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Problem area 
Radar cross-section prediction 
methods are a welcome addition to 
experimental ways of ascertaining 
the radar cross-section of aircraft. In 
previous projects NLR has 
developed a prediction method for 
the radar signature of metallic 
fighter aircraft, possibly equipped 
with radar absorbing coating. With 
the advent of composite aircraft, 
such as modern fighter aircraft and 
RPAS, radar cross-section 
prediction methods must also be 
able to model the dielectric nature 
of composites. Composites are 
primarily applied to reduce the 
weight of the aircraft, but may also 
be used as radar-absorbing 
structures. 

The most accurate radar cross-
section prediction methods are 
based on the so-called integral 
equations which describe the 
electric and magnetic currents on a 
scatterer illuminated by a radar 
wave. There exist several 
formulations for the integral 
equations describing the scattering 
of dielectric bodies in literature. 
The advantages and disadvantages 
of the different formulations are not 
always clear. A wrong choice may 
result in inaccurate predictions 
and/or long computing times. The 
current paper investigates the 
accuracy of various formulations 
and their discretization, but also 
takes the efficiency of the 
formulations into account. 
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Description of work 
The two most popular formulations 
are the PMCHWT and Müller 
formulations. The first is accurate 
but difficult to solve, and the second 
is less accurate, but more easy to 
solve. Recent developments in finite 
element theory have improved the 
accuracy of the second formulation 
by changing the testing procedure. 
The usual, so-called, RWG test 
functions (which are also used to 
expand the currents) are replaced by 
so-called BC functions. 
 
The current paper compares the 
PMCHWT and Müller formulations 
(amongst others), tested with either 
RWG or BC functions. Moreover, it 
is investigated whether the BC 
functions can also be used to 
expand the magnetic current.  
 
The different formulations are 
rigorously compared on two 
canonical objects with low contrast. 
The formulations are evaluated on 
their order of accuracy, error, and 
condition number. 
 
Results and conclusions 
The different formulations have 
comparable performance on smooth 

objects, but behave quite differently 
on non-smooth objects. The 
formulations which use BC 
functions to expand the currents 
lose two orders of accuracy. Both 
the classical PMCHWT and Müller 
formulation lose one order. The 
modern Müller formulation using 
BC functions as testers maintains its 
second order of accuracy on non-
smooth objects.  
 
Hence, the modern Müller 
formulation performs best in terms 
of accuracy for low-contrast 
dielectric bodies. 
 
Applicability 
The radar cross-section prediction 
tool based on the modern Müller 
formulation will be able to predict 
the radar signature of modern 
fighter aircraft and RPAS. 
 
In particular, the prediction tool can 
model objects consisting of 
perfectly electrically conducting 
surfaces, various layers of dielectric 
material, and/or radar-absorbing 
materials. 
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1 Introduction

The computation of the frequency domain electromagnetic field scattered by a PEC object, as the

solution of a discretized boundary integral equation, used to be relatively straightforward. One

chooses a linear combination of the electric field integral equation (EFIE) and the magnetic field

integral equation (MFIE) formulation of the problem and a Galerkin finite element discretisation

based on an expansion of the electric current distribution in RWG basis functions. Deciding on

the balance between MFIE and EFIE is a trade-off between efficiency of the solution algorithm

and the accuracy of the solution obtained. A better understanding of the properties of the MFIE

operator revolutionized this approach with the introduction of an alternative set of test functions

by Buffa and Christiansen (Ref. 2). Using conformal testing, the accuracy of the discretisation

of the MFIE can be made comparable to that of the EFIE, without affecting its more favorable

properties for iterative solution (Ref. 4).

On the other hand, a plethora of algorithms can be constructed to compute the electromagnetic

field scattered by a dielectric object. Considerations are the choices for the basis and testing

functions and how the integral equations, the EFIE and MFIE for the different media, are com-

bined.

This discretisation should lead to a linear system of equations that can be solved efficiently and

accurately for a unique solution, for any meaningful excitation. This means the resulting ma-

trix should be square, have a moderate condition number, and be of full rank for every frequency

of the excitation. Because the matrix is not (necessarily) normal, the eigenvalue spectrum, the

condition number or the spectral condition number can not give conclusive information on the

efficiency the system can be solved with using an iterative method for general matrices, e.g. GM-

RES. This is analysed in the milestone paper by Greenbaum (Ref. 5) and also observed in the

experiments presented in (Ref. 16, 13).

