KAl

n@ Dedicated to innovation in aerospace

o

NLR-TP-2020-064 |

Calculated Moves

Generating Air Combat Behaviour

CUSTOMER: Royal Netherlands Aerospace Centre

NLR — Royal Netherlands Aerospace Centre

4

A L 4

(“lf Dedicated to innovation in aerospace

>

UNCLASSIFIED

Calculated Moves

Generating Air Combat Behaviour

Problem area

By training with virtual opponents known as computer generated forces (CGFs),
trainee fighter pilots can build the experience necessary for air combat operations,
at a fraction of the cost of training with real aircraft. In practice however, the
variety of CGFs is not as wide as it can be. The lack motivated me to design and
improve air combat simulations. In this thesis we investigate to what extent
behaviour models for the CGFs in air combat training simulations can be

automatically generated, by the use of machine learning.

REPORT NUMBER
NLR-TP-2020-064

AUTHOR(S)
A. Toubman

REPORT CLASSIFICATION
UNCLASSIFIED

DATE
February 2020

KNOWLEDGE AREA(S)
Training, Mission
Simulation and Operator
Performance

Air Transport software
(development) technology
Flight Operations

DESCRIPTOR(S)
artificial intelligence
machine learning
air combat

training

simulations

UNCLASSIFIED

Description of work

The domain of air combat is complex, and machine learning methods that operate
within this domain must be suited to the challenges posed by the domain. We
identify five challenges that must be met before newly generated behaviour
models can effectively be applied in training simulations. These are: (A) producing
team coordination, (B) computationally evaluating CGF behaviour, (C) efficient
reuse of acquired knowledge, (D), validating generated behaviour models, and (E)

generating accessible behaviour models.

From the above motivation for the research, together with the five challenges, we
derive the following problem statement: To what extent can we use dynamic
scripting to generate air combat behaviour models for use in training simulations,
in such a way that the five challenges of generating air combat behaviour models
are met? The problem statement mentions the use of the dynamic scripting
algorithm. This algorithm produces human-readable behaviuor models, and thus
enables us to meet challenge E. Based on the remaining four challenges, we
formulate five research questions that we investigate in the remainder of the

thesis.

Results and conclusions

Our research shows that dynamic scripting greatly facilitates the automatic
generation of air combat behaviour models, while being sufficiently flexible to be
moulded into answers to the challenges. However, ensuring the validity of the
newly generated behaviour models remains to be a point of attention for future

research.

Applicability

The work presented in the thesis focuses on air combat simulations. Although the
results of the research apply only to this domain, the techniques that are
presented can possibly be applied to other types of simulations as well.

GENERAL NOTE
This report is based on a dissertation of the author, which was
succesfully defended at Leiden University on 5 February 2020.

NLR

Anthony Fokkerweg 2

1059 CM Amsterdam, The Netherlands
+31885113113

info@nlr.nl i) www.nlr.nl

. 4

_I
(“9 Dedicated to innovation in aerospace

>

NLR-TP-2020-064 |

Calculated Moves

Generating Air Combat Behaviour

CUSTOMER: Royal Netherlands Aerospace Centre

AUTHOR(S):
A. Toubman NLR

NLR — Royal Netherlands Aerospace Centre

NLR-TP-2020-064 | February 2020

This report is based on a dissertation of the author, which was succesfully defended at Leiden University on
5 February 2020.

The contents of this report may be cited on condition that full credit is given to NLR and the author.

CUSTOMER Royal Netherlands Aerospace Centre
o

DIVISION NLR Aerospace Operations
CLASSIFICATION OF TITLE UNCLASSIFIED

‘ APPROVED BY: Date
AUTHOR A. Toubman 14-02-2020
REVIEWER K. Goossen 14-02-2020
MANAGING DEPARTMENT H.G.M. Bohnen 14-02-2020

Calculated Moves

Generating Air Combat Behaviour

PROEFSCHRIFT

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,
op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker,
volgens besluit van het College voor Promoties
te verdedigen op woensdag 5 februari 2020

klokke 13.45 uur
door

Armon Toubman
geboren te Amsterdam in 1988

Promotores: Prof. dr. H.J. van den Herik Leiden University
Prof. dr. ir. P.H.M. Spronck Tilburg University
Copromotor: Dr. ir. J.J.M. Roessingh Royal Netherlands Aerospace Centre NLR

Promotiecommissie: Prof. dr. M.E.H. van Reisen Leiden University

Prof. dr. S. Manegold Leiden University / Centrum Wiskunde & Informatica
Prof. dr. HX. Lin Leiden University / Delft University of Technology
Prof. dr. J.C. Scholtes Maastricht University
Dr. G.C.H.E. de Croon Delft University of Technology
v
ALl The research reported in this thesis has been funded by

(n lr and performed at the Royal Netherlands Aerospace Centre NLR,
Amsterdam, the Netherlands.

TILBURG

UNIVERSITY o)
In the first year, the research reported in this thesis has been

L 4
m .. performed at Tilburg center for Cognition and Communication
¢ j%% @ (TiCC) at Tilburg University, the Netherlands.
._//' [
L 2

The research reported in this thesis has been completed at

the Leiden Centre of Data Science (LCDS) hosted by the Leiden
Institute of Advanced Computer Science (LIACS) at the Faculty
of Science, Leiden University, the Netherlands.

SIKS Dissertation Series No. 2020-01

@, The research reported in this thesis has been carried out under
the auspices of SIKS, the Dutch Research School for Information
and Knowledge Systems.

Printed by: Gildeprint, Enschede

Cover/invitation design: ~ Armon Toubman, derivative of “Dutch F-16 5” by Tony Hisgett.
Used under the CC BY 2.0 license.
Original photo available at: https://flic.kr/p/8a6hs4

Additional credits: Includes Vista Style People Demo Icons by: http://www.icons-1land.com

©2019 Armon Toubman
ISBN 978-94-6402-000-7

An electronic version of this dissertation is available at:
http://openaccess.leidenuniv.nl/

https://flic.kr/p/8a6hs4
http://www.icons-land.com
http://openaccess.leidenuniv.nl/

Preface

Fighter jets are incredible machines. Equally incredible is the skill required to operate them.
The pilots of these jets have to excel at observing, communicating, calculating, and making
life-or-death decisions while zooming through the sky at inhuman speeds. Excelling at these
tasks is only possible by rigorous training. However, defence budget cuts have resulted in fewer
aircraft for air forces, and thus fewer aircraft available for real-world training. For instance, the
Royal Netherlands Air Force had 213 F-16s available in 1992. Today, in 2019, there are 68 F-16s left.
These are planned to be replaced by 37 F-35s in 2023, followed by additional F-35s at a later time.
Innovative training methods are thus required to keep fighter pilots ready for future operations.

Another type of incredible machines are modern computers. Over the last decades, computers
have become so powerful that they are able to simulate complex virtual worlds, in which humans
can interact with life-like virtual entities. The computing power that is available today has also
enabled the computers to reinvent their own programming, by means of machine learning
algorithms. Since I started my PhD candidacy in 2013, the interest in machine learning has grown
exponentially. From credit card fraud detection to self-driving cars, machine learning is now
everywhere; so much so, that even the latest smartphones have separate processors dedicated
solely to machine learning calculations.

One of the most important training tools in the arsenals of air forces is the flight simulator. A
simulator relies on virtual entities called computer generated forces to create interesting situations
that resemble the situations that fighter pilots may encounter in the real world. However, model-
ling and programming the behaviour of these entities remains challenging. As a result, only few
behaviour models are created for the entities, and thus the simulators are left underused. In our
research, we put one and one together by applying machine learning to fighter pilot training.

Personally, combining fighter jets and machine learning has felt like turning a piece of science
fiction into reality. I hope that the research in this thesis will lead to safer skies. To all fighter
pilots training in simulators I extend the greeting used by the Klingon warriors in the Star Trek
television shows: Qapla’!

Armon Toubman

Almere, November 24, 2019

Contents

Preface ix
Contents Xi
Nomenclature xvii
List of Acronyms Xix
List of Definitions XXi
List of Figures XXiii
List of Tables XXV
List of Listings XXVii
CHAPTERS

1 Introduction 1
1.1 The behaviour modelling process. 2
1.1.1 Obstaclesinthe process 2

1.1.2 Consequences for training effectiveness 4

1.2 Generating air combat behaviourmodels 4
1.2.1 Challenges 5

1.2.2 Scopeofthethesis 7

1.3 Problem statement and research questions 8
1.4 Researchmethodology 9

1.5

Structure of thethesis 11

Xii Contents
2 Foundations 13
2.1 The steps in the behaviour modelling process 13
2.2 Machine learning in training simulations 15
2.2.1 Potential benefits 15
2.2.2 Potentialdrawbacks L. 16

2.3 Machinelearning 17
2.3.1 The three categories of machine learningtasks. 17
2.3.2 Reinforcementlearning 18
2.3.3 Dynamicscripting 20

2.4 Past approaches to generating air combat behaviour 25
241 Neuralnetworks 25
2.4.2 Evolutionary algorithms L L oo 27

2.5 Chaptersummary 29
3 Team coordination 31
3.1 Two perspectives on team coordination 32
3.1.1 The air combat perspective 32
3.1.2 The multi-agent system perspective 33
3.1.3 Combining the perspectives into coordination methods 34

3.2 Team coordination in dynamic scripting 37
3.2.1 Implementing TACIT 38
3.2.2 Implementing CENT 42
3.2.3 Implementing DECENT 45

3.3 Experimentalsetup 46
3.3.1 The Lightweight Air Combat Simulator 47
332 Redteam 47
333 Blueteam. 48
3.3.4 SCENANIOS . . v ot 48
3.3.5 Independent and dependentvariables 49
3.3.6 Methodofanalysis 49

3.4 Experimentalresults. 50
3.5 DiSCUSSION .« oo 52
3.5.1 Keyfinding 52
3.5.2 The effect of centralised coordination on performance 52
3.5.3 The learning process of coordinating CGFs 53

3.54 Thewayforward 56

Contents Xiii

3.6 Answering research question1 56
4 Improving the reward function 59
4.1 Reward functions in reinforcementlearning 60
4.1.1 Aformal description of reinforcement learning 60
4.1.2 The role of rewards in dynamic scripting 62

4.2 Designingrewardfunctions. 63
4.3 Sparserewards 66
4.3.1 Problemdescription 66
432 Rewardshaping 66
4.3.3 Sparserewardsintheliterature 67
4.3.4 Proposed solution: DOMAIN-REWARD 70

4.4 Unstablerewards. 72
441 Problemdescription 72
4.4.2 Unstable rewardsintheliterature 74
4.4.3 Proposed solution: AA-REWARD 76

4.5 Overview of the three reward functions 77
451 BIN-REWARD 78
452 DOMAIN-REWARD i 78
453 AA-REWARD 79

4.6 Experimentalsetup 80
46.1 Redteam 80
46.2 Blueteam. 81
4.6.3 SCENANIOS . . . v vt 81
4.6.4 Independent and dependentvariables 81
4.6.5 Methodofanalysis 81

47 ResUlts 81
4.8 DIiSCUSSION . . . o 84
4.8.1 Using DOMAIN-REWARD 84
482 Using AA-REWARD 85
4.8.3 Sparsityandstability 85

4.9 Answeringresearchquestion2 85
5 Transfer of knowledge between scenarios 87
5.1 The concept of transferlearning 88

5.1.1 Transfer learningmethods 88

Xiv

5.2

5.3

54

55

5.6

Contents

5.1.2 Transfer learning in reinforcement learning 89
5.1.3 Transfer learning in dynamic scripting 89
5.1.4 The burden of human knowledge 90
USECase 90
5.2.1 Description 90
5.2.2 Implementation in dynamic scripting 91
Experimentalsetup 94
53.1 Redteams 94
53.2 Blueteam. 95
5.3.3 Independent and dependentvariables 95
5.3.4 Method of analysis 95
Experimentalresults. 96
5.4.1 Winratesofthereds’., 926
5.4.2 Winrates of thereds” andtheredsy 96
5.4.3 Application of thethreemeasures. 98
DiSCUSSION 100
5.5.1 Successofthetransfer., 100
5.5.2 Improved performance in the lead-trail scenario. 101
5.5.3 Stationarywinrates. 101
Answering research question3 102

6 A validation procedure for generated air combat behaviour models 103

6.1

6.2
6.3
6.4
6.5

6.6
6.7

Validating behaviourmodels 104
6.1.1 What does the validation process precisely entail? 104
6.1.2 How should we determine the accuracy of the models? 105
6.1.3 Section conclusionand outlook., 106
Terminology 106
Designing a validation process. 107
The Assessment Tool for Air Combat CGFs 111
Equivalencetesting 114
6.5.1 Equivalence testingwith TOST 114
6.5.2 Measuring an extentofvalidity, 115
Implementing the validation process 116
Answering research question4 116

Contents XV
7 Validation of generated behaviour models in training simulations 119
7.1 Defining the baseline: The4P-models 120
7.2 Generating behaviour models: The 4M-models 120
7.2.1 Therulesintherulebases 121

7.2.2 Automated simulations 122

7.3 Human-in-the-loop simulations 124
7.4 Behaviour assessments 125
7.5 Results of the behaviour assessments 126
7.5.1 Equivalencetesting 126

7.5.2 Inter-raterreliability. 127

7.5.3 Feedbackontheassessments. 127

7.6 DISCUSSION . . . o oo 129
7.6.1 Keyfinding 129

7.6.2 Placing our key findingincontext 129

7.6.3 Implications 130

7.6.4 Limitations 131

7.7 Answering research question5 131

8 Conclusions 133
8.1 Answers to theresearch questions. 133
8.2 Answer to the problem statement 135
8.3 Recommendations for futureresearch 136
References 139

APPENDICES

A The Lightweight Air Combat Simulator 159
AT Descriptiono 159
A.2 Computer generatedforces. 160
A3 Scriptinglanguage 161
A4 SCENANIOS . . o o 162
A4 1T TWO-VErsuS-ONe SCeNArioSv v v . 162

A.4.2 TWO-Versus-two SCenariosc..ovuuen.. 164

XVi Contents

B The LWACS scripting language 165
B.1 Grammar 165
B.2 Functiondescriptions 168

B.2.1 Booleanfunctions 168
B.2.2 Numerical functions 168
B.2.3 Actionfunctions 169

C Rulebases and scripts 171

D The Fighter 4-Ship simulator 173
D.1 Theships 173
D.2 Theinstructor operatingstation. 175
D.3 Software packages 176
D.4 Dynamic scripting in the Fighter4-Ship 177

E Generating finite-state machines 179
E.1 Expressing finite-state machinesasrules 180
E.2 The modified dynamic scripting algorithm. 181
E3 Summary 182

F The Assessment Tool for Air Combat CGFs 185

Summary 189

Samenvatting 193

List of publications 197

Curriculum vitae 199

Acknowledgements 201

SIKS dissertation series 203

Nomenclature

AA-REWARD The reward function based on the probability-of-kill of missiles.
BIN-REWARD The binary reward function.

CENT The centralised coordination method with communication.

DECENT The decentralised coordination method with communication.
DOMAIN-REWARD The reward function based on domain knowledge.

Py The probability-of-kill of a missile.

TACIT The decentralised coordination method without communication.

