, independent of the mesh size, is ensured by defining λ as

λi, j,k =
(1 + 4βi)3/4(1 + 4β j)3/4(1 + 4βk)3/4

(1 + 2βi)1/2(1 + 2β j)1/2(1 + 2βk)1/2 ,

as is shown in appendix C. Discretizing equation (6) and substituting the approximations for dV

and dW by ζ and η, it follows that equation (8) forms a consistent discretization if λ satisfies

λi, j,k →
8b3/2√
δix δ jx δkx

= 8(βiβ jβk)1/4.

15



NLR-TP-2016-233

in the limit for zero mesh size (that is βi → ∞), which is indeed the case for the expression given

above.

Note that strictly speaking, the discrete equation (8) is only a consistent discretization of the con-

tinuous equation (6) if the grid lines are orthogonal or, alternatively, if the three coordinates (x1,

x2, and x3) are considered to be coordinates in the computational space instead of the physical

space. The latter interpretation means that the distance d in equation (3) should also be mea-

sured in computational space. This distance is still properly defined and is of the same order as

the distance in physical space. In fact, the distances in computational and physical space between

two points lying on the same grid line are equal. Thus, non-orthogonality of the grid essentially

does not influence the correlation between two points on the same grid line, but only between

two points that are on different grid lines. But even for these points, the correlation as defined

in equation (3) will still rapidly go to one for distances smaller than the filter width and to zero

for distances larger than the filter width. This is the essential behaviour of the model and it is not

altered by non-orthogonality. Nevertheless, one should avoid grids that are very skewed as this

may still introduce some grid dependence in the computational results. Alternatively, the more

generic Laplacian form discussed above (end of section 3.1) could be used in the future to be-

come fully independent of grid skewness.

Finally, a spatially and temporally correlated stochastic variable ξni, j,k is obtained from the vari-

able ηn
i, j,k by taking one time step for the Langevin-type equation (4) in conservative form. This

equation is discretized with a second-order central scheme in time (mid-point rule):

(ρξ)n
i, j,k +

τ

δt

(
(ρξ)n+1/2

i, j,k − (ρξ)n−1/2
i, j,k

)
+ τ∇i, j,k ·

(
(ρu)nξn

)
=

√
2τ
δt
ρn

i, j,kη
n
i, j,k, (9)

where ∇i, j,k represents the discretized gradient operator. The values of the conservative variables

(ρ, ρu, and ρξ) at time tn are computed as

f n = 1
2 ( f n+1/2 + f n−1/2).

The convection term in the Langevin-type equation needs to be discretized in space. For this, a

central skew-symmetric finite-volume discretization is used, consistent with the discretization

of the flow equations (Ref. 13). The advantage of using central discretizations, both in time and

space, is that the variance of ξ will be conserved and equal to the variance of η (that is, equal to

one), as is demonstrated in appendix D. If non-central discretizations are used, then the variance

is not conserved and the coefficient of the right-hand side of equation (9) will have to be adapted

to correct this effect.
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The stochastic variable ξ as needed in equation (2) is a 3-component vector and therefore three

temporal Langevin equations need to be solved. This can be done simultaneously with the main

flow and turbulence-model equations. These three equations are solved in the complete flow do-

main, with the right-hand side ηn
i, j,k = 0 when in RANS mode and at all external boundaries.

To test the effect of introducing spatial and temporal correlations, three different variants of the

stochastic backscatter model will be considered: the basic backscatter model in which ξ is com-

pletely uncorrelated both in space and time, that is, it is equal to ζ; the backscatter model includ-

ing only spatial correlations through equation (8), that is, ξ is equal to η; and finally the complete

model including both spatial and temporal correlations through equations (8) and (9).

A final point in this section concerns the computational costs of the stochastic backscatter model.

For the basic, uncorrelated model, the additional costs are negligible. Introducing the spatial and

temporal correlations, however, does come at a price. For the spatial correlations, equation (8)

needs to be solved only once per time step and due to the factoring in the three directions it can

be solved efficiently with the Thomas algorithm. Thus, it only requires a few percent of addi-

tional computational effort. The temporal correlations are more expensive, as three additional

transport equations equations need to be solved, increasing the total number of transport equa-

tions from seven to ten (an increase of 43%). Fortunately, the additional transport equations have

a simpler structure than the basic flow equations (e.g., no diffusion terms) and are therefore less

expensive. In practice, an increase of at most 25% is observed.

4 Results

4.1 Decaying isotropic homogeneous turbulence
Most DES methods have been calibrated for the decay of isotropic homogeneous turbulence, en-

suring that the energy spectrum is captured with a −5/3 slope. Likewise, this has been done for

the baseline X-LES method, leading to a coefficient of C1 = 0.08 when using the low-dissipation

fourth-order discretization. As a first step, it needs to be assessed that the stochastic backscatter

model does not disrupt this calibration.

