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Summary

INTRODUCTION: The research presented in this report is part of the AESIM-MIL project. The AESIM-

MIL project aims at improving NLR support to the Royal Netherlands Air Force (RNLAF) in the field

of aircraft vibration and aeroelaticity. The available methods is not adequate to analyse nonlinear

aeroelastic phenomena occur during the F-16 flight test of RNLAF. These phenomena, especially

limit cycle oscillations (LCO), need special attention because they pose a limit to the flight envelope

for certain configurations and bring consequences to the aircraft maintenance. In the AESIM-MIL

project knowledge and tools in nonlinear aeroelasticity are developed.

CONTENT OF THE WORK: This report describes a method developed in the AESIM-MIL project for

static aeroelastic simulation of complete military aircraft configurations taking into account the

nonlinear characteristics of transonic flow phenomena (shock waves, flow separation). The objec-

tives are twofold:

1. The method developed in this research will be used primarily to provide a nonlinear stat-

ically deformed state which is one of the prerequisites for an accurate simulation of the

dynamic state, e.g. flutter and LCO.

2. The method can also be used for accurate computation of aerodynamic forces at high-load

conditions at which the interaction with the structural deformation is significant. These

load data are important inputs for the design of maintenance scheduling and for fatigue life

consumption analysis.

RESULTS: A method for the simulation of static aeroelastic behavior of fighter type aircraft has

been developed. The coupled structural and aerodynamic system is represented by a nonlinear

system of differential equations: the Euler/Reynolds-Averaged Navier-Stokes equations and lin-

ear structural equations of motion in the physical coordinates. The governing equations of the

system are solved using an iterative method. To accommodate the incompatible representations of

the fluid/structure interface by the aerodynamic and structural domain, two fluid-structure interpo-

lation methods are employed: a surface spline interpolation method for a planar structural data and

a volume spline interpolation for a genuinely three-dimensional structural data. The aerodynamic

equations are solved on a multi-block structured grid using the multi-grid Runge-Kutta relaxation

method. The solution algorithm of the flow equations is coupled with a robust, simple and compu-

tationally efficient multi-block grid deformation technique which is required for the adaptation of

the multi-block grid points to follow the deformation of the fluid/structure interface. Results of the

proposed method for the validation case of a restrained AGARD wing 445.6 compare very well

with those obtained using MSC.NASTRAN. Relatively little fluid/structure interactions are required

to obtain converged solutions. Subsequently, one of the NASA Dryden cases, i.e. a free-flying
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F-16 configuration with tip missiles, was simulated and compared with NASA’s computations and

flight test. Satisfactory results are obtained. Trim iterations on the angle of attack, to reach the

required lift coefficient for the specified g-level, were converged as quick as the fluid/structure

iterations.

CONCLUSIONS AND FURTHER PLAN: The proposed method for the simulation of static aeroelastic

analysis has been successfully validated for simple and complex geometry. Hereby, the objectives

of the research are achieved. In the AESIM-MIL project the method will be further extended for time

accurate simulations, which will enable dynamic aeroelastic simulations such as flutter and LCO

for military aircraft configurations. The tools developed in this research are also exploited in other

projects for static aeroelastic analyses at even higher load cases, compared to those considered in

this report, in which a viscous flow modeling has been found necessary.
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List of symbols

Symbols

a structural flexibility matrix also known as structural influence coefficient (SIC)

B vector of body force

CA coefficient of aerodynamic force

CL lift coefficient

CM moment coefficient

g vector of gravitational constant, [nx; ny; nz]
T g

h displacement vector

M mass matrix

m generalized mass, �TM�

mref reference mass

n load factor, 1 + az=g

U reduced velocity, u1=(!refLref)

V � speed index, U=
p
�

x physical coordinate vector

�y acceleration at a structural point

vref reference volume

� angle of attack

ÆF flap deflection

� underrelaxation factor

!ref reference frequency,

� mass ratio,

�1 mass density of air.

Sub/super-scripts

FF free-free condition

stc static condition

p iteration counter

L flexible part

R rigid body part
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1 Introduction

The research presented in this report is part of the AESIM-MIL project. The AESIM-MIL project

aims at the development of knowledge and tools in nonlinear aeroelasticity to support the Royal

Netherlands Air Force in operating advanced fighter aircraft, like e.g. F-16. Nonlinear aeroelastic

phenomena, especially limit cycle oscillations (LCO), need special attention because they pose

a limit to the flight envelope for certain configurations and bring consequences to the aircraft

maintenance.

In the AESIM-MIL project an aeroelastic simulation method based on the Euler/Navier-Stokes flow

modeling is developed. One of the consequences in using a nonlinear flow modeling is the de-

pendency of the dynamic state to the static state1. To carry out a dynamic aeroelastic simulation

properly, the dependency of the dynamic part to the the static part of the solutions has to be taken

into account. One approach is to treat the static and dynamic parts as one system of equations.