List of Acronyms

Al artificial intelligence.

ANOVA analysis of variance.

API application programming interface.
ATACC Assessment Tool for Air Combat cGFs.
BARS behaviourally anchored rating scale.
BOS behaviour observation scale.

BVR beyond-visual-range.

CAP combat air patrol.

CGF computer generated force.

CI confidence interval.

CLI command-line interface.

DIS distributed interactive simulation.
FSM finite-state machine.

GUI graphical user interface.

HSD honest significant difference.

HUD head-up display.

ICC intraclass correlation.

ICP integrated control panel.

IOS instructor operating station.

XX

LCS learning classifier system.

LWACS Lightweight Air Combat Simulator.
MEC mission essential competency.

MFD multi-functional display.

NLR Netherlands Aerospace Centre.

PCDS Personal Computer Debriefing System.
PS problem statement.

RNLAF Royal Netherlands Air Force.

RQ research question.

RWR radar warning receiver.

SB Smart Bandits.

TOST two one-sided t-tests.

WVR within-visual-range.

XCS accuracy-based learning classifier system.

List of Acronyms

List of Definitions

1.1
1.2

2.1
2.2
2.3

3.1

4.1
4.2
4.3
4.4

5.1
5.2
53

6.1
6.2
6.3
6.4
6.5

Behaviourmodel 2
Accessible behaviourmodel 7
Behaviourrule. 22
SCrIPt o o s e e 22
Rulebase e 22
SCENAMO . . v o e 48
Desirable behaviour 60
Terminalstate e 63
Optimal reward function 64
Probability-of-kill 73
Transferlearning 88
Sourcetask . .. e 88
Targettask e 88
Validation e 104
4-model . .. e 107
Ap-model .. e 107
AM-model . .. e 107
Measure of validity of the4m-models 111

List of Figures

1.1

2.1
2.2

3.1
3.2
33
3.4

3.5

4.1
4.2
4.3

5.1
5.2
5.3
54
5.5

6.1
6.2
6.3
6.4
6.5

The four steps in the behaviour modelling process. 3
The reinforcement learningloop. 19
The three steps of the dynamic scripting learning process. 23
The axes of team coordination. 36
TACIT, CENT, and DECENT implemented in dynamic scripting.. 39
The win rates achieved by red using TACIT, CENT, and DECENT. 51
The weights of the rules over time, averaged over 50 runs (CENT, basic

scenario, redlead). 54
The weights of the rules over time, averaged over 50 runs (CENT,

mixed scenario, redlead). 55
The spectrum of desirable air combat behaviour. 71
The probability-of-kill curve of the missiles in Lwacs. 73
The win rates achieved by red using BIN-REWARD, DOMAIN-REWARD,

ANd AA-REWARD. « . v ot ottt e e 82
Step 1 of the implementation of theusecase. 91
Step 2 of the implementation of theusecase. 92
Step 3 of the implementation of theusecase. 93
The win rates achieved by thereds’.. 97
The win rates achieved by the reds” and thereds,. 97
The outline of the validation process. 109
Adding 4p-modelsasabaseline. L oL 109
Executing the 4-models in human-in-the-loop simulations. 109
Assessments of the simulationresults. 110
Equivalence testing of the assessmentresults. 110

XXiv List of Figures

7.1 The three steps of the generation strategy. 123
A1 Ascreenshot Of LWACS. i e 161
A.2 The initial positions of the cGFs in the four LWACS scenarios. 163
D.1 Schematictopviewofaship............ 174
D.2 Photograph of a ship being operated by a participant. 175

E.1 AnFsMmas abehaviourmodel. 180

List of Tables

1.1
1.2

2.1

3.1
3.2

4.1
4.2
4.3

5.1
5.2
5.3

7.1
7.2
7.3

Research methods used to answer the research questions. 10
Answering the problem statement and the research questions.. . .. 11
A selection of dynamic scripting applications from the literature.. . . 25
The final performanceofred. 51
The turning pointsofred. 51
A comparison of BIN-REWARD, DOMAIN-REWARD, and AA-REWARD. 77
The final performanceofred. 83
Theturning pointsofred. 83
The initial performance of the reds” and thereds,. 98
The final performance of the reds” and thereds,. 99
The turning points of the reds” and theredsy. 100
Summary of the ATACCresponses. 128
Results of the TosTmethod. 128

Results of the intraclass correlation analysis. 128

List of Listings

2.1 Example behaviourrule. L 22
B.1 Grammar of the LWACS scripting language. 165
E.1 The rsm from Figure E.1 expressed in the formofrules. 181

E.2 Modified script generation algorithm. 182

1 Introduction

The military philosopher Sun Tzu once said, “Now the general who wins a battle makes many
calculations in his temple ere the battle is fought” (translation by Giles, 1994). Today, we have
access to a new type of calculations, which is called machine learning. In this thesis, we use
machine learning to improve training simulations for air forces.

Air forces are an essential part of modern defence forces. However, air forces worldwide
struggle to maintain the combat readiness of their pilots (cf. Ausink, Taylor, Bigelow and Brancato,
2011; Chapman and Colegrove, 2013; Doyle and Portrey, 2014; Church, 2015). In the last decades,
shrinking budgets have led to dwindling numbers of operational aircraft, including the aircraft
available for training. At the same time, a steady stream of air force deployments has called for
pilots at maximum readiness. Maintaining a high level of readiness with smaller numbers of
aircraft requires efficient use of alternative means of training, such as simulators (Foster and
Fletcher, 2013; Mattingly, Bolton, Walwanis and Priest, 2014; McLean, Lambeth and Mavin, 2016;
Bruzzone and Massei, 2017).

Simulators can provide a flexible training environment with access to a wide variety of virtual
opponents to train with. Such an opponent is often called a computer generated force (cGF,
plural: cGFs), i.e., a computer representation of a real-world force that displays human-like
behaviour (cf. Lu and Gong, 2014; Kamrani, Luotsinen and Lgvlid, 2016). By training with virtual
opponents, trainees can build the experience necessary for air combat operations, at a fraction of
the cost of training with real aircraft. In practice however, the variety of virtual opponents is not
as wide as it can be. This is largely due to a lack of behaviour models, i.e., computational models
used to govern the behaviour that the virtual opponents display (cf. Lu and Gong, 2014; Pelosi
and Brown, 2016). The goal of the thesis is to investigate to what extent behaviour models for
the virtual opponents in air combat training simulations can be automatically generated, by the
use of machine learning.

This chapter is organised as follows. In Section 1.1, we describe the process by which behaviour
models are created today. In Section 1.2, we briefly look at the possibility of automatically
generating behaviour models. In Section 1.3 we present our problem statement and five research
questions. The research methodology is given in Section 1.4. Finally, in Section 1.5 we outline the
structure of the thesis.

2 1.1 The behaviour modelling process

1.1 The behaviour modelling process

The behaviour modelling process is the process by which behaviour models are created today.
For the remainder of this thesis, we define behaviour models as follows.

Definition 1.1 (Behaviour model). A behaviour model is a model that maps (a) the observations

made by some entity to (b) the actions that the entity should perform.

We define three roles that take part in the behaviour modelling process: (1) the training
specialist, (2) the subject matter expert, and (3) the programmer. We refer to the people that fill
in the roles as the professionals’.

We divide the behaviour modelling process into four steps. The four steps of the behaviour
modelling process are shown in Figure 1.1. First, the training specialist writes a behaviour
specification for a new cGF. Second, the subject matter expert refines the behaviour specification,
using knowledge on the real-world forces that the cGF represents. Third, the programmer creates
an executable behaviour model based on the refined behaviour specification. Fourth, the training
specialist, subject matter expert, and programmer validate the behaviour model and then make
improvements to the model as needed. The four steps are explained in more detail in Chapter 2.

In its current form, the behaviour modelling process brings about two obstacles (see Subsec-
tion 1.1.1). Furthermore, we discuss the consequences that the obstacles in the process have for
the effectiveness of simulator training (Subsection 1.1.2).

1.1.1 Obstacles in the process

We identify two main obstacles in the behaviour modelling process. We describe them below.

The first obstacle is the observation that the process is labour-intensive. However, the pro-
fessionals capable of performing the four steps in the process come in limited numbers and are
not always available. Furthermore, the four steps in the behaviour modelling process must be
performed in the order given, and the professionals depend on each other to complete Step 4.
Therefore, unavailability of the professionals hampers the completion of the behaviour modelling
process.

The second obstacle is the complexity of human(-like) behaviour modelling (cf. Banks and
Stytz, 2003; Stytz and Banks, 2003a; Stytz and Banks, 2003b). The complexity stems in part
from the fact that a cGF’s behaviour model has to be able to react as much as possible in a
proper way (i.e., as a human would) to all situations that may occur in the simulation (Bourassa,
Abdellaoui and Parkinson, 2011). Failure to react appropriately or to react at all to these situations
(1) makes the behaviour model brittle, and (2) makes the behaviour produced by the behaviour
model to be considered as lacking realism (Bourassa and Massey, 2012). However, eliciting the

'See Darken and Blais (2017) for a discussion of the responsibilities of modelling and simulation professionals in the
military.

Introduction 3

Step 1. A5
Training writes Behaviour
e b
¢ T
Step 2. \\
Subject matter refines Behaviour)
specification [€=sesreenen,
Step 3. M
Behaviour | as 5| Behaviour |
specification ?l model
J
Step 4. ¥
= - validate : X
Tranrjlr;g Subject matter Programmer Beha\c/ilolur ee®
specialist expert mode improvements

Figure 1.1 The four steps in the behaviour modelling process (adapted from the process
described by Gerretsen, Van Oijen, Ferdinandus and Kerbusch, 2017). Step 1: the training
specialist writes a behaviour specification for a new cGF. Step 2: the subject matter expert
refines the behaviour specification, using knowledge on the real-world forces that the cGr
represents. Step 3: the programmer creates an executable behaviour model based on the
refined behaviour specification. Step 4: together, the training specialist, subject matter
expert, and programmer validate the behaviour model and then make improvements to
the model as needed.

4 1.2 Generating air combat behaviour models

knowledge required to model the proper reactions is not a straightforward task (cf. Marcus, 2013;
Hoffman, 2014). As a result, behaviour that should have been specified in Step 1 and Step 2 of the
behaviour modelling process will only transpire in Step 4. The unspecified behaviour then has to
be implemented as an improvement to the model, requiring further work by the professionals.

The two obstacles described above render completing the behaviour modelling process a
slow and difficult task. The duration of the process leads to a relatively low number of behaviour
models being created. However, at the same time, real-world developments such as (1) new
strategies, (2) new tactics, and (3) new equipment are introduced at a high pace. Trainees need
to gain experience with these developments in simulations. Therefore, the behaviour modelling
process must be reiterated frequently to keep up with the demand for new behaviour models.
Furthermore, because of the high pace of real-world developments, the rate of model reuse is
low. Lu and Gong (2014) state a reuse rate of behaviour models as low as 10 to 15%.

1.1.2 Consequences for training effectiveness

Because of the low number of behaviour models available for use by cGFs, training specialists
are limited in the range of training simulations they can create. A limited range of training
simulations has two closely related negative consequences for the effectiveness of the training
given by means of these training simulations. We discuss the two consequences below.

The first consequence is that the trainees miss out on the proven benefits of variation in
training tasks (such as training simulations). For instance, recent studies show that variation
in training tasks improves the cognitive and motor skills of trainees (Taylor and Rohrer, 2010;
Vakil and Heled, 2016). Furthermore, variation helps trainees to develop the capability to (1)
recognise patterns across situations, (2) adapt their mindset to their situation, and (3) come up
with creative solutions (Fletcher and Wind, 2014).

The second consequence is that the behaviour of the cGFs becomes predictable by the trainees.
The predictable behaviour may lead to boredom which transpires in the trainees’ behaviour.
Furthermore, predictable behaviour may cause the trainees to try to exploit the behaviour of the
CGFs, rather than to focus on achieving the learning objectives of the simulations (Lopes and
Bidarra, 2011; Silva, do Nascimento Silva and Chaimowicz, 2015).

1.2 Generating air combat behaviour models

The field of artificial intelligence (a1) may offer an alternative to the behaviour modelling pro-
cess, and improve the effectiveness of training simulations by remedying the two consequences
mentioned in the previous section. The alternative is generating behaviour models by means of
machine learning. Machine learning programs outperform humans in a variety of tasks (Jordan
and Mitchell, 2015), such as credit card fraud detection (Dal Pozzolo, Caelen, Le Borgne, Water-
schoot and Bontempi, 2014), cloud computing resource allocation (Hameed, Khoshkbarforoushha,

Introduction 5

Ranjan, Jayaraman, Kolodziej et al., 2016), and playing games like poker (Bowling, Burch, Jo-
hanson and Tammelin, 2015) and Go (Silver, Huang, Maddison, Guez, Sifre et al., 2016; Silver,
Schrittwieser, Simonyan, Antonoglou, Huang et al., 2017b). For such tasks, machine learning
programs are able to produce creative solutions through a combination of three properties:
(1) computational speed, (2) precise constraint satisfaction abilities, and (3) clever learning
algorithms. By taking advantage of these three properties and applying the properties to the
development of behaviour models, we gain the ability to develop (1) behaviour models at a higher
pace, and (2) models with more variation in the behaviour than is currently possible. As a result,
the use of machine learning programs to develop behaviour models has the potential to lift the
two consequences that the current behaviour modelling process has on training effectiveness.

However, before we apply machine learning to air combat simulations, it is essential to
consider the domain of air combat. The domain of air combat is complex, and machine learning
methods that operate within this domain must be suited to the challenges posed by the domain.
Below, we list five challenges that emerge when generating behaviour models for use in air
combat simulations (Subsection 1.2.1). Next, because air combat is a broad concept, we establish
the scope of the thesis (Subsection 1.2.2).

1.2.1 Challenges

Below, we identify and describe five challenges: (a) producing teamwork, (B) computationally
evaluating cGF behaviour, (c) efficient reuse of acquired knowledge, (D) validating generated
behaviour models, and (E) generating accessible behaviour models. The five challenges are not
unique to the air combat domain. However, the challenges require solutions that will fit to the

domain.

Challenge A: Producing team coordination. Nowadays, the smallest unit that carries out air
combat missions consists of two. Flying in pairs has major advantages over flying alone,
such as (1) improved situational awareness, and (2) the ability for one teammate to apply
offensive pressure on opponents while the other teammate is forced to make defensive
manoeuvres (cf. Shaw, 1985; Stillion, 2015). The challenge is to make optimal use of these
advantages in simulations. It requires a form of coordination between the teammates.
Thus challenge a is to let the machine learning method also generate the required team
coordination between the cGFs that use the models.

Challenge B: Computationally evaluating cGr behaviour. Machine learning methods require
the ability to evaluate the behaviour produced by the behaviour models they generate. In
reinforcement learning, which is the family of machine learning methods that we focus
on in this thesis (see Chapter 2), the evaluation is performed computationally by the
reward function. The reward function is named so because it rewards cGrs for good
behaviour, with the intent to stimulate that behaviour (viz. produce better behaviour

6 1.2 Generating air combat behaviour models

models). However, the evaluation of air combat behaviour suffers from two issues. First,
the concept of good air combat behaviour remains ill-defined. Second, non-deterministic
factors influence the success of the behaviour of air combat cGrs. We expand on these two
issues in Chapter 4. Reward functions that are used in the air combat domain therefore
must take into account the two issues in order to stimulate good behaviour with rewards.
Thus challenge B is the computational evaluation of the behaviour displayed by air combat
cGFs, with the goal of improving the behaviour models generated for these cGFs.