Computations have been performed on a 643 grid and have been based on the experiment of

Comte-Bellot and Corrsin (Ref. 6). In this experiment, the turbulence was generated by a grid

with mesh size M = 5.08 cm and with an onset velocity of U0 = 10 m/s. The Reynolds num-

ber based on these scales is Re0 = U0M/ν = 34, 000. In the computations, a cubic box of size

L = 11M is used with periodic boundary conditions. The initial solution consists of a random
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Fig. 1 Energy spectrum at three subsequent time instances (t+ = 42, 98, and 171) for decaying

isotropic homogeneous turbulence computed with X-LES in LES mode on a 643 grid without

(baseline) and with the stochastic backscatter (SBS) model (with E0
tot the total kinetic energy at

the initial time t+ = 42)

velocity field generated from the experimental energy spectrum at time t+ = tU0/M = 42. The

precise details of the computational set-up are given by Rozema (Ref. 34).

Two X-LES computations in LES mode are considered: without stochastic model (baseline) and

with the complete stochastic backscatter model (including both temporal and spatial correla-

tions). For this case, the decay of turbulence in time implies that temporal high-pass filtering is

not appropriate. Instead, filtering in one of the spatial directions could be applied, which is ac-

tually equivalent to filtering in time in the experimental set-up, in which the turbulence decay

occurs in stream-wise direction and not in time. However, spatial filtering would have no effect

as the mean velocity gradient equals zero and therefore no filtering is applied.

Figure 1 shows the computed energy spectra at the initial time t+ = 42 and at two subsequent

time level t+ = 98 and t+ = 171. The spectra are compared to the experimental data of Comte-

Bellot and Corrsin as well as to the −5/3 Kolmogorov law for the last time instance. These re-

sults clearly show that for this case, with the cut-off well within the inertial range, the stochastic

backscatter has little impact on the spectrum and does not lead to a pile-up of energy near the

cut-off as might be feared. Thus, it appears that the backscatter model can be applied safely in

well-resolved LES regions. Note that with the coefficient calibrated to C1 = 0.08, the compu-

tations match the −5/3 slope at the last time instance, whereas the experimental data shows a

somewhat lower slope.
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4.2 Plane free shear layer
As a first test case to demonstrate the effectiveness of the stochastic backscatter model in miti-

gating the grey-area issue, the plane free shear layer from the experiment of Delville (Ref. 9) is

considered. As shown previously (Refs. 17, 8), standard detached eddy simulations fail for this

case, displaying an essentially 2D shear layer that is void of any resolved 3D turbulence even

though the method is in LES mode. The simple stochastic eddy-viscosity model was used with

some success to trigger 3D instabilities in the shear layer, eventually leading to full 3D turbu-

lence downstream (Ref. 17). A further improvement was obtained by the high-pass filter (HPF)

subgrid-scale model, substantially reducing the subgrid stresses in the initial shear layer, and as

a result allowing instabilities to develop further upstream (Ref. 19). Subsequently, other authors

have also used this case to test their approaches for grey-area mitigation (Refs. 8, 27, 38).

In the experiment of Delville (Ref. 9), the free shear layer starts from the trailing edge of a flat

plate with free-stream velocities u1 = 41.54 m/s and u2 = 22.40 m/s at the different sides of the

flat plate and with fully developed turbulent boundary layers at the trailing edge. The Reynolds

number based on the momentum thickness at the high-speed side is Reθ = 2900 at the trailing

edge. The shear layer develops in a 0.3 m × 0.3 m square test section of length 1.2 m. A self-

similar flow with fully developed turbulence is reached well within the test section.

A computational domain is used with a length of 2.5 m (x-direction), a height of 2 m (y-direction)

and a width of 0.15 m (z-direction). To obtain the correct velocity profiles at the trailing edge of

the flat plate, the same settings are employed as proposed by Deck (Ref. 8): on the upper side the

plate has a length of 820 mm and transition is triggered at 708 mm upstream of the trailing edge,

while on the lower side the plate has a length of 460 mm and transition is triggered at 388 mm

before the trailing edge.

A computational ‘test section’ is defined with a length of L = 1 m after the trailing edge and with

a uniform grid in the x- and z-directions. Note that the grid deliberately has not been stretched in

x-direction towards the trailing edge. Thus, the grid is more representative of the situation when

a priori one does not know the location where the shear layer separates.

Most computations have been performed on a grid with 1.71 million cells and a mesh size h =

3.125 mm in x- and z-direction in the test section. The fourth-order, low-dispersion, symmetry-

preserving finite-volume method has been used together with the second-order mid-point rule for

the time integration. Time steps have been taken of size δt = 8 · 10−4L/u1, implying a convective

CFL number, based on the maximum velocity u1, equal to CFL = u1δt/h = 1/4. Also a fine grid

has been considered with half the mesh size and 13.7 million cells and using also half the time
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step. For all computations, the total time computed was at least 11.2L/u1 (14,000 time steps on

the coarse grid) and the statistics have been gathered over the last 5.6L/u1.

Different stochastic models have been tested in combination with the HPF SGS model on the

coarse grid of 1.71 million cells. For consistency with the previous computational results (Refs. 17,

19), the X-LES coefficient is set to C1 = 0.05. A qualitative impression of the effect of the dif-

ferent models on the grey area is given in Figure 2 in terms of instantaneous iso-surfaces of the

Q-criterion. The left-hand side shows the complete ‘test section’ of 1 m, while the right-hand

side shows a close-up of the initial shear layer. In the baseline computation (subfigure a), which

only employs the HPF SGS model (Ref. 19), a substantial part of the shear layer (about one quar-

ter of the test region) essentially remains two dimensional, displaying only a Kelvin–Helmholtz

type instability. Nevertheless, this already formed a significant improvement over standard X-

LES or DES, which showed no 3D turbulence at all (Refs. 17, 8). The stochastic eddy-viscosity

model (Ref. 17) (subfigure b) gives some improvement over the baseline, with the onset of 3D

instabilities shifting closer to the flat-plate trailing edge. This effect is more pronounced for the

stochastic backscatter model (subfigure c), especially when the spatial and temporal correlations

are introduced through the stochastic differential equations (subfigure d). In the latter case, the

3D instabilities start immediately after the trailing edge.