This approach usually leads to a method which is not optimal for either a static aeroelastic sim-

ulation or a dynamic aeroelastic simulation. The approach taken in the AESIM-MIL project is by

starting a dynamic aeroelastic simulation from a converged static aeroelastic result. If necessary

the static part is residualized in the dynamic aeroelastic simulation.

This report describes a method developed in the AESIM-MIL project for static aeroelastic simula-

tions of complete military aircraft configurations taking into account the nonlinear characteristics

of transonic flow phenomena (e.g. shock waves, flow separation, etc.). The method developed in

this research will be used primarily to provide a nonlinear statically deformed state which is one

of the prerequisites for an accurate simulation of the dynamic state, e.g. flutter and LCO. In ad-

dition, the method will also be used for accurate computation of aerodynamic forces at high-load

conditions at which the interaction with the structural deformation is significant. These load data

are important inputs for the design of maintenance scheduling and for fatigue life consumption

analysis.

In static aeroelasticity, elastic deformation of a flexible structure causes a change in the pressure

distribution on the surface of the structure. At the same time, a change in the surface pressure dis-

tribution brings a change in the structural deformation. The interaction between the aerodynamic

and the elastic forces becomes more significant with the increase of the aerodynamic loads and the

flow velocity. Special consideration has to be given to flows with large angle of attack and flows

in the transonic regime due to the presence of shock wave and/or flow separations. In these kind
1This is not the case when the model is linear, e.g. using doublet-lattice method, in which the static and dynamic

aeroelastic analyses may be carried out independently.
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of flows, the characteristics of the aerodynamic loads are nonlinear with respect to the structural

deformation. As a consequence, the fluid-structure interaction behavior in these aerodynamically

nonlinear system will also be nonlinear.

In the conventional approach, the static aeroelastic simulation of an elastic structure couples the

aerodynamic loads derived from a linearized aerodynamic theory, such as a panel method, with a

linear or nonlinear structural finite element model 1, 16. For flows in the transonic speed regime,

the aerodynamic nonlinearities are usually taken into account by explicitly combining the nonlin-

ear aerodynamic data on a rigid structure (obtained from e.g. wind tunnel measurements) with

the aerodynamic loads derived from a linearized aerodynamic method. However, for high per-

formance military aircraft in which the flight maneuvers include those with high angle of attack

and large deflection of control surfaces, this approach is unable to give an accurate prediction of

the aerodynamic loads along with the corresponding structural deformation. A simulation method

with more accurate flow representation is required, such as simulation based on the Euler/Navier-

Stokes equations.

In the past, aeroelastic simulations of complete aircraft involving the nonlinear Euler/Navier-

Stokes equations were considered impractical due to several reasons: the strong incompatibility

between the aerodynamic grid and the structural grid which requires a sophisticated fluid/structure

interpolation, the complexity of the grid generation and the subsequent grid adaptation when the

surface deformed, the long computation time of the simulation, etc. However, recent developments

in computational methods as well as in computer technology make the integration of an advanced

computational fluid dynamic (CFD) method based on the solutions of the Euler/Navier-Stokes

equations into an aeroelastic simulation system becoming feasible.

Several aeroelastic simulation methods based on the Euler/Navier-Stokes flow equations have been

developed in the last decade, e.g. references 5, 10, 11, 15. These developments are usually started

from well established CFD methods and concentrated on the fluid/structure coupling and the grid

deformation aspects. In reference 5 the fluid/structure coupling employs a bi-linear interpolation

on a virtual-surface interfacing the surface grids of the fluid and structural domain. The grid

deformation employs a simple grid shearing method. The method of 5 has been mostly applied for

simple configurations. The development at DASA-M follows the technique of virtual-surface5 but

employs a finite-element type interpolation, the so-called neutral interface15. The multi-block grid

deformation of 15 employs a combination of an unstructured Poisson algorithm and a transfinite-

interpolation method. In the recent work published by Love et al. [10], the fluid/structure coupling

employs NURBS surfaces. The Cartesian aerodynamic grid used in 10, however, can not be
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deformed but instead are generated and destroyed according to the motion of the surface and also

adapted to the expected flow features.

In this research, the ENFLOW system of NLR is extended to enable static aeroelastic simulation

of complete military aircraft configurations. Learning from the literature and from the in-house

development of a similar aeroelastic simulation method employing a full-potential flow model-

ing 6, the techniques to be employed in the extension of ENFLOW system have been identified.

Fluid/structure interpolation is carried out using the superior volume-spline method of Hounjet

and Meijer [7] which is capable of handling genuinely three-dimensional data. Aerodynamic grid

deformation is carried out during the simulation using a robust and computationally efficient grid

deformation algorithm which is based on a combination of volume-spline method and a transfinite

interpolation.

The applications of the method for the AGARD 445.6 wing restrained at the tunnel wall and for

a free-flying F-16 aircraft with wing tip missiles and the corresponding missile launchers are

presented. For the first case comparisons are provided by MSC.NASTRAN. Very good agreement

is obtained. For the F-16 case, one of the NASA Dryden case presented by Lokos et al. [9] is

simulated. Satisfactory results have also been obtained.

