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MICROSTRUCTURALLY-INDUCED EMBRITTLEMENT OF ARCHAEOLOGICAL

SILVER

R.J.H. Wanhill

National Aerospace Laboratory NLR, Anthony Fokkerweg 2,

1059 CM Amsterdam, The Netherlands

ABSTRACT

Microstructurally-induced embrittlement of archaeological silver is characterized by grain

boundary fracture. This is most likely due to impurity elements segregating to grain boundaries

and reducing their cohesive strength. Empirical and theoretical concepts of segregation-induced

embrittlement are considered with respect to silver and the impurity elements in archaeological

silver, furthermore considering the special nature of grain boundaries and the influence of grain

size. The report ends with surveys of diagnostic techniques and possible remedial measures for

embrittled archaeological silver.

KEYWORDS:  ARCHAEOLOGICAL SILVER, EMBRITTLEMENT, CRACKS, GRAIN

BOUNDARIES, SEGREGATION, GRAIN SIZE, CORROSION, MICROSTRUCTURE,

METALLOGRAPHY, FRACTOGRAPHY, RESTORATION, CONSERVATION, HEAT-

TREATMENT, COATINGS

INTRODUCTION

Silver is normally malleable, ductile and easily fabricated. However, archaeological silver can

be very brittle, as a long term consequence of corrosion and microstructural changes in the

silver (Thompson and Chatterjee 1954; Werner 1965; Ravich 1993; Wanhill et al. 1998;

Wanhill 2000a). This report considers microstructurally-induced embrittlement from current

evidence, empirical and theoretical metallurgical concepts, and the chemical compositions of

archaeological silver artifacts and coins. The report ends with surveys of diagnostic techniques

and possible remedial measures for both microstructurally-induced and corrosion-induced

embrittlement.

At this point it is opportune to distinguish between microstructurally-induced and corrosion-

induced embrittlement. Microstructurally-induced embrittlement causes apparently pristine

metal to crack and fracture under the action of external loads or forces. Corrosion-induced
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embrittlement is a consequence of selective corrosion that penetrates the metal and eventually

fragments it (Werner 1965; Ravich 1993; Wanhill et al. 1998) whether or not there are external

loads or forces.

However, it is important to note that microstructurally-induced and corrosion-induced

embrittlement can act synergistically, and that microstructural features are involved in both

kinds of embrittlement (Wanhill et al. 1998; Wanhill 2000a).

EVIDENCE OF EMBRITTLEMENT

It has long been known that certain elements can embrittle silver, notably lead and tin (Ercker

1574) and antimony (Gowland 1918). The first detailed investigation appears to be due to

Thompson and Chatterjee (1954). They studied the embrittlement of silver by age-hardening

(age-embrittlement), prompted by the brittleness of archaeological silver coins that must have

been ductile when struck.

Thompson and Chatterjee analysed fifteen brittle silver coins, finding copper and lead in

appreciable quantities, but no other element except as a trace. The copper contents were up to

several weight % and the lead contents varied from 0.25-1.6 wt. %. From these analyses they

considered that embrittlement could be due to age-hardening owing to precipitation of lead from

supersaturated solid solution in the silver matrix of Ag-Pb or Ag-Cu-Pb alloys. They provided

evidence for this possibility as follows:

(1) By determining the silver-rich low temperature region of the Ag-Pb phase diagram,

figure 1. This required weeks and months of ageing supersaturated solid solutions of lead

in silver, and showed that a lead-rich phase (β) precipitates out of solution even at very

low lead contents, less than 0.1 wt. %, and down to ambient temperatures.

(2) By mechanically testing age-hardened Ag-Pb and Ag-Cu-Pb alloys, figure 2, and showing

that prolonged ageing led to brittle fracture.

However, lead-rich precipitates may not be necessary. Wanhill et al. (1998) examined a

severely embrittled  Egyptian silver vase, figure 3a.  Microstructural embrittlement was

characterized by “clean” grain boundary fracture with no sign of precipitates. This is illustrated

in figure 3b, with the caveat that features on the grain boundary facets are due to localised

corrosion after fracture. In view of the vase metal analysis (in weight %:

97.1 Ag-0.9 Cu-0.8 Au-0.7 Pb-0.3 Sb-0.2 Sn) and a theory of adsorption-induced embrittlement

(Seah 1980a), Wanhill et al. concluded that embrittlement could have been due to lead atoms
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segregating to grain boundaries and reducing their cohesive strength (Wanhill et al. 1998;

Wanhill 2000a).

EMPIRICAL AND THEORETICAL METALLURGICAL CONCEPTS

The starting point for this part of the report is the observation that microstructurally-induced

embrittlement and precipitation or segregation of impurity elements to grain boundaries are

characteristic of elements having very low primary solid solubilities in the parent metal matrix

(Seah 1980b; Shewmon 1998).

The topics to be considered are: primary solid solubility; equilibrium grain boundary

segregation; grain boundary character; and alloy phase diagrams, non-equilibrium cooling and

mechanical behaviour.

Primary solid solubility

Primary solid solubility is governed by atomic size differences between the solute and solvent

and by the tendency to form intermediate phases and intermetallic compounds. These

observations can be expressed, in order of importance, by the size-factor rule, the

electrochemical differences and hence chemical affinities of the alloying components, and the

electron concentration change upon alloying (Hume-Rothery and Raynor 1954; Pettifor 1984,

1988; Massalski 1996).

The size-factor rule states that when the atomic diameters of solute and solvent differ by more

than 14-15 %, the size-factor is unfavourable and the primary solid solubility will generally be

restricted to a few atomic per cent. It is, however, a negative rule: favourable size-factors do not

necessarily mean high solid solubilities. Figure 4 illustrates the rule for solid solutions in silver.

Rubidium, potassium and sodium have very unfavourable size-factors and, as table 1 shows,

zero solid solubility. They are followed by lead, bismuth and thallium, with solid solubilities

less than 8 at. %.

The next criterion, electrochemical difference and chemical affinity, is simply that the greater

the electrochemical difference between solute and solvent, the greater is their affinity and

tendency to form intermediate phases and intermetallic compounds. In turn, this means primary

solid solubility will be restricted (Hume-Rothery and Raynor 1954; Massalski 1996). The

electrochemical difference is quantifiable by differences in electronegativity of the alloying

components (Pauling 1945, 1947; Darken and Gurry 1953; Gordy and Thomas 1956).
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Much effort has been put into combining the size-factor rule and electronegativity differences

on Darken-Gurry (D-G) maps, e.g. Darken and Gurry (1953), Waber et al. (1963), Gschneider

(1980). D-G maps are supposed to enable predictions whether solid solubility is low or

moderate-to-high. Figure 5 shows a D-G map for solid solutions in silver, using data from

table 1. Solute elements outside the ellipse should have low solid solubilities, while elements

within the ellipse are predicted to have solid solubilities greater than 5-10 at. %. However, again

using table 1, we see that this latter prediction is incorrect with respect to tellurium. Also,

lithium, palladium, arsenic and antimony are incorrectly predicted to have low solid solubility.

These and other inadequacies of D-G maps have been explained by Gschneider (1980) in a

general way, i.e. not specifically considering silver as the solvent. To overcome these

inadequacies Gschneider presented several new rules, which he realised would make D-G maps

largely unnecessary.

More recently, Pettifor (1984, 1988) derived a series of the elements that goes beyond

electronegativity by also acknowledging the chemical similarity of elements from the same

Group of the Periodic Table. Each element is given an empirical ordering number, and examples

are given in table 1. Pettifor demonstrated the usefulness of this deceptively simple empirical

approach by showing it enabled systematic separation of the crystal structures of many binary

intermetallic compounds.

The third factor to consider is the electron concentration, which is the ratio of valence electrons

to the number of atoms. Empirical studies of binary gold, silver and copper alloys, in particular

with B-subGroup elements, have shown that when the effects of size-factor and electrochemical

difference are “relatively small”, the primary solid solubility limits occur at fairly constant

values of electron concentration (Hume-Rothery and Raynor 1954). In a famous theory, Jones

(1937) provided an explanation of this phenomenon and derived a theoretical critical electron

concentration of 1.41.