Resolving the 3D instabilities closer to the trailing edge has a clear impact on the initial thick-

ness and the growth rate of the shear layer as can be seen in Figure 3. Both the initial thickness

and the growth rate further downstream improve for each successive step starting from the base-

line without any stochastic model and ending with the stochastic backscatter model with both

spatial and temporal correlations. For the latter model, the momentum thickness lies close to the

experiment beyond x = 0.2 m, while the vorticity thickness matches the experiment over the

entire length of the shear layer. In the very initial shear layer, it appears that there is a better com-

parison between the computations and the experiment for the vorticity thickness than for the mo-

mentum thickness. The momentum thickness is an integral quantity and therefore depends on the

complete velocity profile of the shear layer, whereas the vorticity thickness depends only on the

maximum velocity gradient. Thus, although the maximum gradient may match the experiment in

the very initial shear layer, this is apparently not the case for the complete velocity profile (as is

also confirmed in Figure 4a below for the velocity profile at x = 0.2 m).

The reduced extent of the grey area, as well as its impact further down stream, is also visible in

the profiles of the mean velocity and the resolved stresses, presented in Figure 4. The lack of re-

solved turbulence in the baseline HPF result at the first station (x = 0.2 m) leads to a velocity
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a) HPF SGS model (Ref. 19)

b) Stochastic eddy-viscosity HPF SGS model (Ref. 17)

c) Stochastic backscatter HPF SGS model without spatial and temporal correlations

Fig. 2 Instantaneous iso-surfaces of Q = Ω2 − S 2 = 500u2
1/L

2
1, coloured with the vorticity magnitude Ω,

for the spatial shear layer computed with X-LES using different SGS models on the coarse grid

(1.71 million cells)
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d) Stochastic backscatter HPF SGS model with spatial and temporal correlations

Fig. 2 (continued) Instantaneous iso-surfaces of Q = Ω2 − S 2 = 500u2
1/L

2
1, coloured with the vorticity

magnitude Ω, for the spatial shear layer computed with X-LES using different SGS models on the

coarse grid (1.71 million cells)
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a) Momentum thickness
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b) Vorticity thickness

Fig. 3 Thickness of the spatial shear layer computed with X-LES using different SGS models on

the coarse grid (1.71 million cells) (SEV = stochastic eddy-viscosity model; SBS = stochastic

backscatter model; SBS-spatial = SBS with spatial correlations; SBS-full = SBS with spatial and

temporal correlations)
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profile with a local minimum, still showing an imprint of the two upstream boundary layers, con-

trary to the experimental results. At the stations further downstream, the baseline HPF compu-

tation strongly overpredicts the turbulence levels (both normal and shear stresses), which causes

the shear layer to grow too rapidly. The stochastic backscatter model strongly improves the tur-

bulence level at the first station and as a consequence the local minimum in the velocity profile

at that station is completely removed and also the turbulence levels as well as the velocity pro-

files match the experiment more closely further downstream. The peak level of the stresses is

now overpredicted at the first station, but approaches the experiment at the other stations, with

exception of the normal stress at x = 0.95 m (possibly an upstream effect of the grid coarsen-

ing starting at x = 1 m). By including the spatial and temporal correlations in the model, both

the velocity profile and the stress levels get closer to the experiment, in particular at the upper

and lower tails of the profiles. The main difference with the experiment that remains, is a higher

mean velocity at the upper side at the first station. This may be attributed to a lack of resolved

turbulence coming from the upper boundary layer (which is thicker than the lower one), which

could probably only be remedied by adding synthetic turbulence at the flat-plate trailing edge.

The power spectra of the velocity component u in x-direction are compared to the experiment at

two stations along the shear-layer centreline (x = 0.2 m and x = 0.8 m) in Figure 5. A very strong

impact is seen at the first station (subfigure a). Without any stochastic model, the energy level

is much too low over the complete frequency range. Using the stochastic eddy-viscosity model,

the solution is still dominated by two-dimensional span-wise vortices, giving a narrow band in

the spectrum. This is clearly improved by the stochastic backscatter model, again in particular

when the correlations are included, giving a broader spectrum and a result close to the experi-

ment, until the cut-off frequency (corresponding to the filter width) is reached. At the second

station, where the shear layer is fully developed, the impact of the stochastic models is much

weaker, which is consistent with the results for decaying isotropic homogeneous turbulence.

The power spectrum lies close to the experiment for all models, except for a small increase at

the lowest frequencies when no stochastic model is included (subfigure b). Since the integral of

the power spectrum is equal to the normal stress, this increase is in-line with the overprediction

of the normal stresses that can be seen in Figure 4b. This is caused by the larger grey area in the

initial shear layer when no stochastic model is used, which influences the further development of

the shear layer far downstream.