Challenge c: Efficient reuse of acquired knowledge. During the automated generation and
testing of behaviour models for a cGF, the machine learning method learns which actions
of the cGF are effective in which situations. Therefore, it can be said that the machine
learning method acquires and stores knowledge about air combat. It is imaginable that
some of this knowledge will be applicable to multiple scenarios in which the cGr may be
active. Reuse of air combat knowledge will save computational resources in the search for
effective behaviour models for the cGF across different scenarios. Challenge c is enabling
the machine learning method used to generate behaviour models to efficiently reuse air
combat knowledge that has been acquired previously.

Challenge p: Validating generated behaviour models. Just like behaviour models that are
manually developed by professionals, behaviour models that are generated by a machine
learning method have to be validated. Validation of behaviour models ensures that the
behaviour models are fit for their intended purpose. Challenge b is validating behaviour
models that have been generated by means of machine learning, to prove that the models

are fit for use in training simulations.

Challenge E: Generating accessible behaviour models. The creative capabilities that machine
learning methods possess have a drawback. In brief, the solutions created by these methods
may become too clever, and take on forms that are too difficult for humans to comprehend
and validate. This is especially problematic for cGr behaviour models, as these models must
represent the behaviour of real-world forces at all times. Furthermore, the professionals
may wish to inspect and revise behaviour models that have been generated, e.g., in order
to slightly adjust the model to better support a learning objective. These professionals
are only able to do so if the generated models are constructed in a way that is easily
understandable (see, e.g., Luotsinen, Kamrani, Hammar, Jindel and Lgvlid, 2016). For this
reason, challenge E is generating accessible behaviour models by means of machine learning.
We define this accessibility as follows.

Introduction 7

Definition 1.2 (Accessible behaviour model). A behaviour model is accessible if it is directly
interpretable by the professionals (i.e., training instructors, subject matter experts, and
programmers) who develop and apply the model.”

On various occasions, research has already specifically been focused on the use of machine
learning to generate air combat behaviour models. However, as we will show in Chapter
2, the machine learning methods that have been used so far have produced inaccessible
behaviour models. In Chapter 2, we will review a machine learning method called dynamic
scripting, that was introduced in the previous decade (Spronck, Ponsen, Sprinkhuizen-
Kuyper and Postma, 2006). Dynamic scripting was designed to directly address the issue
of accessibility as we have described it here. We will investigate dynamic scripting’s
applicability to air combat simulations.

1.2.2 Scope of the thesis

Both air combat and training simulations are complex domains. It means that in our research we
will not take the full domains into account. Below, we restrict the scope of this thesis regarding
three areas: (1) the mode of air combat that we study, (2) the specific type of training simulations
that we consider, and (3) the width of our view on training simulations.

First, air combat is often divided into two modes (Shaw, 1985). Mode (a) is within-visual-
range (WVR) air combat, also known as dog-fighting. In a wvRr air combat situation, the opposing
aircraft engage each other in the visual arena using on-board cannons and short-range missiles.
Mode (b) is beyond-visual-range (BVR) air combat. In BVR air combat, opposing aircraft engage
each other using medium-range to long-range missiles, while sensing each other using radar
and other instruments. Simulations of the two modes of combat require cGrs with different
behaviour. Today, the majority of air combat engagements are BVR engagements (Stillion, 2015;
Floyd, Karneeb, Moore and Aha, 2017). For this reason, we restrict the scope of this thesis to BvR
engagements, i.e., mode (b).

Second, because our main goal is generating behaviour models for use in air combat training
simulations, we specify the particular type of training simulations that we consider in our research.
The cGFs that use the generated behaviour models will need to support the learning objectives
of this type of training simulations. In this thesis, we restrict ourselves to tactical training at the
unit (squadron) level. In tactical training, the objective of the trainees is to defeat all opposing
cGFs. The cGFs in tactical training simulations require behaviour models that are capable of
handling the most common elements of air combat (e.g., acquiring and pursuing targets, firing
missiles, and evading incoming missiles).

Third, training simulations are highly complex systems. The study of training simulations
lies at the crossroads of multiple fields of research, e.g., knowledge representation, instructional

*Doyle and Portrey (2014) take the definition of accessibility a step further, and pose that the behaviour produced by
the models should be “transparent to users not involved in the core modeling process.”

8 1.3 Problem statement and research questions

theory, human factors, interaction design, competency development, and the modelling of
systems, organisations, and behaviours. There are many interactions between these fields. For
instance, (a) the development of competencies by the trainees depends on the interaction with
the cGFs, (b) the interaction of trainees with cGrs depends on the behaviour models of the
CGFs, (c) the behaviour models of the cGFs depend on the modelling technique, knowledge
representation, and so on. To study such a chain of interactions as a whole is a complex task
that is to be considered intractable with the current means of research and the time allotted
to our research project. Therefore, in the thesis, we restrict ourselves to modelling air combat
behaviours (see Chapters 3 to 5) and evaluating the perception of the modelled behaviours by
training specialists (see Chapters 6 and 7).

1.3 Problem statement and research questions

The two consequences that the current behaviour modelling process has for training effectiveness
(Section 1.1), and the prospect of automatic and fast generation of varied behaviour models

(Section 1.2) lead us to the following problem statement.

Problem statement: To what extent can we use dynamic scripting to generate air combat behaviour
models for use in training simulations, in such a way that the five challenges of generating air combat

behaviour models are met?

The use of dynamic scripting would bring us underway to meet challenge E. However,
challenges A-p remain to be met. Below, five research questions are formulated based on the
remaining challenges. In combination, the answers to the five research questions form the answer
to the problem statement.

Meeting the first challenge requires investigating the possibility of using dynamic scripting
to generate behaviour models that (1) take into account the presence of teammates, and (2) are
able to coordinate their observations and actions with these teammates in some manner. This
leads us to the first research question.

Research question 1: To what extent can we generate air combat behaviour models that produce
team coordination?

Dynamic scripting uses a reward function to evaluate the behaviour displayed by the air
combat cGFs that use the generated behaviour models. The rewards produced by the reward
function are used to adjust newly generated behaviour models in the search for an optimal model.
As mentioned (see challenge B), the evaluation of air combat behaviour suffers from two issues.
In the literature, these two issues are known as sparse rewards and unstable rewards, respectively
(see Chapter 4). Still, reward functions for air combat behaviour that have been presented in
the literature do not always take these two issues into account. However, doing so might lead to

Introduction 9

behaviour models that produce a more desirable behaviour. This leads us to the second research
question.

Research question 2: To what extent can we improve the reward function for air combat cGrs?

Dynamic scripting stores the knowledge that a cGF builds throughout the cGF’s learning
process in the form of weight values that are attached to the rules in the rulebase. The weight
value of each rule indicates the rule’s importance relative to the other rules in the rulebase. In
terms of reuse, it may be possible that the knowledge that is built in one air combat scenario,
may also be applied effectively in another air combat scenario. We place the reuse of knowledge
in the context of transfer learning, i.e., letting a cGF learn in one scenario, and then transferring

its knowledge to a cGF in a new, unseen scenario. This leads us to the third research question.

Research question 3: To what extent can knowledge built with dynamic scripting be transferred
successfully between cgrs in different scenarios?

We aim for the generated behaviour models to be used in training simulations. Validating
the models is an important step in achieving a productive use of the models. The importance of
validation is illustrated by Step 4 in the behaviour modelling process. However, since there is no
one-size-fits-all solution to the validation of behaviour models, we first have to determine the

proper way to do so. This leads us to the fourth research question.

Research question 4: How should we validate machine-generated air combat behaviour models for

use in training simulations?

The answer to research question 4 is a validation procedure. By means of the procedure, we
are able to determine the validity of the behaviour models that we generate in our research. The
chosen research approach leads us to the fifth research question.

Research question 5: To what extent are air combat behaviour models generated by means of

dynamic scripting valid for use in training simulations?

Answering these five research questions will allow us to answer the problem statement. The
next section describes the methods that will be used in our research to answer the five research
questions.

1.4 Research methodology

In our research, we use four methods to answer the research questions: (1) literature review, (2)
automated simulations, (3) questionnaires, and (4) human-in-the-loop simulations. We describe
the four methods briefly below.

10 1.4 Research methodology

Literature review. We review scientific articles, books, and technical reports that are related to
(1) air combat training simulations (see Section 1.1), (2) the use of machine learning in
these simulations (Chapter 2), and (3) the five research questions (Chapters 3-7).

Automated simulations. By automated simulations we mean software simulations in which
one team of CGFs engages another team of cGFs in air combat encounters. In this case,
both teams of cGFs employ behaviour models for their behaviour. Because such simulations
are implemented purely in software, they have the advantages of (a) being able to run
faster than real-time and (b) not being dependent on the presence of human participants.

Questionnaires. While reward functions are capable of evaluating the behaviour of a cGF to
a certain extent, the final word on the desirability of a cGF’s behaviour comes from the
training specialist. In the end, it is the training specialist who has to use the cGF in training
simulations. Measuring the desirability of a cGF’s behaviour is therefore an essential part
in the validation of behaviour models. We will develop a novel questionnaire, which we
call the Assessment Tool for Air Combat cGFs (aTacc). The ATacc aims to capture the
opinions of training specialists observing the behaviour of air combat cGFs, in such a way

that we are able to draw conclusions on the desirability of the behaviour.

Human-in-the-loop simulations. By human-in-the-loop simulations we mean simulations in
which a team of cGFs using behaviour models engages a team of cGFs controlled by human
participants. Training simulations are a prime example of human-in-the-loop simulations.
In human-in-the-loop simulations, we are able to observe (1) the behaviour of human pilots,
when confronted with cGFs using generated behaviour models, and (2) the behaviour of
cGFs using generated behaviour models, when confronted with human pilots.

Below, we briefly describe where we apply the four methods. Table 1.1 gives a summary of
the use of the four methods to answer the research questions.

Table 1.1 Research methods used to answer the research questions (RQs).

Method RQ1 RQ2 RQ3 RQ4 RQS5
Literature review v v v v Y
Automated simulations v v N
Questionnaires N
Human-in-the-loop simulations N

The literature review is used to answer research questions 1, 2, 3, 4, and 5. Furthermore, we
use two simulators for our research: (1) the Lightweight Air Combat Simulator (Lwacs) (see
Appendix A) and (2) the Netherlands Aerospace Centre NLR’s Fighter 4-Ship simulator (see
Appendix D). Automated simulations in Lightweight Air Combat Simulator (Lwacs) are used
to answer research questions 1, 2, and 3. Furthermore, we present the atacc in Chapter 6. The

Introduction 11

ATAcC is developed as part of the answer to research question 4, and is then used to answer
research question 5. Additionally, both (1) automated simulations and (2) human-in-the-loop
simulations in the Fighter 4-Ship are used to answer research question 5.

1.5 Structure of the thesis

This thesis contains eight chapters. Table 1.2 shows which chapters will answer the respective

research questions.

Table 1.2 Answering the problem statement (ps) and the research questions (RQs) per
chapter.

Chapter PS RQ1 RQ2 RQ3 RQ4 RQS5

1 ~ ~ ~ ~ ~ ~
2 ~ ~ ~ ~ ~ ~
3 N

4 v

5 v

6 v o~
7 N
8 Vv v Vv Vv v VY

~ contributes to answer, v’ answers

In Chapter 1 we introduce our problem statement and five research questions. Furthermore,
the research methodology by which the research questions are addressed is presented.

In Chapter 2, we provide background information from the literature (see also Section 1.1) on
four topics: (1) details of the steps in the behaviour modelling process, (2) the potential benefits
and drawbacks of the use of machine learning in training simulations, (3) past approaches to
using machine learning for generating air combat behaviour models, and (4) dynamic scripting
and its applicability to air combat simulations.

In Chapter 3, we introduce three methods for team coordination: (1) TacIT, (2) CENT, and
(3) DECENT. We investigate how beneficial the team coordination methods are by means of an
experiment, and then answer research question 1.

In Chapter 4, we zoom in on a specific part of the dynamic scripting process, viz. the reward
function. We show how the use of three distinct reward functions influences the behaviour of our
cGFs, and then answer research question 2.

In Chapter 5, we investigate to what extent the knowledge that is built by a cGF in some air
combat scenario can be transferred successfully to a cGF in a different air combat scenario, and
then answer research question 3.

In Chapter 6, we design a validation procedure by which behaviour models that are generated
for air combat cGFs may be validated. Furthermore, we present the ATacc, and then answer
research question 4.

12 1.5 Structure of the thesis

In Chapter 7, we apply our validation procedure to newly generated behaviour models in the
Fighter 4-Ship simulator, and then answer research question 5.

In Chapter 8, we conclude the thesis by providing a summary of the answers to the five
research questions. Finally, based on these answers, we formulate the answer to the problem

statement. Thereafter we present two recommendations for future work.

2 Foundations

In this chapter, we will discuss four topics that are related to our research. First, we will have a
detailed look at the steps of the behaviour modelling process (Section 2.1). Second, we will discuss
the potential benefits and drawbacks of the use of machine learning on training simulations
(Section 2.2). Third, we will describe the three categories of machine learning tasks (Section 2.3).
Furthermore, we will take a closer look at reinforcement learning, and the dynamic scripting
technique. Fourth, we will give an overview of past research on generating air combat beha-
viour with machine learning (Section 2.4). Finally, we will conclude the chapter by a summary
(Section 2.5).

2.1 The steps in the behaviour modelling process

In this section, we describe the four steps of the behaviour modelling process in detail. The four
steps were briefly mentioned in Chapter 1 (see Figure 1.1). The description of the steps below
serves to create a better understanding of (1) how modern behaviour models are created, (2) the
dependencies in the process that lead to the obstacles (see Subsection 1.1.1), and (3) the context
in which a machine learning solution for behaviour generation would operate.

Step 1. The training specialist identifies training needs, resulting in a collection of learning
objectives (cf. Stacy and Freeman, 2016). To help trainees reach these learning objectives
in the simulator, the training specialist requires a cGF with certain behaviour to interact
with the trainees. The training specialist writes a behaviour specification containing the
required behaviour. As a case in point, consider a training specialist who has set a learning
objective for successfully evading long-range missiles. For this learning objective, the
training specialist requires a cGF that fires long-range missiles, and therefore writes

“long-range missile firing behaviour” in the behaviour specification.

Step 2. The subject matter expert refines the behaviour specification that was written by the
training specialist. The subject matter expert knows the behaviour of the real world forces
represented by the cGF, such as (1) the technical capabilities of the cGF’s aircraft, and (2)

14 2.1 The steps in the behaviour modelling process

the principal strategies and tactics of the represented real world forces (see, e.g., Lgvlid,
Alstad, Mevassvik, De Reus, Henderson et al., 2013). Returning to the example from Step
1, the subject matter expert refines the behaviour specification by, e.g., (1) defining the
specific type of missile that the cGF should fire, and (2) adding any manoeuvres that the
cGF should make before and after firing.