Figure 6 illustrates the electron concentration effect for binary silver alloys, whereby the solutes

have favourable size-factors but the combination of electronegativity and chemical differences,

expressed by Pettifor’s empirical ordering sequence, increases in going from cadmium to

antimony. Most of the alloys have primary solid solubility limits at electron concentrations

between 1.35-1.42, agreeing well with Jones’ theory. (However, this theory is known to have

some problems (Cottrell 1988; Massalski 1996).)

Equilibrium grain boundary segregation

Equilibrium grain boundary segregation involves the solid state redistribution of solute elements

and their adsorption at grain boundaries. Solutes of low solubility generally segregate strongly



-9-
NLR-TP-2001-032

and vice versa (Seah 1980b). Another important characteristic is that at the commonly observed

levels of segregation many elements co-segregate rather than compete for grain boundary

adsorption sites (Hondros and Seah 1977; Seah 1980b).

This type of segregation can greatly reduce the cohesive strength of grain boundaries, leading to

grain boundary fracture and embrittlement (Seah 1980a, 1980b; Shewmon 1998), and Seah

(1980a) has developed a theory of embrittlement owing to adsorption-induced grain boundary

decohesion. Figure 7 shows the theory’s predictions for segregant elements in silver. This figure

should be interpreted as follows: elements with sublimation enthalpies lower than those of the

matrix will, if segregated, cause embrittlement of the matrix grain boundaries, and the

embrittling effect will be greater the lower the sublimation enthalpy of the segregant element.

(The sublimation enthalpy is a measure of the heat required to evaporate atoms from the solid

surface of an element.)

Figure 8 correlates alloying element primary solid solubility limits in silver with their

sublimation enthalpies. The elements are arranged according to Pettifor’s (1988) empirical

ordering numbers and unfavourable size-factors are indicated. The shaded regions in this figure

indicate the matrix and alloying element combinations that would seem most likely to result in

segregation-induced grain boundary fracture under equilibrium conditions: silver containing

sodium, potassium, rubidium, lead, bismuth, tellurium and selenium. There are other

possibilities, namely silver containing thallium, germanium, antimony and arsenic.

However, the key question, unanswerable by figures 7 and 8, is whether the indicated alloying

elements actually segregate to grain boundaries to cause embrittlement. Another important

question is whether they might cause embrittlement in another way. To try to answer these

questions, and also to explain the observed embrittlement of silver discussed earlier, it is

necessary to consider the grain boundary characteristics of archaeological silver, the binary

silver alloy phase diagrams, the effects of non-equilibrium cooling on the phase changes, and

the likely mechanical behaviour of the alloys.

Grain boundary character

Grain boundaries strongly influence the properties of metals and alloys, and there is much

evidence that grain boundaries have different properties depending on their character, i.e. their

type and structure (e.g. McLean 1957; Chadwick and Smith 1976; Baluffi 1980; Watanabe

1984, 1993, 1994; Watanabe et al. 1980, 1989; Lim and Watanabe 1990).
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From the literature and their own research Watanabe (1984, 1993, 1994) and Watanabe et al.

(1980, 1989) suggested dividing grain boundaries into three character-determined categories:

low-angle boundaries with misorientation angles less than 15°; high-angle coincidence

boundaries with low Σ coincidence✳; and high-angle random boundaries. The basic

distinguishing property is that low-angle and low Σ coincidence boundaries are low-energy

boundaries, while random boundaries are high-energy boundaries. This difference is important

for many other properties, including impurity element segregation, which occurs preferentially

to high-angle random grain boundaries (Watanabe et al. 1980). This is illustrated schematically

in figure 9, which also shows – consistent with observations (Seah 1980b) – that segregation

tends to be greater for impurity elements having less primary solid solubility.

This distinction between grain boundary types and structures is informative for

microstructurally-induced embrittlement of archaeological silver artifacts. These were usually

made using combinations of mechanical working and annealing heat-treatments. The resulting

microstructures most probably contain a majority of high-angle random grain boundaries, see

e.g. Watanabe (1984) and Watanabe et al. (1989). In turn, this suggests that archaeological

silver artifacts contain many grain boundaries very susceptible to impurity element segregation,

if it has occurred.

Furthermore, despite the presence of other types of grain boundary, the likely preponderance of

high-angle random grain boundaries in archaeological silver artifacts means it is reasonable, and

indeed consistent with empirical observations (Werner 1965), to apply a simple length scale

criterion – based on the average grain size or diameter – to crack initiation. This is considered

later in the report, in the main section discussing microstructurally-induced embrittlement.

Alloy phase diagrams, non-equilibrium cooling, and mechanical behaviour

Table 2 lists the equilibrium phase diagram characteristics and ambient temperature phases for

dilute silver binary alloys whose alloying elements have low primary solid solubilities.

Phase changes for the alloys in sub-table 2.1 should be independent of cooling rate, within

normal metallurgical variations. This basic independence of cooling rate means that in the as-

cast condition there will always be intercrystalline or intergranular phases. These are usually

                                                     
✳ Grain boundaries can be classified using the concept of a Coincident Site Lattice (CSL), see Gleiter (1996). A

boundary is then defined according to the ratio of the volume of a unit cell of the CSL to the volume of a unit cell
from the grains on either side of the boundary. This ratio is denoted by Σ. A low value of Σ implies many
coincident sites (atom positions) per unit area of the boundary. Such boundaries are called low Σ coincidence
boundaries.
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brittle intermetallic compounds and cause poor mechanical behaviour. Evidence for this is

provided by Roberts-Austen’s experiments on binary gold alloys (Roberts-Austen 1888;

Wanhill 2000b).

Phase changes for the alloys in sub-tables 2.2 and 2.3 will depend on cooling rate.  This will be

illustrated with the  aid of figure 10, which shows  schematic binary alloy equilibrium phase

diagrams involving eutectic or peritectic reactions. Consider two dilute alloys whose bulk

compositions approach the primary solid solubility limits, α3 , and are represented by the

vertical lines meeting the abscissae at X. Non-equilibrium cooling has two major effects on the

phase changes:

(1) If cooling is fast enough the solidification compositions follow the curves α1–α3' rather

than α1–α3. This means the solid solubilities are reduced, final solidification is at

temperatures T3 instead of T2, the last liquids to solidify have compositions L3 instead of

L2, and the alloys do not finally solidify only as α. Instead the eutectic or peritectic

reactions occur at T3: the remaining liquids either solidify as eutectic α+β between the

primary α crystals or grains, or else react – the peritectic reaction – with some of the

primary α crystals or grains to form β between them.

(2) Suppression of solid state reactions and the retention of metastable phases down to

ambient temperatures. This is possible because the diffusion of atoms is much slower in

solids than in liquids. From figure 10 we see that under equilibrium conditions the two

alloys undergo solid state partial decomposition (α→α+β) at temperatures below T4.

However, faster cooling will cause supersaturated α to be retained, at least temporarily,

down to ambient temperatures.

These effects may be interpreted to some extent for the alloys in sub-tables 2.2 and 2.3. Firstly,

non-equilibrium cooling could cause alloys with bulk compositions below PSSLmax or PSSLeut

to finally solidify as though their bulk compositions were above these limits, leading to poor

mechanical properties. Indirect evidence for this is the behaviour of gold containing thallium. In

this system the solid solubility of thallium becomes zero well above the eutectic temperature,

resulting in eutectic Au+Tl between the primary crystals or grains however dilute the alloy

(Baker et al. 1992; Wanhill 2000b). Roberts-Austen (1888) noted the “crystalline structure” of

the fracture surface of an as-cast Au-0.2 wt. % (≈ 0.2 at. %) Tl bar whose ductility was low.