Based on the presented results it may be concluded that the proposed method renders adequate ac-

curacy and efficiency for static aeroelastic simulations. Applicability for very complex geometry,

typical for fighter-aircraft configurations, has also been demonstrated. Hereby, the objectives of

the research are achieved. The method will be further extended for time accurate simulation using

the present results as the basis. This will enable dynamic aeroelastic simulations such as flutter

and LCO for complex military aircraft configurations.

In the subsequent chapters, the governing equations and the global approach are described, fol-

lowed by the discussions concerning the structural elasto-mechanical data and the aerodynamic

solution. The grid deformation technique is then explained followed by some applications. Fi-

nally some concluding remarks are given.
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2 Governing Equations and Global Approach

Simulation of the static aeroelastic deformation of a structure at a certain flight altitude is started

from a zero-displacement state, also known as the jig state. Following the finite element (FEM)

formulation for dynamical systems, the dimensionless matrix form of the governing equations for

static deformation of a structure in physical coordinate system is given by

h = a [
1

2
V � 2CA +B]; (1)

where h represents the static displacement vector corresponding to the structural degree of free-

dom (DOF), a represents the structural flexibility matrix (a = K�1, with K is the structural

stiffness matrix), CA and B are vectors of the aerodynamic force coefficients and body force,

respectively. V � is called speed index and is defined as 3

V � =
U
p
�
; (2)

in which U = u1=(!refLref) and � = mref=(�1vref) are the reduced velocity and mass ratio,

respectively. The nondimensionalization has been selected to be consistent with the dynamic

simulation (e.g. a frequency parameter ! is involved).

The vector of body forces consist of inertial forces due to gravity and due to aircraft acceleration

given by the following equation

B = M(g � �y); (3)

where M is the structural mass matrix, g is the vector of gravitational acceleration (assumed

constant), and �y is the vector of acceleration at the nodal point. All variables in equation (3) are

given in non-dimensional form.

For a simulation at free flying condition, the inertial and aerodynamic forces at any moment have

to be in balance. In this case, the effect of the inertial force due to the acceleration can be directly

taken into account by modifying the aerodynamic force with the balancing inertial force or more

conveniently it can be done by defining the so-called free-free (unconstrained) flexibility matrix 13

incorporating the structural rigid body modes to provide the inertial force and ensure the constant

position of the center of gravity:

h = aFF
1

2
V � 2CA: (4)

The free-free flexibility matrix in this equation is defined as aFF = RaRT , in which R is the so-

called rigid body modifying matrix. The static deformation equation is solved using an iterative
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method for which the equation is cast in the following form

h
p+1
stc = (1� �)hp stc + � aFF

1

2
V � 2

CA: (5)

In this equation, hp represents the approximation of h during the p-th iteration. The structural

state can then be updated as

x
p = xjig + h

p
stc; (6)

where xjig is the structural position at zero-displacement state and hstc is the static deformation

of the structure due to the total loads. An under-relaxation coefficient, �, is introduced to obtain a

stable convergence to the final statically-deformed state.

For a restrained structure the support point provides the reaction forces and moments to balance

the forces and moments acting on the structure. The reaction forces and moments vary with the

given angle of attack and other parameters.

During a free-flight, however, support points can not be defined. Instead of providing reaction

forces and moments, a configuration has to be sought which gives a balanced (trimmed) condition

between the aerodynamic force and the inertial force. In the present study the balanced/trimmed

condition is computed by defining target forces (or force coefficients) along with the trim variables.

For example the necessary Ctarget
L can be defined to balance the inertial force due to the gravity

and acceleration and pitching moment Ctarget
M

about the aircraft center of gravity is required to be

zero. The trim variables for this case are � and flap deflection ÆF. The following trim equations

can then be defined:(
CL(�; ÆF)� Ctarget

L

CM (�; ÆF)� Ctarget
M

)
= 0; (7)

to be solved for the trim variables [�; ÆF]
T . Starting from a given initial state, the trim variables

[�; ÆF]
T are updated in a sequence as:(
�

ÆF

)p+1
=

(
�

ÆF

)p
� �

"
@CL=@� @CL=@ÆF

@CM=@� @CM=@ÆF

#�1(
CL(�; ÆF)� Ctarget

L

CM (�; ÆF)� Ctarget
M

)
(8)

where again � is an under-relaxation factor to ensure numerical stability. Note that the gradients

of the target force coefficients to the trim variables have to be estimated prior to the simulation. If

necessary these gradients can be updated during the simulation.

During static aeroelastic simulations the surface update due to structural deformation and trim

analysis are carried out in each iteration. However, the structural deformation and trim correction

are computed independently. So far, the experiences learned from the applications of the method

show that the coupling turned out to be weak which allows the exclusion of the cross-terms.
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3 Structural Dynamic Characteristics

As described in the previous chapter, the required elastomechanical data for a static aeroelastic

analysis are:

- flexibility data to determine the deflection of the structure,

- mass data to determine the inertial load acting on the structure.