To assess the grid sensitivity of the results, computations with the new stochastic backscatter

model have been performed on the two grid levels, using the X-LES coefficient as calibrated

for decaying isotropic homogeneous turbulence (C1 = 0.08). On the fine grid of 13.7 million
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Fig. 4 Profiles of mean velocity, resolved normal stress, and resolved shear stress of the spatial shear

layer computed with X-LES using different SGS models on the coarse grid of 1.71 million cells

(y1/2 is the location where the velocity u = (u1 + u2)/2) (abbreviations: see Figure 3)
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Fig. 5 Power spectral densities (PSD) of the velocity component u in x-direction for the spatial shear

layer computed with X-LES using different SGS models (abbreviations: see Figure 3)

cells, small-scale instabilities are captured in the initial shear layer immediately downstream of

the trailing edge (Figure 6), showing that the effectiveness of the stochastic backscatter model

is maintained. The shear-layer thickness and the energy spectra on the two grid levels are com-

pared in Figures 7 and 8, including also the coarse-grid result with the old X-LES coefficient

(C1 = 0.05) for completeness. Overall, the grid dependence of the results (as well as the sensitiv-

ity to the coefficient) is clearly weaker than the variation in results of the different subgrid-scale

models on the coarse grid as shown above. The strongest grid dependence is seen in the energy

spectra for which the tail starts to drop at higher frequencies on the fine grid due to the smaller

filter width, as it should. Also, there is some grid dependence in the momentum thickness: the

growth rate of the shear layer is consistent with experiment on the fine grid and on the coarse

grid with the lower C1 value, but it is somewhat overpredicted with the higher C1 value.

Finally, to illustrate how the backscatter model works, the distribution of the first component of

the stochastic vector ξ is shown in Figure 9 for both grid levels. The variable is multiplied with

the sub-grid kinetic energy k, as that is how it appears in the stochastic forcing term of equa-

tion (2). Visually, the spatial structures are dominated by scales ranging between the filter width

∆ = 3.125 mm and a width of about 10 mm on the coarse grid. These scales are reduced by a fac-

tor two on the fine grid. Furthermore, the spatial structures are essentially locally isotropic. Both

the sizes and the isotropy of the structures are consistent with the spatial correlations as defined

by equation (3). As a consequence, the stochastic forcing will generate disturbances with similar

isotropic scales. Without the spatial correlations, non-isotropic structures would have resulted

with scales of the order of the filter width in the x-direction and of the order of the mesh width in
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Fig. 6 Instantaneous iso-surfaces of Q = 500u2
1/L

2
1 for the spatial shear layer computed with X-LES

using the stochastic backscatter HPF SGS model with spatial and temporal correlations on the

fine grid (13.7 million cells)
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a) Momentum thickness
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Fig. 7 Thickness of the spatial shear layer computed with X-LES using the stochastic backscatter HPF

SGS model with spatial and temporal correlations on different grid levels and with different values

of the X-LES coefficient C1
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Fig. 8 Power spectral densities (PSD) of the velocity component u in x-direction for the spatial shear

layer computed with X-LES using the stochastic backscatter HPF SGS model with spatial and

temporal correlations on different grid levels and with different values of the X-LES coefficient C1

the y-direction, which is much smaller than the filter width at the centre of the initial shear layer.

Then, the stochastic forcing also would have generated disturbances of (much) smaller size in

y-direction, which are less effective in influencing the development of the initial shear layer.

In conclusion, the stochastic backscatter model with spatial and temporal correlations is capa-

ble of strongly reducing the grey area for this case and clearly outperforms the stochastic eddy-

viscosity model. It shows that a substantial improvement can be made for grey-area mitigation

methods that rely on reducing the subgrid stresses, such as the HPF model, by adding stochas-

tic forcing to enhance the development of instabilities. Potentially, the stochastic backscatter

model can also be added to and further improve the results of other recent proposals, such as

those of Mockett et al. (Ref. 27) and Shur et al. (Ref. 38). In particular, the results of Mockett et

al. were comparable to those of the HPF model without stochastic forcing on a practically iden-

tical coarse grid. Naturally, the results show some dependence on the grid level and the X-LES

coefficient, but without reducing its effectiveness in grey-area mitigation.

4.3 Round jet at Mach 0.9
A second case that strongly suffers from the grey-area problem for standard detached eddy sim-

ulations, as shown for example by Spalart (Ref. 40), is the computation of a plain round jet. Like

for the plane shear layer, there is no recirculation of turbulent flow that could destabilize the ini-

tial shear layer of the jet. Here, a cold, compressible jet is considered with a Mach number of 0.9

and a Reynolds number ReD = 1.1 ·106 based on the nozzle diameter D and the nozzle exit veloc-
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a) Coarse grid (1.71 million cells)

b) Fine grid (13.7 million cells)

Fig. 9 Distribution of the stochastic variable ξ1 (multiplied with sub-grid kinetic energy k) in a plane y =

constant for the spatial shear layer computed with X-LES using the stochastic backscatter HPF

SGS model with spatial and temporal correlations on two grid levels

ity Ujet. A range of experimental data is available for this case, including Arakeri et al. (Ref. 2),

Bridges et al. (Ref. 3), Lau et al. (Refs. 22, 21), and Simonich et al. (Ref. 39).