Secondly, the solid state decomposition reactions listed in the last two columns of sub-tables 2.2

and 2.3 could be partially or wholly prevented by non-equilibrium cooling. Subsequent ageing

at low or even ambient temperatures could then result, in some cases, in alloying element
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segregation and precipitation, and mechanical behaviour deterioration and embrittlement. The

archetype is provided by the Ag-Pb alloy experiments of Thompson and Chatterjee (1954),

discussed in the previous main section of this report and illustrated by figures 1 and 2. Other

– candidate – systems are silver containing arsenic, bismuth and thallium. On the other hand,

the Ag-Sb and Ag-Sn systems are less likely to belong to this category, even though antimony

and tin can embrittle silver (Ercker 1574; Gowland 1918). The reason is that the solid

solubilities of antimony and tin in silver are still significant at ambient temperatures, see sub-

table 2.2. Finally, the Ag-Ge system would appear to be excluded, since germanium has a

higher sublimation enthalpy than silver, see table 1 and figures 7 and 8.

Summary

Empirical and theoretical metallurgical concepts enable specifying which elements, in amounts

less than about 5 at. %, could embrittle or impair the mechanical behaviour of silver. There are

two categories, alloys most probably embrittled as-cast, and alloys that could be embrittled by

low temperature ageing that results in alloying element segregation and precipitation. These

categories are given below, whereby asterisks indicate known embrittlement or poor mechanical

behaviour of dilute alloys (Thompson and Chatterjee 1954; Raub 1995):

(1) As-cast : Ag-Bi, Ag-Na, Ag-Pb, Ag-Rb, Ag-Se, Ag-Te*.

(2) Aged : Au-As, Ag-Bi, Ag-Pb*, Ag-Tl.

For both categories the presence of more than one of the specified elements could be

cumulatively detrimental. This is probable for aged alloys in which impurity elements have

segregated to grain boundaries since, as remarked earlier, many elements co-segregate rather

than compete for grain boundary adsorption sites.

For archaeological silver only the second category – aged alloys – is likely to be relevant. Most

artifacts were made by subjecting buttons or ingots with as-cast microstructures to mechanical

working and intervening annealing heat-treatments. As-cast embrittlement could not have been

tolerated: the silver would have been reprocessed until malleable and ductile. By the same

token, however, the microstructures of most artifacts should contain many grain boundaries

very susceptible to impurity element segregation owing to low temperature ageing.
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COMPOSITION OF ARCHAEOLOGICAL SILVER

Native silver alloys may or may not have been used for Old World archaeological artifacts

(Lucas 1928; Gale and Stos-Gale 1981a; Philip and Rehren 1996). However, the general

scarcity of native silver compared to silver-containing minerals, mostly lead ores, and the early

development of lead cupellation resulted in pyrometallurgy becoming the main source of silver

(Gowland 1918; Gale and Stos-Gale 1981a, 1981b; Tylecote 1986; Raub 1995).

Cupellation is very effective in producing silver above 95 wt. % purity (Tylecote 1986, 1987),

though it usually contains minor-to-trace amounts of gold, copper, lead and bismuth, and traces

of antimony, arsenic, tellurium, zinc and nickel (McKerrell and Stevenson 1972; Gale and Stos-

Gale 1981a; Raub 1995). Gold, copper, lead and bismuth contents are generally below 1 wt. %

for each element: higher copper and lead contents in finished artifacts and coins, and also tin or

zinc above 0.1 wt. %, suggest or indicate deliberate alloying, see McKerrell and Stevenson

(1972) and Gale and Stos-Gale (1981a).

Figure 11 quantifies actually or potentially embrittling elements found in archaeological silver

artifacts and coins lying within two ranges of high silver content. Though there are wide

variations, lead is the main impurity, averaging 0.5-1 wt. %. Bismuth, antimony and tin are

generally below 0.5 wt. %.

DISCUSSION OF MICROSTRUCTURALLY-INDUCED EMBRITTLEMENT

Description and mechanism

Microstructurally-induced embrittlement of archaeological silver appears to be entirely

intergranular. The cracks are characteristically narrow and sharp (Wanhill 2000a) except where

grains can become bodily displaced, e.g. figure 3b, which is itself a characteristic of severe

embrittlement. Also, there is no evidence of plastic deformation of the grain boundaries (see

figure 3b and Wanhill et al. 1998; Wanhill 2000a) unlike that occurring in the vicinity of low-

energy boundaries (Watanabe 1984).

The evidence and empirical and theoretical concepts point to a mechanism of embrittlement by

long-term low temperature ageing, whereby segregation of an impurity element, or elements,

occurs to grain boundaries. The candidate impurity elements are arsenic, bismuth, lead, thallium

and – less likely – antimony and tin.
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Lead is the most likely perpetrator. This is inferred from the long-term ageing experiments and

brittle coin analyses by Thompson and Chatterjee (1954); the Egyptian vase investigated by

Wanhill et al. (1998), which contained lead, antimony and tin, but no detectable arsenic or

bismuth; and the impurity element contents of many artifacts and coins, figure 11, where it is

seen that lead is the main impurity. However, embrittlement by other impurity elements –

notably bismuth, see figure 8 – is possible, especially in co-segregating action with lead.

Influence of grain boundary character and grain size

As indicated earlier in this report, microstructurally-induced embrittlement should mostly affect

high-angle random grain boundaries (Watanabe et al. 1980; Watanabe 1984), which very likely

predominate in the microstructures of archaeological silver artifacts. This has two important

implications:

(1) Archaeological silver artifacts contain many grain boundaries very susceptible to

impurity element segregation and microstructurally-induced embrittlement, if it has

occurred.

(2) It is reasonable to try to describe embrittlement using a length scale criterion based on the

average grain size or diameter, even though such criteria assume implicitly that all grain

boundaries are the same.

Archaeological silver may have large grain sizes, more than 0.1 mm (e.g. Werner 1965; Wanhill

et al. 1998). This is because the annealing heat-treatments usually involved in artifact

manufacture were more or less uncontrolled, and the metalsmith would likely over-anneal to

ensure malleability and ductility during further mechanical working and finishing.

Werner (1965) stated that larger grain sizes are a primary cause of silver embrittlement. This is

incorrect – or at least imprecise – since large grain size silver is usually ductile (Wanhill et al.

1998), as attested also by the successful manufacture of archaeological silver artifacts, and by

experiments on silver single crystals (Andrade and Henderson 1951; Rosi 1954). However,

Werner’s observations show that grain size must be an important, albeit secondary, factor for

silver embrittlement.

The influence of grain size on microstructurally-induced embrittlement of archaeological silver

may be explained as follows. Figure 12 shows a generic model of grain boundary microcrack

initiation by a pile-up of crystal lattice dislocations on a crystal slip plane. The model’s

controlling parameters are the pile-up length, equal to the grain diameter d, and the grain
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boundary fracture energy γf. Fracture mechanics provides the following condition for

microcrack initiation (Smith and Barnby 1967):

d2

3 fγµπ≥τ (1)

where τ is the effective shear stress on the slip plane; π is the well-known transcendental

number, approximately 3.142; and µ is the shear modulus of the crystal lattice for the crystal

slip plane.

Equation (1) makes the general prediction that grain boundary microcrack initiation is easier

when the grain diameter d is larger and the grain boundary fracture energy γf is smaller. In the

context of microstructurally-induced embrittlement of archaeological silver, and given that a

load or force is responsible for the effective shear stresses on slip planes, equation (1) implies

that:

(3) Larger grain sizes permit longer dislocation pile-ups on slip planes and hence easier

microcrack initiation along embrittled grain boundaries.

(4) Microcrack initiation along grain boundaries is easier (in fact, made possible) when the

grain boundary fracture energy is reduced by impurity element segregation. This is

directly linked to grain size also. Larger grains mean there is less boundary area to

embrittle by a given amount of impurities, leading to increased concentrations of

impurities at grain boundaries and increased embrittlement (Thompson and Knott 1993).

Both implications (3) and (4) are consistent with Werner’s observations of a detrimental effect

of larger grain size on the embrittlement of archaeological silver (Werner 1965). Furthermore,

implication (4) enables a more specific formulation of implication (1), namely: if embrittling

impurity elements have segregated to grain boundaries in archaeological silver, then the

microstructure will be capable of providing many microcrack initiation sites and easy fracture

paths for microcracks to become macrocracks. In other words, a microstructurally embrittled

artifact is likely to be frangible, especially if it contains large grains.
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DIAGNOSTIC TECHNIQUES FOR ARCHAEOLOGICAL SILVER

EMBRITTLEMENT

Introduction: microstructurally-induced and corrosion-induced embrittlement

This report is concerned primarily with microstructurally-induced embrittlement of

archaeological silver. But from a practical viewpoint we have to consider corrosion-induced

embrittlement as well, especially since it may well be the predominant type of embrittlement.