These data are also known to determine the dynamic characteristics of a structure. In the present

research, the required elastomechanical data are obtained through a finite element modeling. Thus,

the continuous structure is represented by a finite number of degrees of freedom (DOF’s). The

flexibility and mass data are then expressed as matrices. Finite element package MSC.NASTRAN is

employed. Two configurations are considered in this report, the AGARD 445.6 wing and the F-16

aircraft with AMRAAM missiles and the corresponding missile launchers at the wing tip.

The structural properties of the AGARD 445.6 wing are represented by equivalent shell and plate

elements (the CQUAD4 shell element with 24 DOF’s). Figure 1 shows the finite elements model of

the AGARD wing. To model the clamping at the tunnel wall, a large mass is attached to the root of

the wing. To balance the construction statically a force of exactly the same magnitude as the total

weight in the opposite direction to the gravity is given at the attachment point. This technique is

called large-mass method, see reference 14.

To obtain the desired data, the MSC.NASTRAN is executed for normal mode analysis where at cer-

tain stages of the computation the mass and stiffness matrices are written as extra outputs. The

commands to produce extra outputs are implemented using DMAP, see reference 2. Since a data

extraction from MSC.NASTRAN using DMAP commands is not trivial a verification step was con-

sidered necessary. The verification proceeded by comparing the natural frequencies and mode

shapes computed by NASTRAN and those obtained independently using the LAPACK numerical rou-

tine library with the input of the extracted mass and stiffness matrices. Identical results have been

obtained which verifies the data extraction process. The desired flexibility matrix can then be

obtained directly by inverting the stiffness matrix:

adirect = K�1: (9)

Other method to obtain the flexibility matrix is by an expansion in the mode shapes, taking advan-

tage of the characteristics of normal modes:

amode =

N
�X

n=1

1

mn!
2
n

�n�
T

n
; (10)
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where m is the generalized mass, ! is the natural frequency, � is a row matrix representing the

mode shape and subscript n designates the mode number. When all modes are taken into account

in the expansion, i.e. N�
= NDOF where NDOF is the number of DOF’s available in the structural

model, adirect is recovered. When N� < NDOF the resulting flexibility matrix amode is only an

approximation to adirect. In the present study the first method, i.e. equation (9), is always used

except when otherwise is mentioned.

Structural properties of F-16 configuration are represented by a combination of shell/plate ele-

ments (CQUAD4) with beam (CBEAM) and bar (CBAR) elements, see Figure 2. A symmetrical free-

flight configuration is modeled by putting constraints along the fuselage and defining the rigid

body degrees of freedom (using SUPORT command) of normal translation and pitching rotation.

After a normal mode analysis using NASTRAN the so-called free-free mode shapes are obtained

along with free-free stiffness and mass matrices as extra outputs. Note that a free-free stiffness

matrix can not be inverted directly. First, the DOF’s at the point where the rigid body modes are

defined (SUPORT point), is removed to obtain a restrained stiffness matrix. The restrained stiffness

matrix can then be inverted straightforwardly to obtain restrained flexibility matrix. Subsequently,

the necessary modification, based on the DOF’s at the SUPORT point, is applied to the restrained

flexibility matrix to obtain a free-free flexibility matrix, see reference 12 for more detail descrip-

tion:

adirect = RK
�1

restrained
R
T ; (11)

where Krestrained is the restrained part of the K matrix and R is the rigid body modifying matrix.

For a free-free condition, the technique using mode shape expansion becomes:

amode =

N�X

n=NR+1

1

mn!2n
�n�

T

n ; (12)

where NR is the number of rigid DOF’s. Note that the natural frequency of the rigid mode of the

structure, i.e. without the aerodynamic forces, is zero.
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4 Aerodynamic Solution

The development of the static aeroelastic simulation method described in this report is based on the

application of the in-house developed CFD system called ENFLOW. The ENFLOW system has been

extensively used for the prediction of aerodynamic forces on rigid configurations. This research

enhances the ENFLOW system to include the interaction with the structure.

ENFLOW system consists of components which are necessary for a CFD analysis: tools for aerody-

namic geometry processing, ENDOMO block decomposition tool, ENGRID grid generator, ENSOLV

flow solver and ENADAP grid adaptation tool based on the flow solution, see e.g. reference 8. The

flow solver ENSOLV, which is capable of solving the unsteady Euler/Reynolds-Averaged Navier-

Stokes equations in a deforming multi-block domain, applies the Runge-Kutta time integration ac-

celerated by local time stepping, implicit residual averaging and a multi grid scheme. To improve

the accuracy in boundary layers, a modified matrix dissipation scheme by Swanson-Turkel was im-

plemented. Turbulent flows are described by closing the Reynolds-averaged Navier-Stokes equa-

tions with one of the available turbulent models, which are algebraic models (Baldwin-Lomax,

Cebeci-Smith and Johnson-King models) and two equations models (k�! model). An important

aspect of the flow solver is that it allows multi-block grids which are only C0-continuous at the

block interface, or even only partly continuous. These properties simplify the multi-block grids

generation procedure (grid in each block can be generated independently once the grids at the

block interfaces have been defined and the grid refinement process within a certain block is more

efficient) and the multi-block grid adaptation process.