Step 3. The programmer takes the refined behaviour specification and implements the spe-
cification as a computer model. We call the resulting program the behaviour model. The
behaviour model commonly takes one of three executable forms: (1) the form of a script (cf.
Abdellaoui, Taylor and Parkinson, 2009; Toubman, Roessingh, Van Oijen, Hou, Luotsinen
et al., 2016a), (2) a finite-state machine (cf. Fu, Houlette and Jensen, 2003; Coman and
Mufioz-Avila, 2013), or (3) a behaviour tree (cf Khatami, Huibers and Roessingh, 2013;
Marzinotto, Colledanchise, Smith and Ogren, 2014; Zhang, Sun, Jiao and Yin, 2017). When
loaded in a simulator, the behaviour model governs the behaviour of the cGF. In other
words, the behaviour model selects and implements the cGF’s actions, based on the obser-
vations that the cGF makes in the simulator. However, simulators usually only provide cGFs
with a limited set of possible observations and actions. It is the programmer’s responsibility
to interpret the behaviour specification, and then to accurately translate the specified
behaviour into an executable form using the possible observations and actions as provided
by the simulator. For example, consider (1) a behaviour specification that calls for a cGF
that patrols a section of the airspace, and (2) a simulator that only provides actions by
which a cGF can set its own altitude and heading. In this example, the programmer has
to interpret the specified patrol and translate it to the correct sequence of altitude and

heading settings.

Step 4. The professionals work together to validate the behaviour model. Multiple methods exist
for validating behaviour models, each method with its own advantages and disadvantages
(cf. Petty, 2010; Birta and Arbez, 2013). Validating the behaviour models commonly involves
testing and reviewing the behaviour produced by the behaviour models, when used by cGrs.
Each of the three professionals validates the behaviour model from their own viewpoint:
(1) the training specialist determines whether the behaviour model can be adequately
used to help trainees reach their learning objectives, (2) the subject matter expert decides
whether the displayed behaviour matches the behaviour of real-life forces, and (3) the
programmer establishes whether his' interpretation of the behaviour specification was
correct with help from the training specialist and the subject matter expert. Finally, the
professionals work out and implement improvements to the behaviour model. After any
improvements have been implemented, the behaviour model is ready to be used by a cGr

in a training simulation.

For brevity, we use “he” and “his” whenever “he or she” and “his or her” are meant.

Foundations 15

2.2 Machine learning in training simulations:
potential benefits and drawbacks

Because machine learning is a powerful technology, it is important to carefully consider the
impact it has on each application domain. In this section, we look at the possible impact of the use
of machine learning on training simulations in terms of the potential benefits (Subsection 2.2.1)
and the potential drawbacks (Subsection 2.2.2). Note that we purposefully do so before we
describe machine learning itself (see Section 2.3). It enables us to confine the description to
details necessary for a good understanding of our research.

2.2.1 Potential benefits

Below, we identify three potential benefits that appear when using machine learning to generate
air combat behaviour models. They are: (1) faster development of behaviour models, (2) detection
of patterns, and (3) online behaviour adaptation.

The first potential benefit is faster development of behaviour models (cf. Doyle, Watz and Portrey,
2015; Oswalt and Cooley, 2019). Computers excel at (1) storing and retrieving knowledge, and (2)
calculation. Therefore, given (1) a database that stores the knowledge of a subject matter expert,
and (2) a suitable machine learning algorithm, a computer may be able to automatically generate a
correct behaviour model based on a behaviour specification (Stytz and Banks, 2003b). Automating
the behaviour development process makes the process less dependent on the availability of two
of the required professionals, i.e., the subject matter expert and the programmer. Furthermore,
the ability to develop behaviour models at high speed enables the training specialist to support
learning objectives with multiple and varied behaviour models.

The second potential benefit is the detection of patterns in behaviour. Faster development
of behaviour models enables training specialists to see how trainees react to cGFs that behave
in varying manners. Large data sets of these reactions allow for computer programs by which
training specialists can detect patterns in the behaviour of trainees (e.g., areas of improvement
for the trainees), and then adjust the current learning objectives to the needs of the trainees (cf.
Mittal, Doyle and Watz, 2013; Sottilare, 2013; Ososky, Sottilare, Brawner, Long and Graesser, 2015;
Oswalt and Cooley, 2019). Using data sets to improve training as described above is known as
educational data mining, adaptive tutoring, and adaptive training (cf. Pefia-Ayala, 2014; Goldberg,
Davis, Riley and Boyce, 2017). Furthermore, large data sets of behaviour in simulations allow
searching for exploitable patterns in the tactics that are taught to trainees, by the use of machine
learning and big data techniques. This practice is known as computational red teaming (cf.
Abbass, Bender, Gaidow and Whitbread, 2011; Wang, Shafi, Ng, Lokan and Abbass, 2017).

The third potential benefit is online behaviour adaptation. With faster development of beha-
viour models, it becomes possible for a computer to change the behaviour of cGrs while a training
simulation is taking place (viz. online) (cf. Olde and DiCola, 2014; Oswalt and Cooley, 2019).

16 2.2 Potential benefits and drawbacks

By adapting the behaviour of a cGF to the behaviour of the trainee in the training simulation,
the cGrF is able to continuously challenge the trainee (Lopes and Bidarra, 2011). A similar use of
machine learning is being investigated in the field of video games (i.e., tuning the behaviour of
non-player characters to the player, while the player is playing the video game) (cf. Yannakakis
and Togelius, 2014), a field that is strongly tied to the field of military simulations (Smith, 2010).

In our research we will focus on materialising the first potential benefit. It will give a sufficient
insight into the impact of machine learning on training simulations.

2.2.2 Potential drawbacks

Already in 2003, Petty (2003) identified the potential drawbacks of using automatically generated
behaviour models in simulations for training, analysis, and experimentation purposes. Below,
we summarise Petty’s work into what we consider to be the two main drawbacks for training
simulations, namely (1) the emergence of unrealistic behaviour, and (2) the resulting loss of
training control.

Petty (2003) warns against the use of machine learning programs with the goal of automatic-
ally generating behaviour models for use in training simulations, as the models may produce
unrealistic behaviour. The behaviour of a cGF that represents a particular force (e.g., a specific
military branch of a specific nation) should accurately follow the doctrine of that force, in order
to be perceived as realistic (cf. Doyle and Portrey, 2014; Bolton, Tucker, Priest, McLean, Beaubien
et al., 2016). The doctrine of a military force is a “guide to action”, viz. a handbook for conducting
operations that describes how and when the different capabilities of the military should be put to
use (see, e.g., Paparone, 2017). Petty uses the term doctrinal behaviour to refer to the behaviour
of cGFs that appear to follow their doctrine.

If a cGF falils to follow its doctrine, but the cGr still acts as though it could be operated by a
human, then the cGF exhibits what Petty (2003) calls non-doctrinal behaviour. Such behaviour
may be the result of a machine learning program that is trying to optimise behaviour models
regarding some constraints. Although non-doctrinal behaviour may be physically realistic, real-
world forces are unlikely to display such behaviour. In extreme cases, the behaviour of the cGF
may surpass the capabilities of a human operator and become non-human behaviour. An example
of non-human behaviour is the display of inhumanly fast reaction times to threats.

The emergence of unrealistic behaviour (in the form of either non-doctrinal behaviour, or
non-human behaviour) may lead to a loss of training control. As a machine learning program
changes the behaviour of cgrs away from doctrinal behaviour, it becomes possible that the cGFs
no longer support the training goals that the training specialist has set for a particular simulation.
Thus, new tools are required to keep the creative power of machine learning techniques under a
permanent check (cf. Shaffer, Ruis and Graesser, 2015; Wray, Woods, Haley and Folsom-Kovarik,
2017). In our research, we aim to mitigate the potential loss of training control by the development
of a proper validation method for generated behaviour models (see Chapters 6 and 7).

Foundations 17

2.3 Machine learning

So far, we have mentioned machine learning without explaining its details. In this section, we
introduce the three categories of machine learning tasks (Subsection 2.3.1). Next, we take a
detailed look at reinforcement learning, one of the categories (Subsection 2.3.2). Finally, we

discuss dynamic scripting, a reinforcement technique (Subsection 2.3.3).

2.3.1 The three categories of machine learning tasks

Machine learning tasks are commonly split up into three categories: (1) supervised learning, (2)
unsupervised learning, and (3) reinforcement learning (cf. Bishop, 2006; Alpaydin, 2010; Jordan
and Mitchell, 2015). We briefly describe the three categories of machine learning tasks below.
Here, we separate the tasks from the specific techniques that are used to perform the tasks. For
instance, neural networks and deep learning techniques can be used to perform tasks in each of

the three categories.

Category 1: Supervised learning tasks. Supervised learning tasks are tasks in which the com-
puter has to learn a function that maps the inputs to the desired outputs. To learn this
function, the computer receives a data set containing the function’s inputs and desired
outputs. The classification of data (for instance, credit card fraud detection) is an example
of a supervised learning task (see, e.g., Dal Pozzolo et al., 2014). The computer is provided
with a data set containing credit card transactions that are labelled by human experts as
fraudulent or regular, and then learns a function to identify fraudulent transactions. When
the computer is given new transactions, it can detect fraudulent transactions using the

function it has learnt.

Category 2: Unsupervised learning tasks. Unsupervised learning tasks are tasks in which the
computer has to create automatically a model of the data it receives. In unsupervised
learning tasks, there is no desired output. Instead, it is the newly created model that is
the output of interest. The model captures the structure of the data in ways that human
experts may not have foreseen. An example of an unsupervised learning task is clustering.
Clustering is the grouping of data points. The computer learns a model of the most
important properties of the data points, and divides the data points into a number of
groups according to these properties. The groups capture a hidden structure in the data
that was given as input. Unsupervised learning tasks such as clustering are commonly part
of exploratory data analysis (see, e.g. Pefia-Ayala, 2014).

Category 3: Reinforcement learning tasks. Reinforcement learning tasks are tasks in which
an agent (e.g., a program or robot) that has to learn to act in some environment. The
environment provides rewards to the agent when the actions of the agent affect the
environment in some desirable way. In most reinforcement learning tasks, the environment

18 2.3 Machine learning

is dynamic. For example, each action performed by the agent changes the environment in
some way. As a result, (1) the future states of the environment, (2) the actions that are
possible in these future states, and (3) the rewards that are obtained because of these
possible actions all depend (at least partially) on the agent’s current actions. Therefore,
the computer can only learn which actions lead to the most rewards by actually interacting
with its environment. The desired result of reinforcement learning is a sequence of actions

that leads to the most rewards.

An example reinforcement learning task is learning to play the video game StarCraft IT
(Blizzard Entertainment, 2010). The goal of playing this game is to defeat the (virtual or
human) opponent. The actions of the agent are, for instance, (a) creating buildings and
troops, and (b) using troops to attack the buildings and troops of the opponent. It is up to
the agent to learn what to build and how to properly instruct the troops to make their

attacks (see, e.g., Lee, Tang, Zhang, Xu, Darrell et al., 2018).

Given the three categories of machine learning tasks, how should the task of generating air
combat behaviour be approached? An important consideration is the availability of data to learn
from. Real-world air combat data sets are difficult to obtain because of their military nature.
Furthermore, if such a data set were available, it is likely that it would not contain sufficient
examples for a machine to learn a generalised model of air combat behaviour from. Air combat
situations are subject to what is known as the curse of dimensionality (originally introduced by
Bellman, 1957; see also Roessingh, Rijken, Merk, Meiland, Huibers et al., 2011; Liu and Ma, 2017).
Air combat has so many variables (e.g., the number of participating aircraft, their positions,
headings, speeds) that it is unfeasible to enumerate and label all possible states. Additionally, the
labelling of air combat behaviour as desirable or not remains an open problem (see Chapter 7).

Simulation technology enables us to create an air combat data set on demand. By treating
the task of generating air combat behaviour models as a reinforcement learning task within a
simulation, the reinforcement learning agent is able to gradually explore the state space in the
search for desirable behaviour. We supply the agent with a simulated fighter jet and a restricted
set of actions that the agent can perform at any moment (e.g., changing heading or firing a
missile). This way, the agent’s creativity is not bound to a limited set of real-world examples
of behaviour, but still restricted to a particular set of actions that it can perform. In the next
subsection, we discuss reinforcement learning in detail.

2.3.2 Reinforcement learning

Reinforcement learning is “learning what to do — how to map situations to actions — so as to
maximize a numerical reward signal” (Sutton and Barto, 1998, chap. 1). Below, we briefly review
the most important concepts in reinforcement learning. We base our review on the works by
Sutton and Barto (1998), Heidrich-Meisner, Lauer, Igel and Riedmiller (2007), Alpaydin (2010),

Foundations 19

Grondman, Busoniu, Lopes and Babuska (2012) and Arulkumaran, Deisenroth, Brundage and
Bharath (2017).

actions

N

Agent | observations Environment
© rewards

A

Figure 2.1 The reinforcement learning loop.

Descriptions of reinforcement learning commonly start by showing the reinforcement learning
loop (see Figure 2.1). This loop shows the interaction between the agent and its environment.
The agent performs an action. This action has some effect on the state of the environment. The
environment provides a reward to the agent. Next, the agent observes the new state of the
environment, and selects a new action to perform.

The agent selects its actions by means of its policy (i.e., its action plan). The policy is equivalent
to what we so far have called the behaviour model. The agent learns by changing its policy in
such a way that it can expect to receive more rewards in the future. The changes to the policy
are guided by the rewards collected by the agent. However, the agent is never sure which specific
action has lead to the rewards that the agent receives, as the reward may be the result of an
earlier action. This is known as the credit assignment problem. The credit assignment problem is
especially present in tasks where the reward is only presented to the agent after a sequence of
actions (i.e., delayed rewards). Alpaydin (2010) summarises the use of rewards by noting that
the agent is not dealing with a teacher that shows the agent how to act (such as in supervised
learning), but rather with a critic that tells the agent how well it is doing. However, as Alpaydin
(2010, chap. 18) notes, “the feedback from the critic is scarce and when it comes, it comes late.”

The goal of collecting rewards presents a dilemma to the learning agent. Consider a game
with two possible actions, action a and action b. Earlier, the agent performed action a, and then
received a reward of +50. Therefore, action a is said to have a value of +50 to the agent. If the
agent has not yet tried action b, that action will have a value of 0. The state-action value is the
estimated reward the agent can expect to receive by performing that action in that state. The
function that estimates the state-action values is called the value function. The agent’s dilemma is
as follows: Should the agent exploit action a to continue receiving rewards, or should it explore
the use of action b, to see if action b leads to a higher reward than action a? Of course, by
performing action b the agent also risks receiving (1) a lower reward or (2) no reward at all.
Exploitation maximises the expected rewards in the short term, but exploration may yield more
rewards in the long term (Sutton and Barto, 1998). Reinforcement learning methods that only
allow the learning agent to exploit known action-values are called greedy methods. Alternatively,
the agent can be allowed to explore some of the time. With small probability €, the agent selects
an action at random, rather than selecting the action with the highest known state-action value.

20 2.3 Machine learning

Methods that allow exploration in this manner are called e-greedy methods.