Corrosion-induced embrittlement of archaeological silver is described and discussed in

Appendix C, including its synergistic action with microstructurally-induced embrittlement.

Survey of diagnostic techniques

Table 3 surveys the diagnostic techniques for determining embrittlement of archaeological

silver. The survey is based on Wanhill (2000a), Wanhill et al. (1998), and the previous sections

of this report. Metallography is generally the most important diagnostic technique, especially

when combined with chemical analysis by using SEM+EDX or SEM+WDX combinations:

EDX is more widely available than WDX, which, however, is more accurate and better able to

determine small amounts of impurity elements. Metallography is also an integral part of

microhardness testing. For example, the lower metallograph in figure C.1 (Appendix C) shows a

diamond-shaped microhardness indentation, whose size and hence HV value was measured with

a specially-adapted optical microscope.

With respect to chemical composition, fully quantitative EDX or WDX analyses using

elemental standards should provide two kinds of information. Firstly, the analyses should

distinguish whether the silver was obtained from lead cupellation, native silver or aurian silver.

(However, determination of provenance is more difficult: see, for example, Gale and Stos-Gale

(1981).) Secondly, the lead, bismuth, antimony, tin, arsenic, thallium and copper contents are

potentially important for diagnosing the types of silver embrittlement, as follows:

(1) Lead is most probably the key to microstructurally-induced embrittlement of silver.

Long-term segregation or precipitation of lead at grain boundaries can occur at bulk

contents less than 0.1 wt. %, see figure 1. Other impurity elements  might be involved,

becoming less likely in the order bismuth, arsenic, thallium, antimony and tin.

(2) Corrosion-induced embrittlement is partly or mainly due to copper segregation, see

Appendix C. At low temperatures copper can segregate to grain boundaries, resulting in
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cellular (or discontinuous) precipitation and intergranular corrosion. At high temperature

copper segregates during alloy solidification. This type of segregation results in ambient

temperature corrosion that is either interdendritic, in essentially as-solidified

microstructures, or along copper-rich segregation bands. These bands are the remains of

solute element segregation (coring) and interdendritic segregation that have been

modified and reduced by mechanical working and annealing heat-treatments.

At present it is uncertain what the lowest bulk content of copper is that could enable long-

term cellular precipitation and corrosion-induced intergranular embrittlement. The lower

limit is probably between 1-3 wt. % copper (Schweizer and Meyers 1978; Wanhill et al.

1998). However, corrosion induced by high temperature copper segregation and possible

long-term low temperature copper segregation along slip bands and deformation twin

boundaries could cause embrittlement at even lower copper contents: the Egyptian silver

vase investigated by Wanhill et al. (1998) contained only 0.9 wt. % copper.

A Here it is appropriate to put the problem of archaeological silver embrittlement into

perspective. The well-known researcher, Peter Northover, has studied some 300 silver

vessels and analysed over 2000 silver alloy coins. Only a small proportion was badly

embrittled (Northover 1999).

B Another important point is the primary significance of the lead and copper contents.

Archaeological silver often contains more than 0.1 wt. % lead and more than 1-3 wt. %

copper (Gale and Stos-Gale 1981a; Bennett 1994); see figure 11 and Appendix B also.

Thus microstructurally-induced embrittlement owing to segregation or precipitation of

lead and corrosion-induced embrittlement owing to cellular precipitation of copper should

be due to an adverse combination of factors besides the lead and copper contents. These

factors include the object’s manufactured condition and burial time; and the average

temperature and moisture content of the burial environment and its chemical composition,

especially the salt, nitrate and nitrite contents (Gowland 1918).

C With respect to an object’s manufactured condition, the retention of plastic deformation

(cold-work) in the microstructure should facilitate and accelerate microstructurally-

induced embrittlement by lead (Thompson and Chatterjee 1954) and cellular precipitation

of copper (Hornbogen 1972; Pawlowski 1979a, 1979b). However, whether the latter leads

to enhanced corrosion-induced embrittlement is questionable: Northover (1999) observes

that “intergranular cracking/corrosion is most prevalent at low concentrations of copper,

NOTES
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i.e. in circumstances where discontinuous precipitation of copper is likely to be minimal,

if present at all.”

REMEDIAL MEASURES FOR ARCHAEOLOGICAL SILVER EMBRITTLEMENT

Modern restorations and conservation are concerned – or should be concerned – with both

technical and ethical considerations. In principle, any treatments should be reversible. If not,

they must be well justified from an art-historical viewpoint. Bearing these points in mind, table

4 illustrates how the basic condition and type of embrittlement of archaeological silver result in

technically possible and potentially sanctionable remedies.

For example, nominally intact objects almost certainly would not be heat-treated, though coins

are possible exceptions, as indicated in the right-hand column of table 4. On the other hand, if it

is decided to restore severely embrittled and fragmented objects, then heat-treatment may be

essential (Ravich 1993). The main objection to heat-treatments is that they change the

microstructure, and therefore information about an object’s manufactured condition and

subsequent history can be partially or completely lost. Also important is that heat-treatments

entail a risk of further damage. These considerations suggest most strongly that heat-treatments

should be allowed only if preceded by thorough diagnostic investigations, e.g. see table 3, and if

judged feasible and done by experienced technical staff.

Table 4 also includes a more acceptable remedial measure that is applicable to any embrittled

object. This remedy is cleaning, outgassing to dry crack surfaces and any entrapped corrosion

products, and application of a protective coating, all to stop further corrosion and embrittlement

(Wanhill et al. 1998). Some conservators may regard a protective coating, usually to prevent

tarnishing, as undesirable (Born 1986). However, even though corrosion-induced and

synergistic embrittlement must be very slow processes, they will most probably continue if

atmospheric moisture still has access to the cracks and corrosion damage. Thus in this context a

protective coating is truly needed after cleaning and drying. The choice and application of any

protective coating requires much care (van Reekum and Moll 2000)✳. For cracked and corroded

objects a “Parylene” coating may be the best option, see Wood (2000).

                                                     
✳ April 1998 saw the start of a 3-year research project, Silprot, aimed at reducing the effects of air pollution on

silver collections. This project is subsidised by the European Commission and is a joint effort by the Instituut
Collectie Nederland and the Rijksmuseum in Amsterdam, Oxford Brooks University and the University of
Glasgow.
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The need to remove and exclude moisture is also why it may be sanctionable to disassemble old

restorations and reassemble with modern non-hygroscopic adhesives and fillers, followed by

outgassing and a protective coating. In fact, this is a good procedure, if feasible, whether or not

the silver is embrittled by corrosion, since it ensures that not only cracks and entrapped

corrosion products are dried, but also any externally-connected crevices between the metal and

adhesives and fillers.

Finally, it has to be emphasized that although table 4 is quite detailed, it is no more than a guide

for dealing with embrittled archaeological silver. Each case must be considered on its own

merits.

CONCLUSIONS

(1) Microstructurally-induced embrittlement of archaeological silver is characterized by grain

boundary fracture. The cracks are narrow and sharp, except where grains have become

bodily displaced, and there is no evidence of plastic deformation of the grain boundaries.

(2) This type of embrittlement is most probably a consequence of long-term low temperature

ageing, whereby segregation of an impurity element, or elements, occurs to grain

boundaries. The candidate embrittling impurities are lead, bismuth, arsenic, thallium,

antimony and tin, in that order. Lead is the most likely perpetrator, but this has yet to be

established directly for archaeological silver.

(3) Archaeological silver artifacts probably contain many grain boundaries very susceptible

to impurity element segregation and microstructurally-induced embrittlement, if it has

occurred. This supposition combines with a generic model of grain boundary microcrack

initiation to show that an embrittled artifact is likely to be frangible, especially if it

contains large grains.