The definition of this test case follows the lines of Shur et al. (Ref. 36). A computational domain

is used that has a conical shape extending from 10D upstream of the nozzle exit to 70D down-

stream, with the outer boundary growing from 15D to 30D. Three multi-block structured grids

are employed (labelled G1, G2, and G3) with respectively 1.5, 4.2, and 8.4 million grid cells.

Grids G2 and G3 only differ in the number of cells in circumferential direction (80 and 160).

More details of the grids are given by Shur et al. (Ref. 36). The interior domain of the nozzle

is not represented in the computational domain. Instead, profiles of velocity, k, and ω are pre-

scribed at the nozzle exit. These have been obtained from a precursor SST k–ω RANS computa-

tion of the nozzle interior.

X-LES computations have been performed using the fourth-order low-dispersion symmetry-

preserving scheme, explicit fourth-order Runge–Kutta time integration, and an X-LES coeffi-

cient of C1 = 0.05. Time steps have been used of 0.002D/Ujet on all three grids. The total time

computed equalled 1100D/Ujet, with statistics gathered over the last 500D/Ujet.
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Three different approaches have been tested: a baseline without any grey-area mitigation, the

HPF SGS model, and the HPF SGS model extended with the stochastic backscatter model with

spatial and temporal correlations. Without mitigation, the jet displays essentially the same grey-

area problem as the plane shear layer, but less severe, as can be seen in Figure 10a. Initially, the

jet shear layer shows hardly any vortical structures, then it starts to develop large-scale vortex

rings which eventually develop into full 3D turbulence. The HPF model (Figure 10b) consider-

ably accelerates this process, with the vortex rings starting close to the nozzle and rapidly break-

ing up into small scale structures. Finally, the stochastic backscatter model even further reduces

the grey area, with the vortex rings breaking up almost immediately at the nozzle lip.

a) Baseline SGS model b) HPF SGS model

c) Stochastic backscatter HPF SGS model with spatial and temporal correlations

Fig. 10 Instantaneous iso-surfaces of Q = Ω2 − S 2 = 20U2
jet/D

2, coloured with the vorticity magnitude

Ω, for the Mach 0.9 jet computed with X-LES using different SGS models on the fine grid G3

The profiles of the mean velocity and the velocity fluctuations along the jet centreline (r = 0)

are compared to the different experimental results in Figure 11. The baseline computation clearly

underpredicts the length of the potential core, even on the fine grid G3. Furthermore, it shows a

significant disturbance of the centreline velocity in the core. Using the HPF model increases the
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length of the potential core on the fine grid, consistent with the experimental results, but it still

shows a small disturbance of the velocity in the core. Using the stochastic backscatter model, the

length of the potential core is not only consistent with experiment on the finest grid, but it is also

not much smaller on the coarser grids. The mean centreline velocity lies within the experimental

range on all grids downstream of the end of the potential core. The velocity fluctuations also lie

within the experimental range on the fine grid. On the two coarse grids, although the peak of the

velocity fluctuations is predicted further upstream, it has clearly shifted closer to the experiments

compared to the results with only the HPF model. Furthermore, the disturbance in the core is

fully removed, even on the coarsest grid G1. Clearly, the weakest grid dependence is found with

the stochastic backscatter model.

The radial velocity profiles at four stations (Figure 12) essentially show the same tendency as the

centreline profile. The best comparison to the experiment, and the weakest grid dependence, is

found with the stochastic backscatter model. Underprediction of the mean centreline velocity for

the baseline results is accompanied by a too strong thickening of the jet as well as an overpredic-

tion of the velocity fluctuations at the first two stations and an underprediction at the latter two.

These effects are diminished with the HPF model and even more so with the stochastic backscat-

ter model, especially on the coarser grids G1 and G2.

The impact of the stochastic backscatter model is the strongest close to the nozzle lip, as could

already be seen from the instantaneous iso-surfaces of Q. It can also be seen from the velocity

profiles along the lip line r = R (Figure 13), where substantial velocity fluctuations are present

immediately after the lip with the backscatter model, while they need some distance (one or two

nozzle diameters) to grow with the baseline and HPF models, ending in a sharp peak in the ve-

locity fluctuations themselves as well as leading to a peak in the mean velocity. The peak in the

velocity fluctuations is substantially reduced with the backscatter model, while the peak in the

mean velocity is completely removed, leading to an overall better comparison with the experi-

ment.

5 Conclusions

A new method has been presented for accelerating the development of resolved turbulence in

free shear layers in the context of non-zonal detached eddy simulations. In standard DES, this

development may be unrealistically slow, in particular when there is no significant recirculation

of resolved turbulence back to the onset of flow separation, and a substantial so-called grey area

may be present in which significant resolved turbulence is lacking, even though the computation
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c) Stochastic backscatter HPF SGS model with spatial and temporal correlations

Fig. 11 Mean velocity and velocity fluctuations (RMS value) along jet centreline computed with X-LES

using different SGS models and on different grids
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Fig. 12 Mean velocity and velocity fluctuations (RMS value) at four stations computed with X-LES us-

ing different SGS models and on different grids (mean velocity offset with 0.5, 1, and 1.5 and

velocity fluctuations offset with 0.2, 0.4, and 0.6 at x = 8, 12, and 16D, respectively)
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Fig. 13 Mean velocity and velocity fluctuations (RMS value) along jet lip line computed with X-LES us-

ing different SGS models on the fine grid G3

is in LES mode. In order to induce the development of 3D instabilities in the initial free shear

layers, stochastic forcing is added in the form of a stochastic backscatter model with spatial and

temporal correlations for scales smaller than the subgrid scales. This approach is combined with

a high-pass filtered SGS model that reduces the level of subgrid stresses in the initial shear lay-

ers.