Moreover, in reinforcement learning an important distinction is made between three classes
of techniques: (1) actor-only techniques, (2) critic-only techniques, and (3) actor-critic techniques.
Each class of techniques uses value functions and policies in different ways. We describe the
three classes of techniques below.

First, actor-only (also called policy-only) techniques learn without a value function. Instead,
they employ parametrised policies, and use any obtained rewards to follow a gradient descent
over the parameters towards more rewards. Because of the parametrised policies, actor-only
techniques are capable of learning policies in continuous action spaces. However, because of
the use of gradient descent, information from earlier interactions with the environment is not
retained (i.e., there is no real learning taking place).

Second, critic-only (also called value-only) techniques work by estimating the values of all
states. Afterwards, the value function is used to derive the policy that is estimated to lead to the
most reward. Critic-only methods learn optimal value functions, but the resulting policies are
not guaranteed to be optimal (Grondman et al., 2012).

Third, actor-critic techniques try to combine the best features of critic-only and actor-only
methods. In actor-critic techniques, the actor and the critic are modelled separately. Initially, the
actor performs its actions based on some random policy. The critic detects the rewards that are
received, and updates its value function. Next, the actor changes its policy based on the updated
value function. The estimates of the critic lower the variance in the actor’s policy updates. As a
result, the combination of a separate actor and critic has two advantages: (1) increased learning
speed and (2) good convergence properties compared to actor-only and critic-only techniques
(Grondman et al., 2012). However, the trade-off is that the critic’s estimates are inaccurate at the
beginning of the learning process, when the critic has not yet seen many states and their values.
Still, the two advantages have made actor-critic techniques popular in many domains.

In the last decade, an actor-critic reinforcement learning technique called dynamic scripting
was introduced (Spronck et al., 2006). Two properties set dynamic scripting apart from other
actor-critic techniques: (1) the behaviour models that it generates are accessible, and (2) by
letting domain experts specify all relevant state-action pairs, the dynamic scripting is capable of
counteracting the curse of dimensionality. In the next subsection, we further discuss the dynamic

scripting technique.

2.3.3 Dynamic scripting

Dynamic scripting is a reinforcement learning technique (Spronck et al., 2006). Originally,
dynamic scripting was designed as a behaviour generation technique for non-player characters in
video games. The design of dynamic scripting was motivated by a discontent with the machine
learning techniques that were available at the time (e.g., neural networks, evolutionary algorithms,
and Q-learning). Specifically, the available machine learning techniques failed to fulfil eight

Foundations 21

requirements that, according to Spronck et al. (2006, p. 219), were essential for maintaining the

entertainment quality of video games. The eight requirements are as follows.
Requirement 1: Speed. Techniques must be computationally fast.

Requirement 2: Effectiveness. Techniques must be effective and produce adequate behaviour

at all times.

Requirement 3: Robustness. Techniques must be robust against the inherent randomness in

video games.

Requirement 4: Efficiency. Techniques must be efficient in learning, since each encounter
between human players and non-player characters will most likely be different. Fur-

thermore, the encounters are sparse, meaning there are few learning opportunities.

Requirement 5: Clarity. The policies that are generated must be easily interpretable by experts
such as game developers.

Requirement 6: Variety. Techniques must be able to produce variety in the generated behaviour,
to keep the video games entertaining.

Requirement 7: Consistency. Techniques must produce adequate behaviour from a limited
number of learning opportunities with high consistency, independent of the behaviour of
the player.

Requirement 8: Scalability. The technique must be able to scale the difficulty level of the
generated behaviour to the skill level of the human player.

Of course, training simulations do not serve to provide entertainment. Still, there are three
parallels between training simulations and video games that make the eight requirements relevant
to training simulations as well. In both simulations and video games, a human participant (1)
controls some avatar of themselves in a (somewhat realistic) representation of the world, and
(2) encounters virtual agents that challenge the participant in some way. Furthermore, (3) the
participant aims to reach some measurable goal: either setting high scores and completing
levels (in video games), or honing and demonstrating his skills (in simulations). Therefore, it is
important to investigate dynamic scripting as a technique for generating behaviour models for
air combat cGFs.

Spronck et al. (2006) note that the key to fulfilling the eight requirements is the inclusion of
domain knowledge in the machine learning technique. For this reason, they made predefined
domain knowledge an integral part of dynamic scripting. Below, we review the workings of
dynamic scripting, including the use of domain knowledge in the learning process.

The principal unit of behaviour in dynamic scripting is the behaviour rule. The policies
generated by dynamic scripting are groups of behaviour rules. These groups are called scripts.
We define behaviour rules and scripts below.

22 2.3 Machine learning

Listing 2.1 Example behaviour rule.

observe(radar (opponent)) — act(turn(180));

Definition 2.1 (Behaviour rule). A behaviour rule is an if-then statement with an observation as

the condition of the statement, and an action as the consequence of the statement.
Definition 2.2 (Script). A script is a set of behaviour rules that is used as a policy.

A behaviour rule (henceforth: rule) directs an agent (e.g., a cGF) to behave in the following
manner: if the agent makes the observation stated in the condition, then the agent takes the
action stated in the consequence. Listing 2.1 shows an example behaviour rule. In Listing 2.1
and the remainder of the thesis, we use the two conventions for writing rules: (1) the condition
and the consequence of a rule are separated by the arrow symbol —, and (2) rules end with a
semicolon.

In normal words, the rule shown in Listing 2.1 means “if I observe the presence of an opponent
using my radar, I turn around 180 degrees.” Such a rule only constitutes a limited part of the
behaviour that may be desired from a cGF inside simulations. Of course, more rules are required
to provide behaviour that is applicable to other air combat situations. A script that only contains
the rule shown in Listing 2.1 will cause a cGF to react only to opponents on its radar. However,
other behaviour (e.g., offensive behaviour) may also be desired from the cGF.

The rules that dynamic scripting uses to form scripts are stored in a database called the
rulebase. We define the rulebase below.

Definition 2.3 (Rulebase). A rulebase is a database with (1) rules and (2) weight values associated
to the rules.

The weight value (henceforth: weight) of each rule is akin to the state-action values that
were mentioned previously (see Subsection 2.3.2). The weights of the rules in the rule base
indicate the contribution of each rule towards desirable behaviour. Based on the rewards from
the environment, dynamic scripting updates the weights of the rules that were used to obtain the
rewards. Furthermore, the weight of each rule influences the probability that a rule is selected,
whenever dynamic scripting generates a new script. This way, dynamic scripting learns which
rules provide the behaviour that leads to the most rewards.

Additionally, each rule has an associated priority value. When two or more rules fire at the
same time (e.g., because they have equal or logically overlapping conditions), the priority value
is used to determine which rule takes precedence over the other rules. This way, it can be ensured
that only the actions from one rule are executed.

The dynamic scripting learning process consists of three steps: (1) rule selection, (2) control,

Foundations 23

Step 3. Weight updates
Rule base

Step 1. Rule selection

Script

Step 2. Control

External
(eg.
human)
control

Control

Simulation l'
Red CGF Blue CGF

Figure 2.2 The three steps of the dynamic scripting learning process. Adapted from
(Spronck, Ponsen, Sprinkhuizen-Kuyper and Postma, 2006).

and (3) weight updates, as shown in Figure 2.2. Below, we describe the three steps of the learning
process.

First, dynamic scripting selects n rules from the rulebase. The selected rules form a script.
The number of rules per script n depends on the domain (e.g., the number of possible states and
actions, and how the states and actions are used in the rules). Therefore, n must be carefully
chosen by a domain expert. The rules are selected from the rulebase based on their weights, by
means of repeated roulette wheel selection. In roulette wheel selection, the probability of selecting
a rule is equal to that rule’s weight, divided by the sum of all weights in the rulebase.

Second, the script is used to control the behaviour of some agent in its environment. Here, we
consider the case of a cGF that inhabits an air combat simulation. The cGF continuously observes
its environment using its sensors (see Appendix A). The script checks whether the observations of
the cGF match the conditions of one or more rules. Whenever the condition of a rule matches the
observations of the cGF, the rule is said to fire, and the cGF performs the action that is defined
by the rule.

Third, the behaviour of the cGr leads to updates of the weights in the rulebase. The weights
are updated by means of two functions: (1) a fitness function, and (2) a weight adjustment
function. The fitness function evaluates the behaviour that the cGr has displayed, and awards
a fitness value (viz. a reward) to the cGF. In other words, the fitness function defines what
behaviour is desirable (see Chapter 4). For example, the cGF might receive a fitness value of +1
if it completes some task, and a fitness value of —1 if it does not. The weight adjustment function
takes the fitness value of the cGF, and then uses it to calculate the necessary adjustments to the

24 2.3 Machine learning

weights in the rulebase. Two mechanisms regulate the weight updates. These mechanisms are
(1) restricting the growth of the weights in the rulebase, and (2) keeping the total sum of the
weights in the rulebase constant. The growth of the weights is restricted by keeping each weight
in the range [W,nin, Wiax l, Wwhere Wy, and W, . are the minimum and maximum weights,
respectively. Additionally, when the weights of certain rules must increase, they do so at the cost
of the weights of the other rules in the rulebase (and vice versa). The constant redistribution of
weights (1) allows the weights to converge to a set of well-performing (i.e., high-weight) rules,
yet also (2) enables dynamic scripting to rapidly adapt to new situations. When a well-performing
rule suddenly ceases to perform well, the weight that is taken from it is redistributed to other
rules, thereby immediately increasing the probability that those other rules are selected for a
new script.

An important feature that makes dynamic scripting stand out from other reinforcement
learning techniques is the use of rules, and in particular, the origin of the rules. Spronck et al.
intended for the rules in the rulebase to be manually written, based on domain knowledge. This
way, the domain expert can define rules that make sense regarding the domain knowledge, and
then let the dynamic scripting algorithm discover the combinations of rules (i.e., the scripts) that
lead to the most desirable behaviour. On the nature of the rules, Spronck et al. (2006, p. 221)
note that “it is imperative that the majority of the rules in the rulebase define effective, or at

least sensible, agent behaviour.”

The use of manually written rules can be viewed as both a drawback and an advantage.
On one hand, writing the rules requires costly domain knowledge and human labour. On the
other hand, rules only have to be written one time for each class of agent (e.g., cGFs that model
a particular combination of pilot and fighter jet). Once the rules are stored in the rulebase,
the rules can be used by each agent of that class. Furthermore, the rules are not edited by the
dynamic scripting algorithm, and therefore remain accessible to the human professionals. Since
the introduction of dynamic scripting, various methods have been introduced that automatically
write behaviour rules (see, e.g., Thawonmas and Osaka, 2006; Ponsen, Spronck, Mufioz-Avila
and Aha, 2007; Kanetsuki, Thawonmas and Nakata, 2015). While these methods have shown the
capacity to generate effective rules (i.e., rules that lead to desirable behaviour), they also threaten

the control that the professionals need to have over the resulting behaviour (see Subsection 2.2.2).

The combination of (1) rules and (2) domain knowledge makes dynamic scripting a versatile
machine learning method. This versatility is shown by the diversity in the applications that can
be found in the literature (see Table 2.1). Dynamic scripting has been used in multiple video game
genres, each with distinctive features (e.g., real-time/turn-based, continuous moves/discrete
moves, control of one or more agents). The demonstrated versatility of dynamic scripting provides
a solid foundation for application in the air combat domain.

Foundations 25

Table 2.1 A selection of dynamic scripting applications from the literature.

Application Sources

Business simulation games Bijlsma (2014)

Fighting games Thawonmas and Osaka (2006), Kanetsuki, Thawonmas and Nakata (2015)
and Majchrzak, Quadflieg and Rudolph (2015)

First-person shooter games Policarpo, Urbano and Loureiro (2010)
Platform games Ortega, Shaker, Togelius and Yannakakis (2013)

Real-time strategy games Ponsen, Mufioz-Avila, Spronck and Aha (2005) and Dahlbom and Niklasson
(2006)

Role-playing games Spronck, Ponsen, Sprinkhuizen-Kuyper and Postma (2006), Timuri, Spronck
and Van den Herik (2007) and Ludwig and Farley (2008)

Turn-based strategy games Santoso and Supriana (2014)

2.4 Past approaches to generating air combat
behaviour

The high stakes involved in air operations have invited multiple generations of computer scientists
to support the training of fighter pilots by means of innovative machine learning programs.
Furthermore, the complexity of the air combat domain (including the behaviour required of air
combat cGFs), makes it an interesting application domain for machine learning algorithms. So
far, past approaches to the generation of behaviour models for air combat cGFs has focused on
neural networks (Subsection 2.4.1) and evolutionary algorithms (Subsection 2.4.2). Despite the
continued interest in air combat behaviour modelling, we are unaware of any standardised tests
or benchmarks for the performance of behaviour models for cgrs. The nearest example of such a
test is a recent competition (Defense Advanced Research Projects Agency (DARPA), 2019) aimed
at the creation of behaviour models for wvr air combat. Therefore, it remains difficult to assess
the impact of each individual study performed in the air combat domain.

2.4.1 Neural networks

Neural networks have been applied in various forms to the generation of air combat behaviour.
The strength of neural networks is the ability to emulate complex functions by learning from
examples. Four of their weaknesses are (1) the need for long training phases, (2) the tendency to
strongly converge toward a single solution, (3) trained neural networks are difficult to understand

26 2.4 Past approaches to generating air combat behaviour

and reason about, and (4) trained networks are practically impossible to manually edit. In other
words, neural networks are powerful yet inaccessible. On multiple occasions, researchers have
explored the potential of neural networks in the air combat domain. Below, we discuss four
works that apply neural networks to air combat behaviour, viz. the works by (a) Rodin and Amin
(1992), (b) McMahon (1990), (c) Teng, Tan and Teow (2013), and (d) Liu and Ma (2017).

Early work with neural networks includes the use of a three-layer back-propagation network
by Rodin and Amin (1992) for predicting and countering within-visual-range tactical manoeuvres.
With a single hidden layer, Rodin and Amin’s network could not “satisfactorily distinguish” a
set of simple one-versus-one manoeuvres from two-versus-one manoeuvres. Extensive testing
of different architectures of the network resulted in a network with two hidden layers. This
research exposes the third weakness of neural networks, which is the difficulty of reasoning
about its construction. So far, trial and error has been the best way of finding optimal networks.
Furthermore, Rodin and Amin report “successfully training” their network after 60,000 iterations.

Second, McMahon (1990) trained a neural network to recognise within-visual-range situations
and choose appropriate manoeuvres. The neural network learned from examples. After 17,500
iterations, the network had learned to classify 36 out of 38 situations correctly. The network’s
classification capability was compared to that of a rule-based system containing expert knowledge.
McMahon found that the neural network was able to classify situations correctly 2.5 times more
often than the rule-based system. The high rate of correct classification was attributed to the
generalising capability of neural networks. The capability to generalise enables neural networks
to classify situations with noisy or incomplete data. Such situations are hard to classify for
rule-based systems, unless the ability to deal with noisy or incomplete data is explicitly coded
from the knowledge that is elicited from experts. Recently, research into new methods for the
classification of air combat situations has been continued by Alford, Borck, Karneeb and Aha
(2015).