(4) Present knowledge enables identifying and explaining microstructurally-induced and

corrosion-induced embrittlement of archaeological silver and specifying diagnostic

techniques for determining them. However, remedial measures to be taken during

restoration and conservation are less certain. Suggested remedies are intended to be used

as a guide.
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Table 1 Selected metallic and semi-metallic element properties

ALLOYING ELEMENT PRIMARY SOLID

SOLUBILITY LIMIT IN SILVERELEMENT
ATOMIC

NUMBER

EMPIRICAL

ORDERING

NUMBER

ATOMIC

DIAMETER

(nm)

PAULING ATOMIC

DIAMETER, C.N.12

(nm) wt.% at.%

ELECTRO-

NEGATIVITY

(eV)
1/2

NUMBER OF

VALENCE

ELECTRONS

SUBLIMATION

ENTHALPY

(J/m
2
)

Li

Na

Al

K

Mn

Cu

Zn

Ga

Ge

As

Se

Rb

Rh

Pd

Ag

Cd

In

Sn

Sb

Te

Au

Tl

Pb

Bi

 3

11

13

19

25

29

30

31

32

33

34

37

45

46

47

48

49

50

51

52

79

81

82

83

12

11

80

10

60

72

76

81

84

89

93

 9

65

69

71

75

79

83

88

92

70

78

82

87

0.3456

0.4226

0.3164

0.5236

0.2856

0.2826

0.3076

0.3344

0.3510

0.3452

0.3726

0.5600

0.2974

0.3042

0.3196

0.3452

0.3682

0.3724

0.3864

0.4010

0.3188

0.3784

0.3898

0.4072

0.3098

0.3792

0.2858

0.4698

0.2522;0.2612

0.2552

0.2758

0.2816

0.2732

0.2780

0.280 

0.4960

0.2684

0.2746

0.2884

0.3086

0.3320

0.3084;0.3240

0.3180

0.320 

0.2878

0.3424

0.3492

0.340 

      9.1

      0

      6.1

      0

     31

      8.8

     29.0

     12.0

      6.7

      5.5

      0

      0

      0

    100

    100

     43.2

     22.1

     12.5

      8.1

      0

    100

     13.8

      5.2

      4.9

     60.9

      0

     20.6

      0

     47

     14.1

     40.3

     17.4

      9.6

      7.7

      0

      0

      0

    100

    100

     42.2

     21.1

     11.5

      7.2

      0

    100

      7.8

      2.8

      2.6

0.95

0.95

1.52

0.83

2.24;1.92

1.82

1.66

1.80

1.90

2.08

2.46

0.83

2.20

2.21

1.68

1.58

1.82

1.83;1.65

1.98

1.92

1.90

1.86

1.93

1.86

1

1

3

1

7;5

1

2

3

4

5

6

1

9

10

1

2

3

4;2

5

6

1

3

4

5

    3.37

    1.53

    8.34

    0.84

    8.83

   10.7

    3.50

    6.19

    7.70

    6.46

    3.79

    0.67

   15.9

   10.4

    7.09

    2.40

    4.58

    5.55

    4.52

    3.12

    9.25

    3.24

    3.29

    3.23

(1) Empirical ordering number acknowledges chemical similarity of elements from the same Group of the Periodic Table (Pettifor 1988).

(2) Atomic diameters from King (1965) and Pauling (1947). The latter depend on the number of nearest neighbour atoms (coordination

number, C.N.) for each atom in solid solution in the matrix. C.N.=12 for atoms in solid solution in silver.

(3) Primary solid solubility limits from Baker et al. (1992) and Massalski et al. (1986).

(4) Electronegativities and number of valence electrons from Teatum et al. (1968).

(5) Sublimation enthalpies (per unit area) according to Seah (1980a) using Hultgren et al. (1973).
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Table 2  Silver binary alloys with alloying element low primary solid solubility: PSSL = Primary Solid Solubility Limit; max = maximum; eut = eutectic

 temperature; amb = ambient temperatures. Data (phase diagrams) from Baker et al. (1992), see Appendix A, and Thompson and Chatterjee (1954)

2.1 Zero or very low PSSL

EQUILIBRIUM PHASES AT AMBIENT TEMPERATURESBINARY

ALLOY

SYSTEMS

DILUTE ALLOY PHASE DIAGRAM CHARACTERISTICS PRIMARY

CRYSTALS/GRAINS

BETWEEN PRIMARY

CRYSTALS/GRAINS

   Ag-K

   Ag-Na

   Ag-Rb

   Ag-Se

   Ag-Te

phase diagram not available (Massalski et al. 1986)

Ag-Ag2Na peritectic, 322°C ?; Ag-Na eutectic, > 99.9 at.% Na, 97.7°C

phase diagram not available (Massalski et al. 1986)

monotectic, 890°C; Ag-Ag2Se eutectic, 12.1 at.% Se, 840°C
Ag-Ag2Te eutectic, 11.5 at.% Te, 869°C

Ag

Ag

Ag

Ag

Ag

Na or possibly Ag2Na

eutectic Ag+Ag2Se

eutectic Ag+Ag2Te

2.2 PSSLmax at eutectic or peritectic temperatures

ALLOYING

ELEMENT
EQUILIBRIUM PHASES AT AMBIENT TEMPERATURES

PRIMARY CRYSTALS/GRAINS
BETWEEN PRIMARY

CRYSTALS/GRAINS

BINARY

ALLOY

SYSTEMS

DILUTE ALLOY PHASE DIAGRAM CHARACTERISTICS
PSSLmax

(at.%)

PSSLamb

(at.%) ALLOYS BELOW

PSSLamb

ALLOYS ABOVE

PSSLamb

ALLOYS ABOVE

PSSLmax

 Ag-As

 Ag-Ge

 Ag-Sb

 Ag-Sn

α-ζ peritectic (up to 10.1 at.% As), 582°C; eutectoid, 446°C
α-Ge eutectic, 24.2 at.% Ge, 651°C
α-ζ peritectic (up to 8.8 at.% Sb), 702.5°C
α-ζ peritectic (up to 12.9 at.% Sn), 724°C

   7.7

   9.6

   7.2

  11.5

  ∼ 2?
  ∼ 0
  ∼ 4
  ∼ 9

α

α
α

   α→α+As
   α→Ag+Ge

   α→α+ζ
   α→α+ζ

eutectoid α+As
Ag+Ge from eutectic α+Ge
ζ (intermediate phase)
ζ (intermediate phase)

2.3 PSSLmax > PSSLeut

ALLOYING ELEMENT EQUILIBRIUM PHASES AT AMBIENT TEMPERATURES
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BETWEEN PRIMARY

CRYSTALS/GRAINS

BINARY

ALLOY

SYSTEMS

DILUTE ALLOY PHASE

DIAGRAM CHARACTERISTICS
PSSLmax

(at.%)

PSSLeut

(at.%)

PSSLamb

(at.%) ALLOYS BELOW

PSSLamb

ALLOYS ABOVE

PSSLamb

ALLOYS ABOVE

PSSLeut

 Ag-Bi

 Ag-Pb

 Ag-Tl

α-Bi eutectic, 95.3 at.% Bi, 262.5°C
α-Pb eutectic, 95.5 at.% Pb, 304°C
α-Tl eutectic, 97.4 at.% Tl, 291°C

2.6

2.8

7.8

   0.83

   0.79

   5.1

  ∼ 0
  <0.05

   ?