During the fluid/structure iteration the grid has to follow the deforming surface due to the aero-

dynamic and inertial load. This requires grid adaptation tools other than that based on the flow

solution. A detailed description of the grid adaptation process for grid deformation will be given

later in this report.
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5 Fluid/Structure Interpolation

The iteration process to compute the structural static deformation is started with the computation

of the flow field around the rigid baseline configuration resulting in aerodynamic loads at the aero-

dynamic grid points which are then transfered to the structural grid. Then, the process is continued

by a sequential computation of the structural deformation, the transformation of structural surface

deformation into the aerodynamic grid, the aerodynamic grid deformation, the aerodynamic flow

solution and the transformation of aerodynamic loads into the structural grid points, and so on.

The schematic diagram of this iterative process is shown in Figure 3.

The fluid/structure interaction (data exchange) in this loosely-coupled method is carried out through

the fluid/structure interface geometry of the structural and aerodynamic model. In most cases the

geometry representation of the fluid/structure interface on the structural side and on the aerody-

namic side are different. The differences may come from several factors, amongst other:

- Types of solution/discretization method: the structural equations are solved using a finite

element method while the aerodynamic equations are solved using a finite volume method,

- Different requirement concerning the accuracy/grid density,

- Level of geometry modeling, e.g. for a thin wing the structural model would employ plate

elements (or beam element for a high aspect ratio wing) while the aerodynamic model uses

volumetric grids.

The differences in the fluid/structure geometry representation imply that a direct exchange of

information between the aerodynamic and structural domains is impossible. A common way to

solve domain incompatibility of this kind is to use a spline technique. The structural deformation

on the fluid/structure interface side of the structure is represented by a spline function and apply

the same function to also the fluid/structure interface on the aerodynamic side. Similarly, the

distributed aerodynamic loads on the aerodynamic surface are represented by equivalent point

loads at each of the structural grids.

The displacement vector in the aerodynamic grid, haero , can be expressed in terms of the dis-

placement vector in the structural grid points, hstruc, as

haero = Ghstruc (13)

where G is the interpolation or spline matrix. Similarly, the point loads vector in structural grid,

F struc, can be written as

F struc = G
�

F aero (14)
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where F aero is the point loads vector at the aerodynamic grids. Relationship between the two

spline matrices, G and G�, is obtained by requiring that the data exchange between the two do-

mains can be carried out without energy loses (energy conserving fluid-structure interpolation).

This leads to matrix relation

G
�

= G
T ; (15)

meaning that G� may not be generated independently, instead the transpose of G should be used.

The spline matrix G itself is defined using a planar surface spline method or volume spline method.

A detailed discussion on the numerical computation of G matrix can be found in reference 7.
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6 Multi-Block Grid Adaptation Technique For Grid Deformation

One major difficulty in applying the Euler/Navier-Stokes solutions for aeroelastic computation is

the aspect of updating the grid. Early developments, as reported in e.g. 4, uses simple shearing

method which limits its application to simple topologies and small deformations. In the present

research an efficient multi-block grid deformation method is developed which is relatively general,

robust and applicable for large deformation.

Several requirements are put on the grid deformation method. Since the grid adaptation has to

be carried out at each iteration step (once the fluid-structure interface is updated), it is of major

importance to keep the method simple and efficient. Further, it should be robust, e.g. the grid

may not fold during a simulation, and grid quality conserving, e.g. the initial clustering should be

preserved.

A multi-block grid consists of a set of blocks fB g with each block having its own structured three-

dimensional volume grid, faces fF g with each face having its own two-dimensional structured

grid, edges fE g with each edge having its own curved one-dimensional grid, and vertices fV g

which are defined by position vectors xV.

In principle, a similar spline method applied for the interpolation of the surface deformation be-

tween structural grids and aerodynamic grid could also be used to interpolate the displacement on

the surface grids into the grids in the field, provided that a three-dimensional spline method was

employed. However, for an average-size grid with millions of points this would lead to an unac-

ceptable long computation time. In this investigation, a computationally efficient grid adaptation

technique is proposed. In this technique, the displacement of the vertices and edges of the multi-

block grid is computed using a volume spline interpolation method based on the fluid-structural

interface spline data. After that, the displacement of the faces and blocks are computed using

transfinite interpolation (TFI) with a blending function defined by the initial grid.