Third, Teng et al. (2013) applied self-organising neural networks with a Q-learning component
for online generation of within-visual-range behaviour. The resulting behaviour models were
evaluated in small-scale human-in-the-loop experiments. The learning network was able to
reach a 93% mean win rate after 120 episodes against a cGF with a fixed behaviour model.
Furthermore, the network peaked at a 40% win rate against pilots in training, and below 10%
against experienced pilots. Teng, Tan, Ong and Lee (2012) report using available air combat
doctrine for building the state- and action-space for the Q-learning component by encoding
expert knowledge as if-then rules.

Fourth, Liu and Ma (2017) applied deep reinforcement learning to generate air combat
behaviour for an air combat agent. Deep reinforcement learning is a machine learning technique
that combines (1) deep neural networks and (2) reinforcement learning. Deep neural networks
are a class of neural networks that employ many layers of neurons (hence the term “deep”). The
use of many layers allows the networks to not only learn (1) a mapping between input and output
data, but also (2) their own feature detectors, by which the networks can adapt themselves to

Foundations 27

the most important features in the input data. The combination of a deep neural network with
a reinforcement learning technique, such as Q-learning, results in a form of machine learning
that is known as deep reinforcement learning. In deep reinforcement learning, the deep neural
network is used to approximate the value function for the reinforcement learning technique. This
way, the network can use its adaptive feature detectors to learn the values of state-action pairs.

In the past years, deep reinforcement learning has been shown to be a versatile and powerful
technique. Recently, a deep reinforcement learning agent called ALPHAGO ZERO has learned to
play the game of Go purely by self-play, and then continued to repeatedly defeat a previous
version of itself (Silver et al., 2017b). The previous version, known as ALPHAGO LEE, had earlier
received acclaim for defeating a human world champion (Silver et al., 2016). Liu and Ma (2017)
tested their air combat agent with deep reinforcement learning against another agent that used
a minimax decision making algorithm. The rewards for the learning agent were based on (1)
the relative positioning of the agents, and (2) the optimal firing range of the learning agent’s
weapon. In an experiment consisting of 100 encounters the agent learned to defeat its opponent
nearly 60% of the time. These encounters took place after a training session consisting of 5000
encounters.

In the literature, we see neural networks applied in two ways: (1) since the 1990s as a model
for partial control of a cGF’s behaviour, such as situation recognition (McMahon, 1990; Rodin
and Amin, 1992), and recently (2) as a model controlling the entire behaviour of a cGr (Teng
et al., 2013; Liu and Ma, 2017). Because of the black box nature of neural networks, controlling
only a part of behaviour increases the possibilities of complete validation of the resulting models.
Below we briefly discuss models for partial control. The approach of partial control of behaviour
using neural networks is advocated by, e.g., Henninger, Gonzalez, Georgiopoulos and DeMara
(2000). A recent example of neural networks learning only a specific part of cGr behaviour is
the work by Kamrani et al. (2016), in which cGF representing soldiers learn a troop movement
pattern. The use of neural networks for partial control allows for completing complex sub-tasks
(e.g., situation classification instead of “air combat” as a whole task) while limiting the effects of
the inaccessibility of trained networks, since only the networks performance on the sub-task has
to be explained and validated.

2.4.2 Evolutionary algorithms

A second type of algorithm that has been applied to the generation of air combat behaviour is
the evolutionary algorithm. The strength of evolutionary algorithms is the ability to generate
and try multiple creative solutions simultaneously. However, as is the case with neural networks,
their weaknesses are (1) the need for extensive learning phases, and (2) the inaccessibility of
the resulting models (depending on the specific evolutionary technique that is used). Below we
discuss five lines of development in which evolutionary algorithms were applied to air combat
behaviour, viz. the works by (a) Mulgund, Harper and Krishnakumar (1998), (b) Smith, Dike,

28 2.4 Past approaches to generating air combat behaviour

Mehra, Ravichandran and El-Fallah (2000a), (c) Kaneshige and Krishnakumar (2007), (d) Yao,
Huang and Wang (2015), and (e) Koopmanschap, Hoogendoorn and Roessingh (2013).

Line (a): genetic algorithms. Mulgund et al. (1998) (continued by Mulgund, Harper and
Zacharias, 2001) applied a genetic algorithm to find optimal formations for many-versus-many
beyond-visual-range engagements. For this application, Mulgund et al. divided air combat tactics
into three parts: (1) individual manoeuvres, (2) formations as a form of cooperation for small
groups of aircraft, and (3) the use of individual manoeuvres and formations in large groups
of aircraft. In their work, they focused on the latter as an optimisation problem, while using
“conventional” individual tactics and small formations. Starting from a scenario with equal losses
on both sides, the algorithm of Mulgund et al. was able to develop formations for as many as 16
aircraft. Using these large formations and the conventional tactics, all enemy cGrs were defeated
without any defeats on the friendly side. While this is an impressive result, it only encompasses a
small part of air combat behaviour generation. Furthermore, only a few parameters used by the

algorithm are reported.

Line (b): learning classifier systems. Smith et al. (2000a) (see also the work by Smith, Dike,
Ravichandran, El-Fallah and Mehra, 2000b) generated innovative one-versus-one within-visual-
range behaviour for an experimental fighter jet using learning classifier systems (1rcss). The
work by Smith and colleagues is a prime example of using evolutionary methods for the creative
diversity of their solutions. It is explicitly stated that the goal of the study was the discovery
of new behaviour, and not finding optimal behaviour. According to Smith et al., the automatic
discovery of behaviour for a new aircraft allows simulation experts to give feedback to aircraft
designers, customers, and operators about optimal ways to take advantage of the new aircraft’s
capabilities.

Line (c): artificial immune systems. An unconventional approach related to evolutionary
algorithms was taken by Kaneshige and Krishnakumar (2007). The algorithm in this work
was designed like an artificial immune system. The immune system selected manoeuvres (i.e.,
antibodies) to defeat detected intruders (i.e., antigens) in within-visual-range air combat. The
parameters that were used were specifically chosen so that the algorithm was able to select
manoeuvres within two seconds of calculation time. However, these parameters also appeared to
limit the diversity of the solutions severely, as the algorithms quickly converged to the manoeuvres
with the best performance.

Line (d): grammatical evolution. Yao et al. (2015) recently applied grammatical evolution to
generate behaviour trees. At the core of their method was a genetic algorithm that operated on
behaviour trees represented as bit-strings. The evolution of the behaviour trees was guided by
a grammar. The grammar encoded three types of data: (1) the possible conditions and actions

Foundations 29

that the behaviour tree could use, (2) the parameters of these conditions and actions, and (3)
the structure by which the conditions and actions could appear in the behaviour tree. Use of the
grammar served two purposes: (1) it guided the evolution, limiting the search space, and (2)
it kept the resulting behaviour tree accessible to humans. However, even though the grammar
served to limit the search space, there is no mention of any constraints placed on the creativity
of the genetic algorithm. Yao and colleagues tested their method in a one-versus-one beyond-
visual-range air combat simulation. In the best case, the agent using the grammatical evolution

method learned to outperform its opponent after 60,000 simulations.

Line (e): optimising a cognitive model. Koopmanschap et al. (2013) optimised a cognitive
model for air combat cGFs by means of an evolutionary algorithm (see also Koopmanschap,
Hoogendoorn and Roessingh, 2015). This cognitive model took the form of a network that
connected observations to beliefs. Starting with the observations made by a cGF, the network
enabled the cGF to form beliefs about its situation. The cGF then selected its actions based on
its beliefs. The cognitive model allowed for the modelling of human-like features in the cGF’s
reasoning process, such as (1) situation awareness, (2) surprise, and (3) theory of mind (Merk,
2013). The network used by Koopmanschap et al. was constructed by a human expert with domain
knowledge. The evolutionary algorithm was used to optimise the connection strengths between
the observations and beliefs in the cognitive model. This way, the evolutionary algorithm was
able to determine how strongly (combinations of) observations contributed to the formulation of
specific beliefs. The network was tested in simulations with air combat cGFs. Koopmanschap et al.
assigned a high fitness to the cGrF if it defeated an opposing cGF, and a low fitness if the cGF took
out a friendly cGF. The evolutionary algorithm outperformed both a hill climbing algorithm and
a random search strategy. Wilcke, Hoogendoorn and Roessingh (2014) built upon the work by
Koopmanschap et al. by letting the evolutionary algorithm determine the connections between
the observations and beliefs, rather than only the connection strengths.

As can be seen above, evolutionary algorithms may provide creative and interesting solutions
to complex problems. The creativity of evolutionary algorithms can be a great asset in developing
behaviour. However, two drawbacks are: (1) the learning process takes time, and (2) the creativity

of evolutionary algorithms must be guided, to ensure no loss of training control occurs.

2.5 Chapter summary

In this chapter, we have provided background information on four topics.

First, we took a detailed look at the four steps of the behaviour modelling process (see
Section 2.1). The behaviour modelling process is the process by which behaviour models for
training simulations are created today. It is a lengthy process with interdependent steps.

Second, we discussed the potential benefits and drawbacks of using machine learning in
training simulations (see Section 2.2). The potential benefits are: (1) faster development of

30 2.5 Chapter summary

behaviour models compared to the behaviour modelling process, (2) the automatic detection
of patterns in behaviour, and (3) online behaviour adaptation (see Subsection 2.2.1). The two
potential drawbacks are: (1) emergence of unrealistic behaviour, and (2) the resulting loss of
training control (see Subsection 2.2.2). In this thesis we focus on achieving the first potential
benefit, and take care to avoid the two potential drawbacks.

Third, we introduced the three categories of machine learning tasks: (1) unsupervised
learning tasks, (2) supervised learning tasks, and (3) reinforcement learning tasks (Section 2.3).
Furthermore, we discussed the most important reinforcement learning concepts and reviewed
the dynamic scripting reinforcement learning technique.

Finally, we reviewed past approaches to generating air combat behaviour models by means
of machine learning (see Section 2.4). The two most commonly used techniques are (1) neural
networks, and (2) evolutionary algorithms. However, these two techniques make it difficult to

avoid the potential drawbacks of using machine learning in training simulations.

3 Team coordination

In this chapter we investigate research question 1: To what extent can we generate air combat
behaviour models that produce team coordination?

Team coordination is an essential part of air combat. We will consider what team coordination
means, by reviewing it from two perspectives: (1) the air combat perspective, and (2) the multi-
agent system perspective. The field of multi-agent systems will provide us with a framework by
which we can implement a variety of coordination methods. Subsequently we will experiment
with them in our air combat simulations.

This chapter is structured as follows. First, we elaborate on the concept of team coordination
from the two perspectives mentioned above (Section 3.1). Based on these perspectives, we
develop and present three coordination methods: (1) TacrT, (2) cENT, and (3) DECENT. Then,
we implement the three methods in a dynamic scripting environment (Section 3.2). Next, we
determine the effect of the three coordination methods on the performance of a pair of cGFs by
means of an experiment involving automated simulations (Section 3.3). We present the results
of the experiment (Section 3.4) and then discuss them (Section 3.5). Finally, we summarise the

chapter and answer research question 1 (Section 3.6).

This chapter is based on the following two publications.

¢ A. Toubman, J. J. Roessingh, P. Spronck, A. Plaat and H. J. Van den Herik (2014a). Dynamic Scripting with Team
Coordination in Air Combat Simulation. In: Modern Advances in Applied Intelligence: 27th International Conference
on Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2014, Kaohsiung, Taiwan,
June 3-6, 2014, Proceedings, Part I. Ed. by M. Ali, J.-S. Pan, S.-M. Chen and M.-F. Horng. Vol. 8481. Lecture Notes in
Computer Science. Kaohsiung, Taiwan: Springer International Publishing, pp. 440—449. ISBN: 978-3-319-07455-9.
DOI: 10.1007/978-3-319-07455-9_46

¢ A.Toubman, J. J. Roessingh, P. Spronck, A. Plaat and H. J. Van den Herik (2014b). Centralized Versus Decentralized
Team Coordination Using Dynamic Scripting. In: Proceedings of the 28th European Simulation and Modelling
Conference - ESM’2014. Ed. by A. C. Brito, J. M. R. Tavares and C. Braganca de Oliveira. Porto, Portugal: Eurosis,
PP. 129-134

https://doi.org/10.1007/978-3-319-07455-9_46

32 3.1 Two perspectives on team coordination

3.1 Two perspectives on team coordination

In this section, we discuss the concept of team coordination. Team coordination is an extremely
broad concept that can be viewed from many different perspectives. Therefore, we restrict
ourselves to two relevant perspectives: (1) the air combat perspective and (2) the multi-agent
system perspective. The air combat perspective shows us the kind of team coordination that
we wish to integrate into the behaviour models of air combat cGrs (Subsection 3.1.1), whereas
the multi-agent system perspective provides us with a framework to perform the task (Subsec-
tion 3.1.2). Combining the two perspectives will result in three coordination methods: (1) TacrT,

(2) cenT, and (3) DECENT. We present the three methods in Subsection 3.1.3.

3.1.1 The air combat perspective

Today, the smallest unit that performs air combat missions is the two-ship section (also referred to
by two-ship or section®). As the name implies, a two-ship consists of two aircraft. The two aircraft,
as well as the pilots that fly them, are called the lead and the wingman (see, e.g., Borck, Karneeb,
Alford and Aha, 2015). In general, the lead makes the tactical decisions for the two-ship, and the
wingman follows and supports the lead. To succeed in their missions, the lead and the wingman
in a two-ship need to carefully coordinate their actions.

To the best of our knowledge, the book Fighter Tactics by Shaw (1985) is the most compre-
hensive publicly available work on team coordination that takes place in a two-ship. However, the
book is several decades old. It has missed substantial technological and doctrinal advances that
have happened since its publication. Three of these advances are (1) the improvement of missile
guidance and propulsion systems, (2) improved airborne radar technology, and (3) the shift from
WVR to BVR air combat, made possible by (1) and (2) (cf. Bongers and Torres, 2014). Shaw (1985)
largely focuses on wvr air combat, while BvR air combat is only mentioned in passing. However,
the concepts presented by Shaw still surface regularly in modern sources, indicating that these
concepts are also relevant today (cf. Bigelow, Taylor, Moore and Thomas, 2003; Aleshire, 2005;
Crane, Bennett Jr, Borgvall and Waldelof, 2006; Marken, Taylor, Ausink, Hanser and Anderegg,
2007; Hinman, Jahn and Jinnette, 2009; Laslie, 2015; Stillion, 2015).

According to Shaw (1985), team coordination in two-ships is based on the principle of mutual
support. Shaw does not explicitly define the principle, but rather illustrates it with examples
of behaviour. Here, we abstract Shaw’s examples into two concepts: (1) creating situational
awareness, and (2) a flexible division of roles. Below, we explain these two concepts.

The first concept, creating situational awareness, concerns the gathering of critical informa-
tion, and using that information to form decisions. Shaw illustrates the importance of creating
situational awareness with a straightforward example. A lone fighter aircraft has large blind
spots behind and below the aircraft. Therefore, the pilot’s ability to visually detect other aircraft

In this thesis, we use the term two-ship to avoid confusion with other uses of the term section.

Team coordination 33

is limited. By having fighter aircraft fly in pairs, the blind spots of both aircraft are to a large
extent reduced. Although visual detection has nowadays been largely replaced by radar, the
same concept still applies. Two radars can be used to monitor a larger piece of airspace than is
possible by using only one radar. Furthermore, the use of two radars allows, e.g., the tracking
of specific target aircraft by one radar, while at the same time searching for additional aircraft
using the second radar is possible. By having available more information that is relevant to their
situation, the pilots can make more informed decisions on how to act.