α
α

   α→Ag+Bi

   α→α+Pb
   α→α+Tl

Ag+Bi from eutectic α+Bi
α+Pb from eutectic α+Pb
α+Tl from eutectic α+Tl
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Table 3 Diagnostic techniques for microstructurally-induced and corrosion-induced embrittlement of archaeological silver. Corrosion-induced
embrittlement is described in Appendix C

VISUAL INSPECTION (×1-×10)
(UNAIDED EYE AND HAND LENS)

X-RAY RADIOGRAPHY (×1)
(LIMITED ENLARGEMENT)

OPTICAL (×10-×1000) AND SEM (×10-×30,000) METALLOGRAPHY,
EDX OR WDX, AND MICROHARDNESS TESTING (HV)

SEM FRACTOGRAPHY
(×10-×30,000)

Purpose: Artifact Basic Condition

• nominally intact

• restored
• macrocrack patterns
• missing pieces

• fragmented
• macrocrack patterns
• missing pieces

Purpose: “Hidden” Damage

• nominally intact, restored, or
fragmented
• hairline cracks
• macrocracks
• cracks following indented

decorations

• restored
• missing pieces

Purpose: Manufactured Condition, Chemical Analysis, Internal Damage and Embrittlement

• manufactured condition
• mechanically worked grain size, segregation bands, slip lines
• mechanically worked and annealed deformation and annealing twins

• as-cast (dendritic)
• cast and annealed (cellular)

• chemical analysis (SEM + EDX or WDX)
• source: lead cupellation, native silver or aurian silver
• lead , bismuth, antimony, tin, arsenic and thallium contents: linked to

 microstructurally-induced embrittlement
• copper content

- high purity (low copper) may be linked to retained cold-work
- intentional additions of copper for strength
- long-term cellular precipitation along grain boundaries

• microstructurally-induced embrittlement
• narrow intergranular cracks
• bodily displaced grains

• corrosion-induced embrittlement
• surficial
• wide intergranular cracks: linked to cellular precipitation of copper
• interdendritic
• corrosion along segregation bands, slip lines, deformation twin boundaries and in

slip-line fields below indented decorations: severe corrosion leads to cracks

• microhardness testing (HV)
• annealed HV values also depend on chemistry,
• retained cold-work especially copper content

• microstructural embrittlement  HV values and possible nucleation
• corrosion of new cracks

Purpose: Embrittlement Types

• microstructural embrittlement
• mainly clean grain boundary

facets: can show local
corrosion where slip lines,
deformation twins and
segregation bands intersect
the fracture surfaces

• narrow intergranular cracks
• bodily displaced grains

• corrosion-induced embrittlement
• surficial corrosion
• corroded fracture surfaces with

fine granular appearance like
surficial corrosion

• transgranular fracture
(crystallographic) along slip
bands and deformation twin
boundaries, possibly also along
annealing twin boundaries

SEM = Scanning Electron Microscopy; EDX = Energy Dispersive X-ray fluorescence; WDX = Wavelength Dispersive X-ray fluorescence

coring, eutectic distribution
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Table 4  Possible remedial measures for embrittled archaeological silver

ARTIFACT BASIC CONDITION TYPE OF EMBRITTLEMENT TECHNICALLY POSSIBLE REMEDIES POTENTIALLY SANCTIONABLE REMEDIES

undeformed

Nominally
Intact

deformed

old
restoration

Restored

modern
restoration

Fragmented

• microstructurally-induced
• corrosion-induced; synergistic

• microstructurally-induced
• corrosion-induced; synergistic

• microstructurally-induced
• corrosion-induced
• synergistic

• microstructurally-induced
• corrosion-induced; synergistic

• microstructurally-induced
• corrosion-induced; synergistic

• A
• B

• A
• B • C

• disassembly + A + reassembly
• B • disassembly + reassembly + B      •  disassembly + C + reassembly
• B

• disassembly + A + reassembly
• B

• A + assembly
• C + assembly       •  assembly + B

• none
• B

• A : coins
• B               • C : coins

• none
• B • disassembly + reassembly + B
• B

• none
• B

• A + assembly
• C + assembly     • assembly + B

A Heat in an inert environment (e.g. argon or nitrogen) for 0.5-1 hour at 500 °C, cool in a forced air draught. This is based on data and suggestions of Thompson and Chatterjee (1954) for silver containing
copper as well as lead. The heat-treatment’s efficacy may be checked by microhardness testing (no new cracks).

B Restore original surface finish, if necessary. Clean and rinse successively in demineralised water and ethanol. Outgas in vacuo (<10
-4 Pa) and place in desiccator to await coating. Apply a colourless

transparent organic coating, e.g. an acrylic resin, aliphatic polyurethane or cellulose nitrate “Frigilene”(Wanhill et al. 1998; van Reekum and Moll 2000). Probably the best option would be a
“Parylene”coating, deposited by vapour condensation under a reduced pressure of 15 Pa (Wood 2000).

C Heat in an inert environment or under charcoal for 5-10 minutes at 700 °C, cool in a forced air draught. This is based on Ravich (1993). Prior heating in flowing hydrogen for 0.5 hour at 300-400 °C could be
beneficial (Werner 1965), presumably because some of the intergranular corrosion products – notably silver chloride – are converted back to metal.
The heat-treatment temperature of 700 °C is probably close to the minimum, see Ravich (1993). Higher temperatures may have to be considered. This is very problematical, although successful experiments
have been done at temperatures up to 900 °C (Werner 1965; Ravich 1993).

Coins : These are relatively small and therefore easier to heat-treat, even by hand.

Old restorations : Disassembly and reassembly may be feasible and required. Reassemble with modern non-hygroscopic adhesives and fillers (Niemeyer 1997).

Composite objects : A and C assume artifacts do not have soldered joints or niello inlay or gilding. Soft solders (lead-tin) begin melting above 183 °C (Bailey 1961, 513) and will also dissolve the silver if
overheated (Niemeyer 1997). Hard solders (silver-copper) begin melting above 779 °C (Smithells 1967, 379). Roman silver sulphide niello should not be heated much above 600 °C, and later
silver-copper and silver-copper-lead sulphide niellos melt at about 680 °C and 440 °C respectively (La Niece 1983, Bennett 1994). Gilding is easily ruined by (over)heating: gold layers are so
thin, ~10 µm, they soon diffuse into the silver substrate.

NOTES
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Fig. 1 Silver-rich low temperature region of the Ag-Pb equilibrium phase diagram,
determined by ageing supersaturated solid solutions at the indicated temperatures
(Thompson and Chatterjee 1954)
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Fig. 2 Age-embrittlement of cast, solution treated and aged Ag-Pb and Ag-Cu-Pb alloys.
Data from Thompson and Chatterjee (1954)
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Pauling atomic diameter, C.N. 12 (nm)

Fig. 3 Brittle grain boundary fracture in a sample from an Egyptian silver vase (Wanhill et al.1998)

a b

10 �m

Fig. 5 Darken-Gurry (D-G) map for solid solutions
in silver. Solute elements within the ellipse
boundary, minor axes ±0.4 (eV)½, are
predicted to have solid solubilities greater
than 5-10 at . % . Data from table 1
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Fig. 7 Embrittlement plot for matrix (Ag) and segregant elements. After Seah (1980a),
data from table 1
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Fig. 8 Correlations between alloying element primary solid solubility limits in silver and the
pure element sublimation enthalpies per unit area. The numerical sequence of the
elements is the empirical ordering due to Pettifor (1988). The shaded regions denote
the matrix and alloying element combinations that would seem most likely to result in
segregation-induced grain boundary fracture under equilibrium conditions (see text).
Data from table 1
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Fig. 10 Schematic binary alloy equilibrium phase diagrams involving eutectic or peritectic
reactions and illustrating the effect of non-equilibrium cooling on solidification of
dilute alloys of bulk composition X (see text)
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Fig. 11 Actually or potentially embrittling impurity elements in archaeological silver artifacts
and coins. Data from Lucas (1928), Caley (1964), Cope (1972), Gordus (1972),
MacDowall (1972), McKerrell and Stevenson (1972), Metcalf (1972), Gale and
Stos-Gale (1981a), Tylecote (1992), Bennett (1994) and Perea and Rovira (1995),
see Appendix B
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Appendix A Silver binary alloy equilibrium phase diagrams in support of table 2

A.1 Atomic weights

  ELEMENT SYMBOL ATOMIC WEIGHT*   ELEMENT SYMBOL ATOMIC WEIGHT*

  silver

  arsenic

  bismuth

  germanium

  sodium

  lead

    Ag

    As

    Bi

    Ge

    Na

    Pb

    107.880

     74.91

    209.00

     72.60

     22.997

    207.21

  antimony

  selenium

  tin

  tellurium

  thallium

Sb

Se

Sn

Te

Tl

    121.76

     78.96

    118.70

    127.61

    204.39

* As published in the Journal of the American Chemical Society, April 1950.