The new method strongly reduces the grey area as has been demonstrated both for the plane free

shear layer and for the round jet, giving a clear improvement over computations that only reduce

the level of subgrid stresses through the HPF SGS model. For the free shear layer in particular,

3D instabilities start immediately at the trailing edge, instead of being delayed for one quarter

of the test section. This leads to a broad energy spectrum, indicating fully developed turbulence,

already at 20% of the test section as well as a correct growth rate downstream of that location.

Furthermore, the new model is also effective on relatively coarse grids, reducing the grid depen-

dence compared to computations using only the HPF SGS model. As the stochastic backscatter

model gives improved results when added to the HPF approach, it also has the potential to fur-

ther improve the results of other recently proposed methods (Refs. 27, 38) that reduce the level

of subgrid stresses and that give similar results to the HPF approach.

Finally, there are several directions open for future research. First of all, application to more

complex test case is on-going (Refs. 14, 16, 32). Second, for the jet case, the assessment of the

far-field noise is of interest. Although the backscatter model has been formulated analytically

such that it should not generate noise artificially, this is not necessarily maintained by the numer-

ical discretization and therefore needs to be verified in practice. The last question is whether the
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stochastic backscatter model will also be beneficial for wall-modelled LES. This is not unlikely

as others have used stochastic forcing to resolve the log-layer mismatch. In wall-modelled LES

the RANS–LES interface is located well within the boundary layer, and it may be expected that

close to this interface high values of the (subgrid) kinetic energy k will diffuse from the RANS

zone into the LES zone. Thus, the stochastic backscatter model will then be active there (as

it scales with k), possibly mitigating a potential lack of resolved turbulence. Further research

would be needed to evaluate this in practice, possibly requiring reassessment of the model coeffi-

cients.
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Appendix A Rate of backscatter

The new stochastic backscatter model includes spatial correlation in the stochastic variables, con-

trary to the models of Leith and Schumann. In this section, it is shown that this spatial correla-

tion does not alter the scaling of the rate of backscatter as κ4 for wave numbers κ → 0.

Consider a homogeneous stochastic forcing term fi(x, t) added to the right-hand side of the mo-

mentum equation:

∂ui

∂t
+ . . . = fi(x, t),

with its spatial Fourier transform f̂i(κ, t) given by

f̂i(κ, t) =
∫

R3
fi(x, t)e−iκ·xdx.

Let Ci j(r, t) be the two-point correlation of fi,

Ci j(r, t) =
〈

fi(x, t) f j(x + r, t)
〉
,

which is independent of x due to homogeneity, and let R̂i j(κ, t) be the covariance of f̂i,

R̂i j(κ, κ′, t) =
〈

f̂i(κ, t) f̂ j(κ′, t)
〉
.

The two-point correlation and the covariance are related by

R̂i j(κ, κ′, t) =
∫

R3

∫
R3

〈
fi(x, t) f j(x + r, t)

〉
eiκ·xe−iκ′·(x+r)dx d(x + r)

=

∫
R3

ei(κ−κ′)·xdx
∫

R3
e−iκ′·rCi j(r, t)dr

= 2πδ(κ − κ′)Ĉi j(κ′, t)

(10)

so that

Ĉi j(κ, t) =
1

2π

∫
R3

R̂i j(κ, κ′, t)dκ′. (11)

The rate of backscatter at a wave number κ is determined by the spectrum function F̂(κ, t) of fi
(Ref. 4). Here, F̂ is defined analogous to the energy spectrum function E(κ) of the velocity field

as defined in Pope, section 6.5 (Ref. 31):

F̂(κ, t) =
∮

S κ
Ĉii(κ, t)dS κ

with S κ the sphere around the origin with radius κ. The spectrum function F̂ should scale as κ4

for wave numbers smaller than the cut-off wave number κc ≈ π/∆.
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If fi is directly defined as a spatially uncorrelated stochastic variable, then Ci j = Cδi j∆
3δ(r) (with

C constant in case of homogeneity), implying Ĉi j = C∆3δi j and F̂ = 12πC∆3κ2 (as δii = 3 and

the surface of a sphere equals 4πκ2). Thus, such an approach would give the wrong scaling of the

power spectrum.

The correct scaling is obtained if fi is defined as the gradient of a spatially uncorrelated stochas-

tic variable ξi, formulated in case of the Leith model as

fi(x, t) = εi jk
∂ξk
∂x j
,

with εi jk the alternating symbol. In this case, the Fourier transform of the two-point correlation

Di j of ξi is given by D̂i j = D∆3δi j =
1
3 D̂kkδi j and its covariance by Ŝ i j =

2
3πD̂kkδi jδ(κ − κ′),

according to equation (10). One then finds that

R̂ii(κ, κ′, t) = εi jkεilm(−iκ j)(iκ′l )Ŝ km(κ, κ′, t)

= (δ jlδkm − δ jmδkl)κ jκ
′
l

2
3πD̂iiδkmδ(κ − κ′) = 4

3πD̂iiκ
2δ(κ − κ′),

which implies upon substitution in equation (11) that

Ĉii =
2
3 D̂iiκ

2 = 2D∆3κ2.