By keeping the blending function constant during the grid deformation process, the grid quality

should remain constant during the simulation. The TFI method for the calculation of the grid

displacements in the interior of a face fF g, consist of two recursive steps which are: the calculation

of the displacements in the interior by a straight-line interpolation in the i-direction, followed by

a mismatch addition of the displacements along the second pair of the opposite edges by straight-

line interpolation in the j-direction. Once the displacements of the faces fF g calculated, the TFI

method is applied to calculate the displacements in the interior of the blocks fB g.
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For a block, beside the recursive two steps which are applied for the face interpolation, an addi-

tional step has to be carried out which is a mismatch addition of the displacements along the third

pair of the opposite faces by straight-line interpolation in the k-direction. Using this TFI tech-

nique, displacement of only a small portion of the grid points is computed by the computationally

expensive volume spline interpolation method, while the displacement of the larger part of the

grid points is computed by the computationally inexpensive TFI technique. In case grid folding

appears in the interior of some blocks, the interior grid of the folded block need to be recalculated

using the original grid generation algorithm. The multi-block grid adaptation described in this

section implemented into ENFLOW system in a module called DEFGRD.
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7 Simulation Results

To demonstrate the accuracy of the proposed static aeroelastic simulation system, calculation of

structural deformations on two configurations were carried out:

1. AGARD wing 445.6 weakened model No. 3 restrained at the tunnel wall. The flexibility and

mass matrices are obtained using MSC.NASTRAN, see page 12. Two different flow conditions

have been simulated:

� Subsonic condition of M1 = 0:45, � = 2 degrees and q1 = 6372 Pa,

� Transonic condition of M1 = 0:96, � = 2 degrees and q1 = 2935 Pa.

These flow conditions have been taken from [17] and represent the flutter boundary at zero

angle of attack. The results of the experiment show a transonic dip with the bottom at

M1=0.96. Stand alone codes have been used for this case: ENSOLV flow solver in the Euler

mode employing either a transpiration boundary condition or a grid deformation approach,

DEFGRD grid deformation code and STCDEF static deformation code. Comparison are made

with the static aeroelastic results of MSC.NASTRAN in which a vortex-lattice linear aerody-

namic theory is used. Similar results are expected between ENSOLV and NASTRAN for the

subsonic case where assumptions underlying the linear aerodynamic theory are valid. For

the transonic case, however, some differences are expected.

2. A free-flying F-16 configuration equipped with wing tip missile and the corresponding

missile launcher during a 5g pull-up maneuver at Mach number M1 = 0:9 and altitude

h = 5; 000 ft. The flexibility and mass matrices are also obtained using MSC.NASTRAN, see

page 13. For the F-16 case, the static aeroelastic simulation is carried out using the new

version of ENSOLV in which all the supporting modules, i.e. STCDEF and DEFGRD, have

been incorporated into one code.

7.1 AGARD wing 445.6

The results of ENSOLV for the AGARD wing at the subsonic case and those of NASTRAN are pre-

sented in Figure 9. The total load acting on the wing consists of the aerodynamic load and the

inertial load due to gravity (i.e. 1g load). Figure 9 shows both the results for which the transpira-

tion boundary condition approach (upper figure) and the grid deformation approach (lower figure)

was applied. The results of ENSOLV have been obtained after 20 fluid/structure iterations with an

under-relaxation coefficient � = 0:5. During the first iteration 20 multigrid cycles of ENSOLV were

applied and in the subsequent iteration, only 4 multigrid cycles were applied. The vertical defor-

mation in these figures are normalized using the root chord length. The maximum deformation of

6.5% of the chord at the wing tip is observed. All results show good agreement.
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Vertical deformation along the wing span is given in Figure 8. Both the leading edge and trailing

edge deformations have a parabolic shape (similar to the deformation of a Timoshenko cantilever

beam due to a point load at the end). It can be seen that results obtained using both the transpi-

ration boundary condition and the grid deformation approach are in a very good agreement with

MSC.NASTRAN results.

The lifting pressure (�Cp) contours computed using MSC.NASTRAN vortex-lattice linear aerody-

namic theory and ENSOLV are compared in Figure 10 which shows that in subsonic speed both

methods give similar results. A detailed look at the surface pressure distribution along the wing

chord at four different wing sections is presented in Figure 11. These are surface lifting pressure

distribution at the final deformed shape of the wing. Both solutions provide almost identical sur-

face pressure distributions. Since the free stream velocity is still in the subsonic regime (small

nonlinearities in the flow fields), the vortex-lattice method can produce results which are as accu-

rate as the results produced by the Euler solutions.

For the transonic case, although differences are expected, these should not be very large because

the wing has a quite large sweep angle and a relatively thin cross section (maximum t=c is 5%),

combined with small angle of attack. There are no shock in the flow field, as depicted in Figure 12

which shows sectional lifting pressure distribution at several span stations. Linear vortex-lattice

solutions predict a lower lifting pressure in the region close to leading edge compared to the

prediction using Euler equation employing both the transpiration boundary condition and the grid

deformation approach. Differences are also expected between ENSOLV solutions employing the

transpiration boundary condition with solutions employing grid deformation approach since the

small perturbation assumption used in the transpiration boundary approach may be violated for

this flow condition. A comparison is made for the final static vertical deformation along the wing

span as depicted in Figure 13. Similar differences are observed as before between the two solutions

but with slightly larger magnitude.