A.2 Interconversion of weight and atomic percentages in binary alloy systems

If wx and ax represent the weight and atomic percentages of one component having atomic

weight x, and if wy, ay and y represent the corresponding quantities for the second component,

then:

wy = 100 - wx

ay = 100 - ax

The conversion from weight to atomic percentages, or vice versa, may be made by use of the

following formulae:

]1)w/100[()y/x(1

100
a

x
x −+

=

]1)a/100[()x/y(1

100
w

x
x −+

=
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A.3 Phase diagrams (courtesy of ASM International)

A.3.1 Alloying elements with zero or very low primary solid solubilities
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A.3.2 Alloying elements with maximum primary solid solubilities at eutectic or
peritectic temperatures
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A.3.3 Alloying elements with maximum primary solid solubilities above eutectic
temperatures
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Table B.1  Classification and weight % of actually and potentially embrittling impurity elements in archaeological silver artifacts

85 ≤ Ag wt.% < 95 95 ≤ Ag wt.%

Pb Bi Sb Sn Pb Bi Sb Sn Pb Bi Sb Sn Pb Bi Sb Sn
REFERENCES AND COMMENTS

0.2
0.5

0.2
0.4

0.3
Lucas (1928)

0.2    0.19
0.2    0.18
1.6
0.2    0.19
0.2

0.2
0.5
0.4
0.2
0.71

0.5
0.2
0.5    0.19
0.2    0.19
0.1

0.1
0.5 Gale and Stos-Gale (1981a).

One outlier (2.9 wt.% Pb;
1.5 wt.% Bi) excluded

1.68  <0.01  <0.10    ∧
1.65  <0.01   0.10
1.10  <0.01   0.08
1.15   0.18   0.33
0.71   0.22   0.21
0.90   0.04   0.21
0.73   0.05   0.22  <0.1
0.81   0.07   0.21
1.18   0.06   0.17
0.53   0.04   0.15
1.05   0.08   0.23
1.04   0.03   0.50
0.91   0.07   0.21    ∨

0.42   0.19  <0.10     ∧
0.39   0.15   0.20
0.56  <0.01  <0.10
0.50  <0.01  <0.10
0.43   0.06  <0.10
0.44   0.05   0.14
0.45  <0.01   0.15
0.41  <0.01   0.18   <0.1
0.22   0.21   0.10
0.97  <0.01   0.15
0.18   0.16   0.15
0.16   0.17   0.13
0.16   0.26   0.18
0.25  <0.01  <0.1
0.46   0.07  <0.10     ∨

0.30  <0.01  <0.10    ∧
0.25  <0.01   0.18
0.06   0.15  <0.10
0.45   0.10  <0.10
0.46  <0.01   0.11
0.43  <0.01   0.35
2.70   0.15  <0.10   <0.1
0.84  <0.01   0.40
0.53   0.04  <0.10
1.17   0.05   0.44
1.08   0.07   0.20
0.46   0.03  <0.10
0.44   0.02   0.14
0.22  <0.01   0.23     ∨

Bennett (1994). All
analyses: less than
0.1 wt.% Sn and less than
0.005 wt.% As

85 ≤ Ag wt.% < 95

Pb Sn Pb Sn Pb Sn Pb Sn Pb Sn Pb Sn

0.8     0.385
0.3     0.022
0.4     0.063
0.7
0.6
1.3
0.5
0.6     0.228
0.6     0.340

0.3
1.0     0.043
0.5     0.024
0.8
0.4
0.4
0.2     0.024
0.2
1.9     0.052

0.6     0.129
1.2     0.013
1.7
0.8
0.7     0.19
0.6     0.092
1.7
3.4
2.4

2.0
1.0
1.0
0.6     0.073
1.4     0.018
0.4     0.267
0.2
1.0     0.018
0.2     0.006

0.8     0.003
1.5     0.185
0.2     0.012
0.4
0.3     0.233
0.4
0.4     0.016
0.5     0.035
0.3     0.032

1.2    0.051
0.7
1.3
1.7

0.7
1.1
0.6
0.9
0.1                 0.014
0.2
0.3                 0.014
0.2                 0.005
0.2                 0.007
0.2                 0.005
0.7                 0.036

Perea and Rovira (1995).One
analysis for 85 ≤ Ag wt%<95
gave 0.15 wt.% Sb
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Table B.2  Classification and weight % of actually and potentially embrittling impurity elements in archaeological silver coins

85 ≤ Ag wt.% < 95 95 ≤ Ag wt.% REFERENCES AND COMMENTS

Pb Sn Pb Sn Pb Sn Pb Sn Pb Sn Pb Sn Pb Sn Pb Sn

0.57  0.17
1.09  0.02
1.22  0.04

0.88
0.47
0.37  0.26

0.85  0.08
0.63  0.08
0.39  0.17

0.23  0.02
0.25  0.04

0.46
0.63
1.03

2.19
0.85
0.86

0.72  0.06
2.87
3.05

3.68
0.13
0.43

Caley (1964)

0.39  0.23 Tylecote (1992)

0.38
0.37
0.95

1.05
0.78
0.34

0.44
1.02
0.61

0.25
Cope (1972)

0.5
0.6

0.2
4.7

0.3
0.7

0.2
0.7

0.6
MacDowall (1972)

1.58  0.05
1.85  0.12

1.48  0.10
1.63  0.10

1.10  0.05 0.68  0.07
0.42  0.10

1.10  0.01
Gordus (1972)

      0.4
      0.9
      1.4
      0.5

      0.1
      0.5
      0.7
      0.8

      0.8
      0.3
      0.6
      0.1

0.2
0.3

Metcalf (1972)

85 ≤ Ag wt.% < 95 95 ≤ Ag wt.%

Pb Bi Sn Pb Bi Sn Pb Bi Sn Pb Bi Sn Pb Bi Sn Pb Bi Sn

1.5   0.0   2.9
2.4   0.2   1.7
2.5   0.0   0.2
2.0   0.0   0.0
1.1   0.1   0.1
1.7   0.1   0.2
0.9   0.0   0.1
1.4   0.1   0.3
0.7   0.0   0.3
1.3   0.2   0.5
0.9   0.1   0.6
1.2   0.2   0.3
0.7   0.0   0.1
1.0   0.1   0.3
0.8   0.0   0.0
1.4   0.1   0.3
1.0   0.0   0.0
0.9   0.1   0.3
1.1   0.0

1.0   0.0
2.8   0.2   0.5
1.1   0.0   0.0
0.6   0.2   0.5
0.8   0.1   0.2
1.4   0.2   0.3
0.9   0.2
1.6   0.1
1.3   0.0   0.2
0.8   0.0
1.3   0.0   0.1
1.2   0.1   1.0
1.2   0.0   0.4
1.9   0.3   0.2
0.9   0.1   0.3
1.4   0.2   0.6
0.6   0.1   0.2
1.0   0.1   0.4
1.1   0.2   0.5

1.2   0.0   0.5
1.4   0.1   0.2
0.9   0.1   0.6
1.1   0.2   0.2
1.4   0.0
1.3   0.2   0.3
1.2   0.0   0.2
0.9   0.0   0.2
1.4   0.3   0.5
1.2   0.1   0.3
1.2   0.2   0.6
1.0   0.0   0.4
1.3   0.3   0.9
1.3   0.2   0.3
0.9   0.1
1.6   0.2
2.6   0.2   0.3
2.5   0.1
1.5   0.0

1.3  0.1   0.8
1.1  0.2   0.9
1.3  0.0   0.0
1.2  0.2   0.3
1.6  0.1   0.7
1.6  0.0
1.2  0.1
1.9  0.0
0.8  0.1   0.3
1.4  0.2   0.6
1.3  0.2   0.0
1.4  0.0
1.8  0.1   0.5
1.4  0.2   0.2
1.4  0.1   0.1
2.0  0.2   0.5
1.3  0.0   0.0
1.4  0.2
1.3  0.0

1.7   0.0   0.0
1.1   0.0
1.4   0.1
1.6   0.2   0.4
1.4   0.3   0.2
1.7   0.0
1.2   0.3
1.4   0.2   0.3
1.3   0.1   0.1
1.3   0.0
1.9   0.0
1.1   0.0
0.9   0.0
1.2   0.2   0.0
1.0   0.0   0.2
1.0   1.2   0.0
0.9   1.3   0.0
0.7   0.8   0.2

0.1         0.0
0.7         0.0
1.0   0.1
1.0
0.5   1.3   0.0
0.6   0.3   0.0
0.6   0.4   0.0
0.9   0.2   0.0
0.6   0.2   0.0
0.4   1.0   0.0
0.3   0.7   0.0
0.9   0.2   0.0
0.3   1.3   0.0
0.2   0.5   0.0

McKerrell and Stevenson (1972). One outlier
(0.6 wt.% Pb; 8.7 wt.% Bi; 0 wt.% Sn)
excluded
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Appendix C Description of corrosion-induced embrittlement of archaeological
silver

C.1 Types of corrosion

Figure C.1 shows the types of corrosion observed for archaeological silver. The examples are a

Roman cup (Werner 1965), a late Roman plate (Bennett 1994), a Sican tumi (Scott 1996) and an

Egyptian vase (Wanhill et al. 1998).