It follows that the power spectrum F̂ = 8πD∆3κ4 has the correct scaling.

Finally, consider the case that ξi is spatially correlated according to

Di j =
〈
ξi(x, t)ξ j(x + r, t)

〉
= Dδi je−d2/2,

with d = |r|/b and b =
√

C∆∆ ≈
√

C∆π/κc. Taking the Fourier transform of Di j gives

D̂i j = Dδi j(2π)3/2b3e−(bκ)2/2,

so that

Ĉii =
2
3 D̂iiκ

2 = 2Dκ2(2π)3/2b3e−(bκ)2/2,

following the same derivation as above, and finally

F̂ = 8πDκ4(2π)3/2b3e−(bκ)2/2,

which again scales as κ4 for κ � κc.
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Appendix B Correlations of solutions of the stochastic differential

equations

Consider the Langevin-type equation (4) and the spatial stochastic differential equation (6). In

this appendix, it is shown that the solution of these equations has the desired spatial and temporal

correlation of equation (3), interpreted in Lagrangian sense, in case of a uniform flow.

Let G(x, t) be the Green’s function satisfying the equation

G + τ
(
∂G
∂t
+ u · ∇G

)
= δ(x)δ(t),

for a constant velocity u. Applying Fourier transformations of this equation both in space and

time results in the following expression for the Fourier transform Ĝ of G:

Ĝ(κ, ω) =
1

(2π)2

1
1 + iτω + iτu · κ

,

with κ the spatial wave number vector and ω the angular frequency. Applying inverse Fourier

transforms, first in time and then in space, gives

G(x, t) =
1
τ

H(t)e−t/τδ(x − ut).

Using the Green’s function, a general solution of equation (4) for arbitrary dWi can be written as

ξi(x, t) =
∫

R3

∫ ∞

−∞

G(x − x′, t − t′)
√

2τ dx′ dWi(x′, t′)

=

∫ ∞

−∞

√
2
τH(t − t′)e(t′−t)/τ dWi(x − u(t − t′), t′).

Given the spatio-temporal correlation of dWi defined by equation (5), the following spatio-temporal

correlation is found for ξi:〈
ξi(x, t)ξ j(y, s)

〉
=

∫ ∞

−∞

∫ ∞

−∞

2
τH(t − t′)H(s − s′)e(t′−t)/τe(s′−s)/τ

〈
dWi(x − u(t − t′), t′) dW j(y − u(s − s′), s′)

〉
=

∫ ∞

−∞

∫ ∞

−∞

δi j
2
τH(t − t′)H(s − s′)e(t′−t)/τe(s′−s)/τδ(t′ − s′)

exp
(
− 1

2b2

∣∣∣x − y − u(t − s − t′ + s′)
∣∣∣2) dt′ ds′

= δi j exp
(
− 1

2b2 |x − y − u(t − s)|2
) ∫ min(t,s)

−∞

2
τe

(2t′−t−s)/τdt′

= δi j exp
(
− 1

2b2 |x − y − u(t − s)|2
)

e−|t−s|/τ,
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which is indeed equivalent with equation (3) with x and y replaced by the Lagrangian coordi-

nates x − ut and y − us.

Next, let G(x) be the 1D Green’s function satisfying the equation(
1 − b2 d2

dx2

)
G = δ(x),

which is given by

G(x) =
1

2b
e−|x|/b.

A general solution of equation (6) for arbitrary dVi can then be written as

dWi(x, t) =
∫

R3
G3(x − x′)8b3/2 dVi(x′, t),

with G3(x− x′) = G(x1 − x′1)G(x2 − x′2)G(x3 − x′3). If dVi is completely uncorrelated both in space

and time, as defined by equation (7), then it follows that〈
dWi(x, t)dW j(y, s)

〉
= 64b3

∫
R3

∫
R3

G3(x − x′)G3(y − y′)
〈
dVi(x′, t)dV j(y′, s)

〉
= 64b3δi jδ(t − s)

∫
R3

G3(x − x′)G3(y − x′)dx′

= b−3δi jδ(t − s)
3∏

m=1

∫
R

e−|xm−x′m|/be−|ym−x′m|/bdx′m

= δi jδ(t − s)
3∏

m=1

(
1 + 1

b |xm − ym|
)

e−|xm−ym |/b

= δi jδ(t − s)
(
e−|x−y|2/(2b2) + O(|x − y|3)

)
.

For small distances, this is the spatio-temporal correlation of dWi as defined by equation (5) up

to third order in the distance. For large distances, this correlation rapidly decays, ensuring the

correct scaling of the rate of backscatter.

Appendix C Preservation of the variance in the discretized spatial

stochastic differential equation

Consider the 1D stochastic differential equation

(1 − βδ2i )η′i = ζi,

with i the grid-cell index, β the smoothing coefficient, and δ2i the second-order difference opera-

tor. The stochastic variable ζi = N(0, 1) is spatially uncorrelated,〈
ζiζ j

〉
= δi j.
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We wish to determine the variance of the smoothed variable η′.