The second concept, a flexible division of roles, partly follows from the first concept. The lead
and the wingman begin their operations with a division of roles that is decided in advance. For
instance, during the operations, when the lead of a two-ship is engaged by an opponent and has
to perform defensive manoeuvres, the wingman remains free to observe the situation. As the
lead is busy defending, the wingman is now in the better position to make tactical decisions for
the whole two-ship. Therefore, rather than only observing, the wingman can (1) take over the
tactical leadership of the lead, and (2) attack the opponent that is pursuing the lead. In other
words, by properly coordinating, a two-ship is able to focus on offensive and defensive actions at
the same time.

3.1.2 The multi-agent system perspective

The field of multi-agent systems is concerned with the operation of multiple actors in a single
environment, such as cGrs in a simulation environment (see, e.g., Connors, Miller and Lunday,
2016). Team coordination has long been studied as an important part of multi-agent systems.
Compared to a single agent, multi-agent systems have multiple benefits, such as (1) the ability to
act in more than one physical location, (2) higher fault tolerance, as agents can take over the
tasks of other agents in case of failure, and (3) flexibility, offered by the application of specialised
agents that can cooperate in various manners (cf. Stone and Veloso, 2000; Yan, Jouandeau and
Cherif, 2013; Ye, Zhang and Vasilakos, 2017). However, profitting substantially from these benefits
requires that the agents coordinate their actions in some way.

Throughout the literature, coordination methods are classified along two axes: (1) the degree
of centralisation of the coordination method, (2) the communication that takes place between
the agents. Below, we discuss the two axes.

The first axis is the degree of centralisation of the coordination method. On one extreme of
this axis are the methods in which the coordination of the agents is managed in a single, central
agent. These methods are commonly called centralised coordination methods. In a multi-agent
system with centralised coordination, the central agent receives information of all the other
agents. It then uses this information to create a global “picture” of the environment. Based on
this picture, the central agent plans (what it believes to be) the most optimal actions for each
agent. The optimal actions are relayed to the other agents so that the actions can be executed
(cf. McLennan, Molloy, Whittaker and Handmer, 2016).

34 3.1 Two perspectives on team coordination

On the other extreme of the same axis we see the methods in which the coordination is
managed in a distributed fashion amongst the agents. We refer to these methods as decentralised
coordination methods. Obviously, decentralised methods do not use a central agent to manage
the coordination between agents. Rather, all of the agents in the system coordinate their actions
amongst themselves. Often, only a local form of coordination is admitted or required (e.g.,
between agents working in the same room, or on the same task), as the actions of agents do not
interfere with all other agents in the system (cf. Su, Zhang and Bai, 2016; Hou, Wei, Li, Huang
and Ashley, 2017b).

The second axis is the communication between the agents. On one extreme of the axis we
see agents that do not communicate at all. On the other extreme however, we do not see any
well-defined actions either. The reason is that any communication that takes place between agents
requires a communication scheme. Since all communication schemes involve a combination
of (1) information that is communicated, and (2) a means of communication, a wide range of
communication schemes is possible. For example, in terms of information, an agent might be
able to communicate its observations to another agent, but not its intentions. At the same time,
the available means could be noisy, time-lagged, or only allow a limited number of bytes to
be transmitted. Coordination methods and agents that employ communication therefore have
to be designed with the communication possibilities taken into account. Jennings, Sycara and
Wooldridge (1998, p. 18) summarised the issue of designing communication schemes in a single
question: “what and when to communicate?”

As has been implied in this section, there are multiple ways to design coordination methods.
Designing a coordination method is one of the most challenging parts of inventing multi-agent
systems (cf. Rodriguez-Aguilar, Sierra, Arcos, Lopez-Sanchez and Rodriguez, 2015; Evertsz,
Thangarajah and Papasimeon, 2017). The introduction of machine learning into the multi-agent
system enables the designers of the system to take advantage of the creativity of machine learning
in the design of the coordination method (cf. Tuyls and Weiss, 2012). Machine learning allows
agents to develop a well-designed coordination method, and try to improve their operations
while using that coordination method as a foundation (cf. Panait and Luke, 2005; Foerster, Assael,
De Freitas and Whiteson, 2016; Havrylov and Titov, 2017). In the next section, we combine the

two perspectives on team coordination into three coordination methods for cGFs.

3.1.3 Combining the perspectives into coordination methods

In this section, we combine (1) the air combat perspective on team coordination, with (2) the
multi-agent system perspective on team coordination. Below, we first explain how we combine the
two perspectives. Next, we present three coordination methods that follow from the combination.

From the air combat perspective, we derive the context of the agents for whom we are
developing the coordination methods. The agents are (1) a lead cGF and (2) a wingman CGF,
that together form a two-ship. Any coordination method for this two-ship should (1) help the

Team coordination 35

cGFs build situational awareness, and (2) enable a flexible division of roles.

From the multi-agent system perspective, we adopt the two axes along which coordination
methods are classified: (1) the extent of the centralisation of the coordination among the agents,
and (2) the extent of the communication among the agents. Crossing these two axes results in
an axial system that is divided into four quadrants (see Figure 3.1). The four quadrants are:

1. The upper left quadrant, containing decentralised coordination methods without commu-
nication.

2. The lower left quadrant, containing centralised coordination methods without communic-
ation.

3. The lower right quadrant, containing centralised coordination methods with communica-
tion.

4. The upper right quadrant, containing decentralised coordination methods with commu-
nication.

Within these quadrants we are able to define particular coordination methods. We define
three coordination methods: (1) a decentralised coordination method without communication
called TacrT, (2) a centralised coordination method with communication called cenT, and (3) a
decentralised coordination method with communication called bECENT. The lower left quadrant
is left open without a coordination method. This quadrant requires a centralised coordination
method without communication. However, without any form of communication taking place
before or during encounters, it is quite difficult to envision what such a centralised coordination
method would look like. We consider the development of a centralised coordination method
without communication outside of the scope of our research. Below, we describe TACIT, CENT,
and DECENT.

TACIT. The coordination method TacrT (see Figure 3.1, upper left) has the following two proper-
ties: (1) it is a decentralised method, viz. there is no central agent who controls all actions,
and (2) it is a method without communication among the agents. This means that the
lead and the wingman each select their own actions in an individualistic manner. They do
not purposefully exchange information with each other (hence the term tacit). However,
the lead and the wingman are able to observe (1) each other, and (2) the results of each
other’s actions, and then base the selection of their actions on these observations.

The use of TacIT provides an advantage to the designer of the behaviour of the lead and
the wingman in the two-ship: (1) the behaviour of the lead can be designed with minimal
regard for the wingman, and (2) vice versa (i.e., the behaviour of the wingman can be
designed with minimal regard for the lead). However, conversely, the use of TacIT also
makes it difficult to include explicitly coordinated interactions in the combined behaviour
of the two-ship. Furthermore, it is possible that the behaviour of a team using TacIT will

36

3.1 Two perspectives on team coordination

decentralised
coordination

"IN

[TAciT | | [DECENT

without with

y) (§

. . > L4 . .
communication RN : communication

nnnInnnn CENT
! b
centralised
coordination

Figure 3.1 The two axes of team coordination: (1) the extent of the centralisation of
the coordination (vertical axis), and (2) the extent of the communication between agents
(horizontal axis). Placed on the axes are three coordination methods: (1) TACIT, the decen-
tralised coordination method without communication (upper left), (2) CENT, the centralised
coordination method with communication (lower right), and (3) DECENT, the decentra-
lised coordination method with communication (upper right). We consider centralised
coordination without communication (lower left) to be outside the scope of our research.

resemble least (out of the three coordination methods) the behaviour of a real-world

two-ship, as both the lead and the wingman draw their own plan in the simulation.

ceENT. The coordination method ceENT (see Figure 3.1, lower right) has the following two

properties: (1) it is a centralised method, viz. there is a central agent who coordinates all
actions, and (2) it is a method with communication among the agents. We designate the
lead as the central agent of the two-ship. This means that the lead selects all actions for
both itself and the wingman. The actions selected by the lead are sent to the wingman to
execute. The wingman helps the lead select actions by sending its observations to the lead.

In other words, there is two-way communication between the lead and the wingman.

In ceENT, the lead and the wingman are tightly coupled, as the lead needs to know the
capabilities of the wingman in order to select actions for it. This presents a challenge to the
designer of the behaviour of the two-ship. Furthermore, this challenge may grow when,
in the future, a designer desires to reuse an existing lead cGr and wingman cGF to form
a new two-ship using cenT. If the communication that occurs between the lead and the
wingman is incompatible (viz. the lead does not know how to use the observations of the
wingman to select actions for the it), the coordination will fail.

Team coordination 37

DECENT. The coordination method DECENT (see Figure 3.1, upper right) has the following two
properties: (1) it is a decentralised method, and (2) it is a method with communication
among the agents. By communicating, both the lead and the wingman receive information
from each other’s sensors, in addition to the information from their own sensors. The
additional information leads to better situational awareness, by which both the lead and

the wingman can make a better informed selection of actions.

In terms of design, DECENT resembles TacIT albeit with the ability of communication.
Therefore, a two-ship that uses DECENT can in principle make a better informed decision
(i.e., action selection) than a two-ship that uses TaciT. Furthermore, in contrast to CENT,

the lead and the wingman perform their own action selection.

An important topic that we did not mention above is the topic of learning. By introducing
machine learning to the coordination methods, the two-ship will be able to optimise their
coordination with regards to achieving some goal (e.g., defeating an opponent). Machine learning
affects the three coordination methods in the following manners. First, a lead and a wingman
using TacIT will be able to learn how to act in each other’s presence in order to achieve their
common goal. Second, in the case of CENT, the central agent will be able to learn (1) how both
(the agent itself and the other agent) should act, and (2) what information the central agent has
to send to the other agent in order to start these actions. Third, when using DECENT, the lead
and the wingman both have to learn individually (1) how to act, and (2) which information to
send to each other in order to influence the other agent to act in a more desirable manner.

Returning to the air combat perspective on team coordination, we note that the three
coordination methods and the introduction of machine learning now provide both (1) improved
situational awareness, and (2) a flexible division of roles with the two-ship. By communicating
information to each other (i.e., in the case of cENT and DECENT), the lead and the wingman can
help each other build situational awareness. Furthermore, the introduction of machine learning
into the coordination methods allows the lead and the wingman to learn how to (1) regulate
and act themselves, and (2) coordinate with each other. Because the lead and the wingman
share a common goal, we may assume that each of them will in a natural way learn to assume
a particular role in the two-ship, such that each will (1) create tactical advantages for both
themselves and the other, and (2) take advantage of the created tactical advantages in order to

reach the common goal. In essence, the flexible division of roles is caused by the ability to learn.

3.2 Team coordination in dynamic scripting

In this section, we implement the three coordination methods (TacIT, CENT, and DECENT)
in a dynamic scripting environment. This entails fitting the concepts of centralisation and
communication into the rule-based framework as required by dynamic scripting. By means of the
implemented coordination methods, a two-ship of cGrs will be able to learn how to coordinate

38 3.2 Team coordination in dynamic scripting

their actions with each other. Additionally, for the two methods with communication (cENT and
DECENT), the capacity to learn includes the ability to learn what and when to communicate.
We base the implementations in this section on the assumption that the coordinating two-ship
will act as the red cGFs in the scenarios that are outlined in Appendix A.4. This means that
the goal of the two-ship is to defeat one blue cGF (viz. hit blue with a missile), without being
defeated themselves. Below, we describe the implementations of TacrT (Subsection 3.2.1), CENT

(Subsection 3.2.2), and DECENT (Subsection 3.2.3) in detail.

3.2.1 Implementing TACIT

In order to implement TACIT, we translate its two main properties to a dynamic scripting
environment. These properties are: (1) it is a decentralised method, and (2) it is a method
without communication among the agents.

We translate the first property by letting the lead and the wingman in the two-ship be
individual learners who each use their own rulebase. We treat the lead and the wingman as
equals, in the sense that both receive the same rules in their rulebase (except for the wingman
who has additional rules for formation flying, see later in this subsection). We translate the second
property by designing the rules of each cGF in such a way that a rule only fires based on the
observations made by the cGF to which the rule belongs (viz. no observations are communicated
between the cGFs).

Figure 3.2a shows the learning process of a two-ship using TaciT. The lead (left) and the
wingman (right) each have their own rulebase. The dynamic scripting algorithm generates a script
from each of these rulebases (see Subsection 2.3.3, steps 1 to 3). The scripts are used to control
the behaviour of the cGFs in the simulation. Based on the outcome of the simulation, dynamic
scripting calculates the weight updates for the rules in the rulebases. During the simulations,
there is no communication between the lead and the wingman (in contrast to e.g., DECENT, see
Figure 3.2¢). Below, we briefly describe the rulebases used by the lead and the wingman.

The two rulebases (one for the lead, one for the wingman) are presented in Appendix C.
The rules in these rulebases are written in the Lwacs scripting language that is described in
Appendix B.1. Rather than discussing each individual rule, we divide the rules in each rulebase
into three groups: (1) regular rules, (2) filler rules, and (3) default rules. Below, we describe the
three groups of rules. At the end of the subsection, we briefly discuss the number of rules that

are included in scripts when TacIT is used.

Regular rules. Regular rules are basic behaviour rules that map observations to actions. The
lead has regular rules for four distinct types of behaviour: (1) firing missiles (five rules), (2)
supporting® fired missiles (three rules), (3) evading incoming missiles (three rules), and

2Certain types of real-world missiles have to be supported, i.e., guided to the target by the radar of the aircraft that
fired the missile. While the missiles in Lwacs do not require being supported, we have included rules for this behaviour.
The reason is that the behaviour (i.e., tracking the target with a radar and following its movements) may provide a

Team coordination

Step 3. Weight updates

Rule base

Rule base

Step 1. . . Step 1.
Rule selection Simulation Rule selection
Step 2. Step 2.
Script Control Control Script
Lead Wingman

(a) TACIT. Both the lead and the wingman learn by means of dynamic
scripting. There is no communication between them.

Step 3. Weight updates

Rule base

Step 1.

Rule selection Simulation

Step 2.
Control

communication

Control Script

(b) CENT. Only the lead learns by means of dynamic scripting. The be-
haviour of the wingman is controlled by means of a predefined, non-

learning script. There is two-way communication between the lead and
the wingman.

Wingman

Step 3. Weight updates

Rule base

Rule base

Step 1.
Rule selection

Step 1.

Simulation Rule selection

Step 2.
Control

communication Step 2.

Control

Wingman

(c) DECENT. Both the lead and the wingman learn by means of dynamic

scripting. There is two-way communication between the lead and the
wingman.

Figure 3.2 The three coordination methods implemented in dynamic scripting: (a) TACIT,

(b) CENT, and (c) DECENT.