General corrosion is slow conversion of the metal surface to silver chloride (Gowland 1918;

Scott 1996). This forms a brittle, finely granular layer but does not affect the remaining metal’s

integrity. However, unfavourable conditions may result in an artifact being completely

converted to silver chloride, sometimes retaining its shape, sometimes not (Gowland 1918).

The other types of corrosion penetrate the metal. Cracking along the corrosion paths reduces an

artifact’s resistance to fragmentation (Werner 1965; Ravich 1993; Wanhill et al. 1998).

Intergranular corrosion can occur in mechanically worked and annealed artifacts. Interdendritic

corrosion can occur in castings with essentially as-cast microstructures, i.e. little changed by

any subsequent mechanical working or annealing, see Scott (1996). Corrosion along slip lines

and deformation twin boundaries can occur in an artifact that has not been annealed after final

mechanical working, which includes chased and stamped decorations (Wanhill et al. 1998):

inside the metal these types of attack can lead to additional corrosion along segregation bands.

These bands are the remains, modified by mechanical working and annealing heat-treatments, of

solute element segregation (coring) and interdendritic segregation that occurred during

solidification of an ingot or cupelled button.

Cracking along the corrosion paths in the metal usually results in irregular fracture surfaces with

a finely granular appearance like that of the general corrosion in the upper fractograph of figure

C.1. However, highly localised corrosion along slip lines and deformation twin boundaries

results in crystallographic fractures, for example the lower fractograph in figure C.1.

C.2  Synergistic action of corrosion-induced and microstructurally-induced embrittlement

Corrosion-induced and microstructurally-induced embrittlement can act synergistically (Wanhill

2000a; Wanhill et al. 1998). Figure C.2 gives examples of the appearances of synergistic

embrittlement. Corrosion along slip lines, deformation twin boundaries and segregation bands

can result in cracks under the action of external loads or forces (e.g. crushing pressures during

interment) and internal residual stresses due to retained cold-work. These cracks can then
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initiate fracture along microstructurally-embrittled grain boundaries – which may fracture

anyway under the action of external loads or forces, see the discussion section in the main part

of this report. In turn, grain boundary fractures expose more slip lines, deformation twins and

segregation bands to the environment and therefore increase the opportunities for corrosion.

C.3  Mechanisms of corrosion-induced embrittlement

Intergranular corrosion has been attributed, at least partly, to segregation of the solute element

copper to grain boundaries (Werner 1965; Ravich 1993). This segregation is of a type called

cellular (or discontinuous) precipitation. It occurs in the solid state at temperatures as low as

150°-200 °C (Scharfenberger et al. 1972; Gust et al. 1978; Schweizer and Meyers 1978) and

could occur very slowly even at ambient temperatures (Schweizer and Meyers 1978). Besides

temperature, the precipitation rate depends strongly on the solute element (copper) content of

the metal and the amount of plastic deformation (cold-work) retained in the microstructure

(Hornbogen 1972; Pawlowski 1979a, 1979b): lower solute contents reduce the precipitation

rate, plastic deformation increases it.

The actual mechanism of intergranular corrosion is localised galvanic attack, whereby in the

presence of a moisture-containing environment the more noble metal (in this case the copper-

depleted silver matrix) acts as a cathode and the copper-enriched grain boundary region

dissolves anodically.

The other two types of segregation-induced corrosion, interdendritic and along segregation

bands that are the remains of coring and interdendritic segregation, are also due to solute

element (copper) segregation which, however, occurs at high temperatures during solidification

of the metal. In both cases the corrosion mechanism is most likely the same as for intergranular

corrosion, i.e. localised galvanic attack of the less noble copper-enriched regions.

It remains to discuss corrosion along slip lines and deformation twin boundaries, firstly in a

general way. Slip, which occurs in bands, and deformation twinning involve locally high strains

whereby some atoms are in non-equilibrium positions and have higher energies: in slip bands

the atoms surrounding dislocation cores, and in deformation twins the atoms in noncoherent

regions of the twin/matrix interfaces. When slip bands and deformation twin boundaries are

surface-connected, as in the archaeological silver examples in figure C.2, these higher energy

regions are susceptible to preferential corrosion (e.g. Procter 1994, 1:37). Note that the

annealing twin boundaries in figure C.2 are uncorroded. Apparently, the local environmental

conditions were not severe enough to cause preferential corrosion at these twin/matrix

interfaces, which by nature are coherent and without highly strained regions.
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More specifically, for silver there are additional factors that could promote corrosion along slip

lines and deformation twin boundaries. These are silver’s low stacking fault energy✳ (Hertzberg

1983, 80, 129) which results in planar slip and hence greater concentrations of dislocations in

slip bands; the narrowness of the deformation twins, e.g. figure C.2, which means higher local

strains (Hertzberg 1983, 111); and for archaeological silver the possibility of long-term

segregration of solute and impurity elements to the highly strained regions, thereby aiding

preferential corrosion (Procter 1994, 1:39).

                                                     
✳

 In metals having crystal structures with close-packed atomic arrangements, including silver, the slip plane
dislocations can dissociate to form two partial dislocations bounding a stacking fault, which is a local “error” in
the atomic arrangement. The lower the stacking fault energy, the wider the stacking fault, and the more difficult it
is to recombine the partial dislocations to allow them to glide onto other slip planes (so-called wavy slip
behaviour). Consequently, a low stacking fault energy favours dislocation movement being restricted to the
original slip plane (so-called planar slip behaviour).



BEDRIJFSVERTROUWELIJK
-49-

NLR-TP-2001-032

Fig. C.1 Types of corrosion of archaeological silver: SEM = Scanning Electron Microscopy

D147-01N

Corrosion along slip lines, deformation twins and
segregation bands: SEM metallograph
(Wanhill et al. 1998)

Crystallographic fracture owing to corrosion along slip
lines and deformation twins: SEM fractograph
(Wanhill et al. 1998)

Slip line, deformation twin boundary and segregation band corrosion

20 �m 5 �m

Intergranular: metallograph (Werner 1965) Interdendritic: metallograph (Scott 1996)

Intergranular or interdendritic corrosion

Metallograph (Bennett 1994) SEM fractograph (Wanhill et al. 1995)

General (surficial) corrosion

0.1 mm0.1 mm

segregation
band

segregation
band

0.1 mm

0.5 mm

annealed
silver matrix

0.2 mm
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Fig. C.2 Examples of synergistic embrittlement owing to microstructurally-induced
embrittlement (intergranular fracture) and corrosion-induced embrittlement along
slip lines, deformation twin boundaries and segregation bands

D147-01N

Corrosion along slip lines intersecting grain boundary
facets: SEM fractograph (Wanhill et al. 1998)

Corrosion along deformation twin boundaries
intersecting a grain boundary facet: SEM fractograph
(Wanhill et al. 1998)

20 �m 10 �m

annealing
twin

Corrosion along segregation bands intersecting grain boundary facets: SEM fractograph (Wanhill et al. 1998)

20 �m

Synergistic embrittlement