7.2 F-16 configuration

Static deformation of F-16 in various flight conditions and various store configurations have been

investigated at NASA Dryden and presented by Lokos et al. [9]. The investigation was directed to-

wards the pointing error of the AMRAAM missile due to the static deformation of the structure during

a high-g maneuvering flight. Comparison was made between flight test data and computational

results for several flight condition (Mach number, altitude and aircraft gross weight variations).

In the present work, one of the NASA Dryden static deformation cases is selected for the method

validation, i.e. the F-16 configuration equipped with the advanced medium range air to air missile
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(AMRAAM) at the wing tip during a 5-g symmetrical pull-up maneuver at an altitude of 5,000

feet. For this flight configuration, results in the form of front and rear spar deformation and twist

angle distribution in the spanwise direction are available. It should be kept in mind however, that

the present results may show some differences compared to the NASA Dryden’s results because

differences in the input data could not be avoided due to the unavailability of the same structural

model and also due to the unavailability of some flight condition data. The computational results

of reference 9 are obtained using a relatively high resolution FEM model of a symmetrical F-16

C/D block 40 aircraft with about 160,000 degree of freedoms. A given set of load cases was used.

Meanwhile, computation in this work has been carried out using a simplified FEM model, suitable

for flutter analysis, of a symmetrical F-16 A/B block 25 aircraft with about 1,000 DOFs. The total

weight of the aircraft which was derived from the FEM model is 23,072 lbs, which is somewhat

lower than the total weight given in reference 9 (24,600 lbs).

An aerodynamic grid has been generated for the computations of NASA Dryden case. Since a

symmetric case is considered, only a half configuration of an F-16 is used. The grid consists

of 310 blocks holding in total about 2 millions grid points. With inputs of the jig-surface CAD

definition of the F-16 ”Big-Tail” the blocks were arranged using ENDOMO domain modeler. The

block boundaries of the whole computational domain are shown in Figure 4. It can be seen that

the global topology is of HO type. The block boundaries at the symmetry plane, i.e. y = 0 plane,

are presented in Figure 5 showing the details close to the aircraft surface.

After the domain is divided into blocks, the grid is generated using ENGRID by sequentially tuning

the grid distribution on the edges, the faces and finally in the blocks. Unlike tuning a grid for

a viscous flow analysis, where boundary layer has to be properly accommodated, less stringent

requirements are posed to the distribution of Euler grid points close to solid surfaces. Leaving

in the direction relatively normal to the surface with uniform distribution are preferred to achieve

accurate variable extrapolation to the surface. For the Euler equations from the five flow variables

only one variable may be specified on the solid surface, i.e. the normal velocity, the rests have to

be extrapolated. A partial view of the grid on the symmetry plane and on the surface of the F-16

is shown in Figures 6 and 7.

The static aeroelastic simulation was carried out using the integrated version of ENSOLV which

contains all necessary modules: the flow solver, the static deformation module, the trim analysis

module and the grid deformer. The Euler model has been used in the flow solver. Computations

were performed on both constrained and free flight conditions. For the constrained simulation,

only the aerodynamic force is applied.
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During a free-flight simulation, to match the g-level with the given one, i.e. 5g, the aircraft attitude

has to be trimmed. The trimming can be carried out by modifying the angle of attack and the

control surface deflection in such away that all forces and moments on the aircraft are in balance.

For F-16 aircraft the control surfaces are scheduled depending on various flight parameters, e.g.

Mach number, angle of attack, static pressure, etc. In the present work only the angle of attack

will be used as the trim variable to trim the lift and leaving the moments un-trimmed. Full trim

analyses will be carried out in the future research.

The necessary CL to produce the g-level corresponding to 5g can be computed from the mass

data and the flight parameter data, which is CL=0.385. This value was set as the target CL for

the trim analysis. Figure 14 shows the convergence history of the lift coefficients and the angle of

attack correction (��) with respect to the initial angle of attack. The calculation was started from

a zero deformation condition at an initial � = 4.5 degrees with a corresponding CL of about 0.46.

The target lift coefficient is reached in less than 30 iterations giving a trimmed alpha of 4.5-0.61

degrees.

The maximum/minimum vertical displacements convergence history is shown in Figure 15. It can

be seen that a similar rate of convergence as that for trim analysis was obtained for the deforma-

tion. Surface pressure distribution at the converged state is shown in Figure 16. Spanwise bending

(vertical) deflection of the front and rear spars for 5g maneuver is shown in Figure 17. Results

from the present study compare well with both the numerical results and flight test data as reported

in reference 9. The differences in the results may be attributed to the previously mentioned dif-

ferences in modeling the F-16 configurations. The restrained condition gives, in general, results

which are closer to the flight test data compared to the results obtained by imposing the free-free

condition and also compared to the NASTRAN results of Lokos et al. [9]. One possible reason for

this is that in the calculation with free-free condition the leading-edge and trailing-edge flap de-

flections are not simulated correctly because the flight test flap setting conditions are not reported

in reference 9.