39

40

Filler

3.2 Team coordination in dynamic scripting

(4) evading opponents that have been detected using the radar warning receiver (RWR)
(four rules). The wingman’s regular rules include the same rules as the lead, plus rules for
a fifth type of behaviour: flying in formation with the lead (five rules). For each type of
behaviour, three to five variant rules are included, i.e., rules with slightly different values
(e.g., firing from 50, 60, 70, 80, or 9o km).

rules. Filler rules are rules that by design cannot fire, and therefore never execute an
action. The purpose of the filler rules is to give the dynamic scripting algorithm the option
to fill a script with rules, without forcing the algorithm to include rules in the script for
the sake of reaching the required amount of rules. Without filler rules, the algorithm may
include rules in scripts that have low weights (viz. they are “bad” rules). Despite their low
weights, these rules can trigger during simulations and thereby cause the cGF to perform
undesirable actions.

Because the filler rules cannot fire, they are no candidate for a weight increase or decrease
when the cGF receives a reward or punishment, respectively. However, the weights of the
filler rules are able to change by means of the weight redistribution performed by the
dynamic scripting algorithm (see Subsection 2.3.3). In short, dynamic scripting keeps the
sum of the weight values in the rulebase constant, by redistributing the weights of all rules

whenever a change has to be made in the weight of any rule.

We include 11 filler rules in the rulebases of both the lead and the wingman. The first
six filler rules are instrumental for dynamic scripting to fill an entire script with filler
rules (because of the script size of six rules, see below). We add five additional filler
rules to make the rulebases for TaciT and DECENT contain an equal number of rules. The
only difference between TaciT and DECENT is the inclusion of rules for communication in
the DECENT rulebases (see Figure 3.2c) Therefore, equalising the number of rules in the
rulebases allows for a fair comparison of the learning speeds of the cGFs.

Default rules. Default rules are rules that provide fallback behaviour for the cGrs, when no

other rules fire. These rules are automatically appended to every script that is generated by
dynamic scripting. The purpose of the default rules is to aid the discovery of combinations
of rules. For example, consider a generated script that contains a rule for supporting a
missile, but does not contain a rule for firing a missile at any opponent. A cGF using
this script will not defeat the opponent, since that requires a missile. By automatically
appending a rule for firing a missile (even a sub-optimal rule), the cGF is given a chance
to (1) defeat the opponent, (2) give a higher weight to the supporting rule, and (3) retry

the supporting rule with a better firing rule from its own rulebase.

The rulebases of both the lead and the wingman include five default rules. Four of these

five rules are shared by the lead and the wingman.

tactical advantage in some unexpected other manner.

Team coordination 41

1. a rule for returning the radar to search mode when the radar no longer detects any

opponents,
2. arule for tracking any opponents, when the radar detects them in search mode,

3. arule for firing a missile when the lead has a firing opportunity within a range of

40 km,
4. arule for supporting fired missiles,

lead a rule for flying in the general direction of the blue cGF (to ensure that contact is

made between the red and blue teams),

wingman a rule for flying in formation with the lead.

The default rules have been assigned lower priority values (see Subsection 2.3.3) than the
regular rules that provide the same behaviour, so that when such a regular rule is included

in a script, the default rule never fires.

Script sizes using TacIT

Whenever the dynamic scripting algorithm generates a script from the rules in the rulebase, it
only includes a preset number of rules in the script. We call this number the script size s. The
script size is an important implementation detail, because it directly affects the complexity of
possible scripts, and thus also the complexity of the behaviour of the agents that use the scripts.
However, there are no guidelines for selecting a correct script size.

We define the script size of the scripts that dynamic scripting generates for cGFs that use
TACIT to be s = 6. We choose this script size because it allows scripts to include at least one
regular rule for each distinct type of behaviour (see above, Regular rules).

Using s and the size of a rulebase, we are able to calculate the number of possible scripts
S. The rulebase of the lead contains 26 rules, whereas the rulebase of the wingman contains 31
rules. Here, we do not consider the five default rules that are appended to every generated script.
Since a rule can only be included once in the same script, we arrive at the following number of
possible scripts (1) Syeqq for the lead, and (2) S,ingman for the wingman.

26
Steaa = g) =230230

31
Swingman = (.) = 736281

The total number of combinations of scripts that the two-ship can use in a simulation is
therefore 230 230%736 281 = 169 513974 630. This number indicates the size of the combined
search space that the dynamic scripting algorithms (one for the lead, one for the wingman) will
have to traverse, in order to find the optimal behaviour of the two-ship (with optimal behaviour
seen from the perspective of the reward function, see Subsection 3.3.2). Note that the total

42 3.2 Team coordination in dynamic scripting

number of combinations of scripts does not equal the total number of different behaviours
that the two-ship can display in simulations, because of (a) duplicated rules in the rulebases
(e.g., the filler rules) and (b) rules that supersede each other (e.g., firing from at most 8o km
also implies firing from 50 km if the opportunity presents itself). An exploratory calculation
involving (a) six rules that provide the same behaviour and (b) five rules that supersede each
other results in 41,719 possible behaviours for the lead and 192,160 possible behaviours for the
wingman. Using these numbers, the total number of possible behaviours for the two-ship is
41719% 192160 = 8016723 040.

3.2.2 Implementing CENT

In order to implement CENT, we translate its two main properties to a dynamic scripting en-
vironment. These properties are: (1) it is a centralised method, and (2) it is a method with
communication among the agents.

We translate the first property by designating the lead as the central agent in the two-ship. The
lead learns by means of dynamic scripting. Its rulebase contains rules that (1) define behaviour for
itself, and (2) coordinate with the wingman. The wingman can be controlled by any non-learning
control method. To stay within the rule-based paradigm, we control the wingman by means of a
predefined script. We translate the second property by allowing the cGFs to send messages to
each other. The act of sending a message is implemented as an action that can be part of the
consequence of a rule. This way, messages can be sent conditionally (i.e., only when a rule with
such an action fires). Below, we first describe (A) the rulebase of the lead. Next, we describe (B)
the script of the wingman. At the end of the subsection, we briefly discuss the number of rules
that are included in scripts when cenT is used.

A: The rulebase of the lead

The rulebase of the lead contains rules that define (1) behaviour for the lead and (2) coordination
with the wingman. Regarding the behaviour of the lead, the rulebase includes the same three
groups of rules that were defined for the TaciT lead: (1) regular rules, (2) filler rules, and (3)
default rules. The only difference is the number of filler rules. The cenT lead’s rulebase has six
filler rules, rather than the 11 filler rules in the rulebase of the TacIiT lead (see Subsection 3.2.1).

For the coordination with the wingman, the cenT lead’s rulebase contains two additional
groups of rules: (4) rules for formation flying (five rules), and (5) directive rules (13 rules). Below,
we describe these two groups.

Rules for formation flying. The rulebase of the lead includes five rules for formation flying.
These rules are the same as the five regular rules for formation flying which the TacrT
wingman has in its rulebase (see Subsection 3.2.1). However, when one of these rules fires,
the lead communicates to the wingman that it should assume a certain formation, rather
than assuming the formation itself.

Team coordination 43

Directive rules. Directive rules fire on specific messages that the lead receives from the wingman.

We identify the following eight messages that the wingman can send to the lead.

1. The wingman observes a new opponent by means of its radar.

2. The wingman observes a new opponent by means of its RWR.

3. The wingman observes that a missile is flying towards the wingman.

4. The wingman is able to fire a missile at an opponent from <50 km away.

5. The wingman is able to fire a missile at an opponent from <60 km away.

6. The wingman is able to fire a missile at an opponent from <70 km away.

7. The wingman is able to fire a missile at an opponent from <80 km away.

8. The wingman is able to fire a missile at an opponent from <g9o km away.
Upon firing, each directive rule causes the lead to send an instruction to the wingman. In
response to each of the first three messages, the lead instructs the wingman to perform
one of three actions.

1. Turn right ninety degrees,

2. turn left ninety degrees, or

3. turn towards the observed opponent (in case of message 1 or 2).
In response to the remaining five messages, the lead instructs the wingman to fire. Note

that the lead does not respond to the messages the same way in each simulation (or at

all), since the directive rules are subject to dynamic scripting’s rule selection.

B: The script of the wingman

The wingman uses a predefined script to control its behaviour. Consequently, all of the rules in
the script are able to fire in each simulation. The script of the wingman consists of three groups
of rules: (1) informative rules, (2) executive rules, and (3) default rules. Below, we describe the

three groups of rules.

Informative rules. Informative rules send a message to the lead to inform it of a new observation
made by the wingman. The script includes eight informative rules. Five of the informative
rules inform the lead that the wingman is able to fire at the opponent from within a certain
distance (50, 60, 70, 80, or 9o km). The remaining three informative rules inform the lead

of one of three events.

1. The wingman has detected a new opponent by means of its radar,

2. the wingman has detected a new opponent by means of its RWR, or

44 3.2 Team coordination in dynamic scripting

3. the wingman has detected that a new missile has been fired at it (see A, Directive

rule).

Executive rules. Executive rules cause the wingman to execute an action upon the reception of
an instruction to do so from the lead. The script includes 14 executive rules. Five of the
executive rules are for flying in formation (see A, Rules for formation flying). Five executive
rules are for firing at the opponent (from 50, 60, 70, 80, and 9o km). Two executive rules
are for executing evasive manoeuvres (turning right ninety degrees and turning left ninety
degrees, respectively). The remaining two executive rules direct the wingman towards the

observed position of the opponent.

Default rules. The script of the wingman includes four default rules. Four of these five rules
are shared by the lead and the wingman.

1. A rule for returning the radar to search mode when the radar no longer detects any

opponents,
2. arule for tracking any opponents, when the radar detects them in search mode,

3. a rule for firing a missile when the wingman has a firing opportunity within 40 km,
and

4. arule for flying in the general direction of the blue cGF.

Apart from the default rules, the wingman has no capacity to select and execute actions
by itself. All actions of the wingman are selected by the lead, and then communicated to the
wingman by means of a directive rule. Because the script of the wingman is predefined and does
not change between or during simulations, all instructions that are received lead to the firing of

the corresponding executive rule.

Script sizes using CENT

We define the script size of the scripts that dynamic scripting generates for the lead cGF to be
s = 12. This is a larger script size than the script size we defined for cGrs that use TaciT. The
reason for the larger script size is that the scripts that are generated for the lead have to include
both (1) rules for the lead’s behaviour, and (2) rule for the wingman’s behaviour.

The rulebase of the lead contains 39 rules, excluding the default rules. Therefore, we arrive
at the following S;,q4-

39
Siead = (12) =3910797436

Since the script of the wingman is predefined (i.e., Singman = 1), the number of possible
scripts for the lead is also the number of possible behaviours that the two-ship can display in
simulations (viz. the search space for behaviours). This search space is two orders of magnitude

Team coordination 45

smaller than the search space for TacIT (see Subsection 3.2.1). This suggests that it should be
easier for CENT cGFs to find good solutions (viz. faster learning). However, in CENT, only the
weights of the rules in one rulebase will be optimised (i.e., for the lead), compared to the two
rulebases in TacIT (i.e., for the lead and the wingman). We will look at the specific effects of the
centralised method and the two decentralised methods in the experiment that is presented later
(see Section 3.3).

3.2.3 Implementing DECENT

In order to implement DECENT, we translate its two main properties to a dynamic scripting
environment. These properties are: (1) it is a decentralised method, and (2) it is a method with
communication among the agents.

DECENT shares its first property with TaciT, and its second property with cenT. We therefore
turn to TAcIT and ceNT for translating the two properties. First, as in TAcIT, we translate the
first property by letting the lead and the wingman in the two-ship be individual learners which
each use their own rulebase. Second, as in cENT, we translate the second property by allowing
the cGFs to send messages to each other, by means of the rules in the rulebases.

Figure 3.2¢ shows the learning process of a two-ship using DECENT. The lead (left) and the
wingman (right) each have their own rulebase. The dynamic scripting algorithm generates a script
from each of these rulebases (see Subsection 2.3.3, steps 1 to 3). The scripts are used to control
the behaviour of the cGFs in the simulation. Based on the outcome of the simulation, dynamic
scripting calculates the weight updates for the rules in the rulebases. During the simulations,
there is communication between the lead and the wingman.

We base the DECENT rulebases on the rulebases that are used by the TacriT lead and wingman.
We make two changes to these rulebases. The first change is that we add broadcast actions to the
rules in the rulebases. The broadcast actions allow the cGFs to communicate to each other what
actions they each are performing. The second change is that we replace five of the filler rules
by response rules, i.e., rules that only perform actions upon the reception of specific broadcasts.
Below, we describe the two changes. At the end of the subsection, we briefly discuss the number
of rules that are included in scripts when DECENT is used.

Broadcast actions. We append a broadcast action to each of the regular rules and the default
rules (except for default rule 5 of both the lead and the wingman, see Subsection 3.2.1).
The appended action sends the intention of the rule that fires to the other cGF in the
two-ship. We call the appended action the broadcast action because it indiscriminately
sends a message to the other cGF, with no regard for whether (1) the sending cGF or (2)
the receiving cGF expects the message to be useful. It is up to the rules in the script of
the receiving cGF to take action (or not) upon receiving the message (see below, Response

rules).

46 3.3 Experimental setup

As an example of the appended broadcast action, each rule that makes the cGF fire a
missile now also sends the message “firing at opponent” to the other cGF. In total, we
identify seven intentions: (1) searching for an opponent, (2) tracking an opponent, (3)
firing at an opponent, (4) supporting a fired missile, (5) engaging an opponent detecting
by means of RwWR, (6) evading an opponent detected by means of RwR, and (7) evading a
detected incoming missile. The use of broadcast actions to send their intentions to each
other gives the cGFs (1) a coarse way to inspect each other’s internal state and (2) the

means of adjusting their own actions to those of the other ¢GF in the two-ship.

Response rules. During the design of the response rules, we noticed that it was a difficult task
to produce meaningful rules that respond to each of the different broadcasts. Therefore,
we only included five response rules. The five response rules are as follows.

1. If the other red cGF is evading an opponent or a missile from that opponent, head
towards the approximate location of the opponent.

2. If the other red cGF is tracking the opponent, firing a missile at the opponent, or
supporting a missile, then head towards the location of the opponent.

3. If the other red cGF is evading an opponent, also make an evasive manoeuvre by
turning 180 degrees.

4. Equal to response rule (3) but turn ninety degrees right.

5. Equal to response rule (3) but turn ninety degrees left.

Script sizes using DECENT

For DECENT, we use the same script size as for TaciT (s = 6). Furthermore, the sizes of the
rulebases of the lead and the wingman are also equal to those for TacrtT (26 and 31 rules,

respectively). As a result, the S;.qq and Syingman for DECENT are equal to those for TaciT as well.

3.3 Experimental setup

We design an experiment to determine which of the three coordination methods leads to the most
effective behaviour (i.e, leads to the highest amount of scenarios won). The experiment consists
of automated simulations. In this section, we present the setup of the experiment. The setup is
divided into six parts: a description of Lwacs (Subsection 3.3.1), the red team (Subsection 3.3.2),
the blue team (Subsection 3.3.3), the scenarios that were used (Subsection 3.3.4), the independent
and dependent variables (Subsection 3.3.5), and a description of our method of analysis and the
criteria for comparison (Subsection 3.3.6).

Team coordination 47

3.3.1 The Lightweight Air Combat Simulator

The simulations in this experiment are performed in the Lightweight Air Combat Simulator
(1wacs) simulation program. This prog