Let Gi be the discrete Green’s function satisfying the equation

(1 − βδ2i )Gi = δi0.

Then, the general solution of the 1D stochastic differential equation (assuming periodicity) is

given by

η′i =
∑

j

Gi− jζ j,

so that the variance of η′i is given by〈
(η′i)

2
〉
=

∑
j

∑
k

Gi− jGi−k
〈
ζ jζk

〉
=

∑
j

G2
i− j = N |G|2 ,

with N the number of grid cells and |G| the L2 norm of G.

Consider the discrete Fourier transform Ĝk of the Green’s function

Ĝk =
1
N

∑
i

Gie−iθki

with θk = 2πk/N. Applying the Fourier transform to the equation for the Green’s function, one

finds

Ĝk =
1
N

(1 + 2β(1 − cos θk))−1.

Thus, the variance of η′i is given by〈
(η′i)

2
〉
= N

∑
k

∣∣∣Ĝk
∣∣∣2 = 1

N

∑
k

(1 + 2β(1 − cos θk))−2.

In the limit for zero mesh size (i.e., δθ = 2π/N → 0), this summation becomes an integral over

the wave number θ, so that〈
(η′i)

2
〉
=

1
2π

∫ 2π

0
(1 + 2β(1 − cos θ))−2dθ =

1
π

∫ π

0
(1 + 2β(1 − cos θ))−2dθ

=
1
π

2
1 + 4β

 β sin θ
1 + 2β(1 + cos θ)

+
1 + 2β√
1 + 4β

arctan
( √

1 + 4β tan
(

1
2θ

))π
0

=
1 + 2β

(1 + 4β)3/2

Finally, it follows that to obtain a stochastic variable with unit variance, η′i should be scaled as

ηi =
(1 + 4β)3/4

(1 + 2β)1/2 η
′
i .

In 3D, this scaling should be applied for each computational direction.
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Appendix D Preservation of the variance in the discretized

Langevin-type equation

Consider the Langevin-type equation in primitive form, discretized as

ξn +
τ

δt

(
ξn+1/2 − ξn−1/2

)
+ τun · ∇ξn =

√
2τ
δt
ηn,

with ξn = 1
2 (ξn+1/2 + ξn−1/2).

First, no flow (u = 0) is considered, in which case(
1 +
δt
2τ

)
ξn+1/2 =

(
1 −
δt
2τ

)
ξn−1/2 +

√
2δt
τ
ηn.

Given that
〈
(ηn)2

〉
= 1 and

〈
ηnξn−1/2

〉
= 0, and assuming that

〈
(ξn−1/2)2

〉
= 1, it follows that(

1 +
δt
2τ

)2 〈
(ξn+1/2)2

〉
=

(
1 −
δt
2τ

)2
+

2δt
τ
,

so that〈
(ξn+1/2)2

〉
= 1.

Thus, if the initial variance of ξ equals one, then this variance is locally conserved by the central

time discretization.

Including the convective term, local conservation of the variance cannot be easily proven. How-

ever, one can show global conservation up to third order in the time step. Let ξ be the vector with

the values of ξ at all grid points as its components. The Langevin-type equation, discretized both

in space and time, can then be written as

ξn +
τ

δt

(
ξn+1/2 − ξn−1/2

)
+ τC(un)ξn =

√
2τ
δt
ηn,

with C the discretized convection operator. For a symmetry-preserving discretization, this opera-

tor is skew-symmetric, that is, ξT Cξ = 0 for any ξ. Rewriting the equation as(
I +
δt
2τ

I + 1
2δtC

)
ξn+1/2 =

(
I −
δt
2τ

I − 1
2δtC

)
ξn−1/2 +

√
2δt
τ
ηn,

and taking the square of the L2-norm of the left-hand and right-hand sides, one finds(
1 +
δt
2τ

)2 ∣∣∣ξn+1/2
∣∣∣2 + 1

4 (δt)2
∣∣∣Cξn+1/2

∣∣∣2 = (
1 −
δt
2τ

)2 ∣∣∣ξn−1/2
∣∣∣2

+ 1
4 (δt)2

∣∣∣Cξn−1/2
∣∣∣2 + 2δt

τ

∣∣∣ηn
∣∣∣2 + (. . .)ξn−1/2 · ηn,
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if C is skew-symmetric. This time, given that
〈∣∣∣(ηn)2

∣∣∣〉 = N and assuming that
〈∣∣∣(ξn−1/2)2

∣∣∣〉 = N,

with N the total number of grid points, it follows that

(
1 +
δt
2τ

)2 (〈∣∣∣ξn+1/2
∣∣∣2〉 − N

)
= 1

4 (δt)2
(〈∣∣∣Cξn−1/2

∣∣∣2〉 − 〈∣∣∣Cξn+1/2
∣∣∣2〉) .

This equation allows for the global conservation of the variance of ξ, that is,
〈∣∣∣(ξn+1/2)2

∣∣∣〉 = N,

if either conservation of the variance of Cξ is also assumed or the right-hand side, which is of

O((δt)3), is neglected. Note that if the discretization is not symmetry-preserving, then a right-

hand side of O(δt) is found that leads to considerable dissipation of the total variance of ξ.
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