Wing box twist distribution, which is defined based on the difference between the front spar and

rear spar deflection, is shown in Figure 18. As for the bending deflection, calculation with con-

strained condition predicts more accurate twist distribution compared to calculation with free-free

condition.
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8 Concluding Remarks

In this report a static aeroelastic simulation system ENFLOW is presented. The main objectives

of developing the static aeroelastic simulation are: to provide an initial condition for a dynamic

aeroelastic simulation and to enable accurate computation of aerodynamic forces at a high-load

condition. The proposed method, which is solved using an iterative scheme, consists of the fol-

lowing components:

1. Robust Euler/Navier-Stokes flow solver employing a finite-volume method on structured

multi-block grids,

2. Structural solver based on linear theory with the flexibility and mass data obtained from the

widely used finite-element code MSC.NASTRAN,

3. Fluid/structure interpolation method employing planar surface spline and three-dimensional

volume spline methods,

4. Grid deformation method combining the volume spline technique for the block edges and

an efficient transfinite interpolation technique for the block faces and the grid points.

These components have been implemented in the new version of ENSOLV.

Numerical results are shown for AGARD 445.6 wing restrained at its root and a free-flying F-

16 aircraft configuration with wing tip launchers and missiles. For subsonic case, very good

agreement is obtained for the AGARD 445.6 wing between the results of ENSOLV in the Euler mode

and those of MSC.NASTRAN. The latter uses a linear lifting surface theory. As expected, there

are some differences between the results of ENSOLV and MSC.NASTRAN for the transonic case.

However, the differences are small due to the small thickness ratio and large sweep angle of the

AGARD 445.6 wing. The results for the F-16 are compared well with the results of NASA Dryden

for a 5g pull-up maneuver. The 5g condition has been achieved by trimming the angle of attack to

obtain the required lift coefficient.

Based on the results of the applications, it may be concluded that the applied fluid/structure itera-

tive method is robust, accurate and efficient in term of quite rapid convergence. Current and future

studies include the application of the newly developed method for even higher load conditions at

which the Navier-Stokes mode is necessary and also for fully-loaded configurations at which both

wing-tip missiles and underwing stores are present. At the moment, the development activities is

focussed in the extension of this method for dynamic aeroelastic simulations.
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Figures

Fig. 1 Finite-element model of AGARD 445.6 wing consisting of QUAD4 elements, the dashed

line shows the fourth flexible mode

Y

X

Z

Fig. 2 Finite element model of F-16 aircraft with tip missile consisting of CBEAM and QUAD4

elements, the dashed line shows the second flexible mode
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Fig. 3 Schematic diagram of the iterative process in static aeroelastic simulation

Fig. 4 Global view of the computational domain for the F-16 aircraft with tip missile
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Fig. 5 Block boundaries close to the surface of F-16 on the symmetry plane

Fig. 6 Partial view of the grid on the symmetry plane for the analysis of F-16 with tip missile
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Fig. 7 Grid on the surface of F-16 with tip missile
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Fig. 8 Comparison of vertical deformation at the leading edge and trailing edge between NAS-

TRAN and ENSOLV (Euler), M1=0.45, �=2.00 degrees, q1=6372 Pa
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Fig. 9 Vertical-deformation contour of a restrained AGARD wing obtained with ENSOLV using

transpiration boundary condition and grid deformation approach and and MSC.NASTRAN

at M1=0.45, �=2.00 degrees, q1=6372 Pa, Euler flow model
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Fig. 10 Lifting-pressure contour of a restrained AGARD wing obtained with ENSOLV using tran-

spiration boundary condition and grid deformation approach and and MSC.NASTRAN at

M1=0.45, �=2.00 degrees, q1=6372 Pa, Euler flow model
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Fig. 11 Sectional lifting-pressure contour of a restrained AGARD wing obtained with EN-

SOLV using transpiration boundary condition and grid deformation approach and and

MSC.NASTRAN at M1=0.45, �=2.00 degrees, q1=6372 Pa
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Fig. 12 Sectional lifting-pressure contour of a restrained AGARD wing obtained with EN-

SOLV using transpiration boundary condition and grid deformation approach and and

MSC.NASTRAN at M1=0.96, �=2.00 degrees, q1=3529 Pa
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Fig. 13 Comparison of the deformation in the z-direction at the leading edge and trailing edge

between NASTRAN and ENSOLV, M1=0.96, �=2.00 degrees, q1=3529 Pa
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Fig. 15 Convergence history of the maximum upward and downward dimensionless deflection

of F-16 aircraft configuration with tip missiles for 5g pull-up maneuver flight atM1=0.90

and altitude 5,000 ft

Fig. 16 Surface pressure distribution of F-16 aircraft configuration with AMRAAM tip missiles

for 5g pull-up maneuver flight at M1=0.90 and altitude 5,000 ft calculated using con-

strained model
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