In terms of accuracy, not only the order is important but also the norm in which the error is mea-

sured. For electromagnetic scattering problems it is the energy norm that is relevant and it is with

respect to this norm that the discretisation is required to fulfill an inf-sup condition in order to

guarantee optimal convergence. This property will guarantee that the physical energy in the ap-

proximation error will be small when a sufficiently large number of degrees of freedom are being

used. Finally, those formulations are preferred that do not require the discretisation of line inte-

grals but only of surface integrals, and allow modelling of composite objects, that is, discretisa-

tion of the surface currents on interface surfaces where more than two materials meet.

UNCLASSIFIED 3
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Originally, boundary integral equations (BIE) for dielectric scatterers were based on the now

classic formulations of the the PMCHW(T) (Ref. 10), the Müller (Ref. 11) equations, and CFIE

((Ref. 15) and references therein), and combined with either RWG or rotated RWG basis-functions

for expansion of both electric and magnetic current. An illustrative comparison of these formula-

tions is presented in Jung et al. (Ref. 6, 7). By combining the EFIE and MFIE directly or in their

rotated form, sixteen different formulations of the CFIE can be formulated. These are assessed

based on the accuracy of the current distribution and scattered field for a dielectric sphere, cube

and cylinder using linear combinations of RWG and rotated RWG functions for testing and ex-

pansion of the current distributions. Jung et al. show that combining the EFIE and MFIE does

not necessarily suppress interior resonances, and some combinations do not converge.

How the specific linear combination affects the convergence of the iterative solvers that are used

to solve the resulting linear system is addressed in Ylä-Oijala et al. (Ref. 13). Like in the case

of PEC scatterers, Fredholm equations of the first kind lead to accurate solutions but also to lin-

ear systems that are computationally intensive to invert, while Fredholm equations of the sec-

ond kind can not meet the accuracy of the former, especially for nonsmooth scatterers and/or

high contrast testcases, but generally give rise to linear systems of equations that can be signif-

icantly more efficiently solved. The accuracy of the latter is improved in (Ref. 16) by replacing

the RWG basis functions by Trintinalia-Ling (Ref. 8) basis functions, and in (Ref. 14) by replac-

ing the RWG test functions by (rotated) Buffa-Christiansen (Ref. 2) test functions without jeop-

ardizing the favorable properties of the resulting linear systems. An alternative based on the use

of pulse basis functions is presented in (Ref. 9). Although the theory behind the use of BC func-

tions as test functions for the MFIE or Müller formulations is not complete, an important aspect

is that the BC functions are in the dual of the range of integral operator (Ref. 14, 12).

In Ylä-Oijala et al.(Ref. 12) the use of dual basis functions in BIEs has been introduced in a

broader expolaration of all the possible combinations of disrcetizations using RWG and BC as

basis functions, and (rotated) RWG and BC as test functions. The main objective of the paper

was to experimentally establish the claim that the test space should be in the dual of the range.

The use of BC functions as basis functions was not explored in depth, whereas the resulting dis-

cretizations may have some desirable properties.

The current paper investigates the use of BC functions as basis functions in more detail, and

compares the resulting discretizations with state-of-the-art discretizations for dielectric bodies.

First, the performance of BC functions as interpolators is investigated numerically, establish-

ing the order of accuracy of the interpolation. It is demonstrated that the interpolation errors of

UNCLASSIFIED 4
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BC functions are not as high as predicted by generally valid upper bounds. Second, with rigor-

ous grid convergence studies the order of accuracy of different boundary integral formulation

for smooth and non-smooth objects of low contrast is determined. The condition numbers of the

system matrices is reported, as a first indication how efficiently the system can be solved. It is

shown that the formulations combining RWG and BC as basis functions demonstrate favourable

properties of the resulting system matrix, but their order of accuracy is lower than of the other

methods, which only use RWG as basis functions. The Müller formulation tested with BC func-

tions, as first introduced by Yan et al. (Ref. 14), provides the best choice, both in terms of accu-

racy and conditioning.

2 Different boundary integral formulations for dielectric bodies

For homogeneous dielectric materials both the electric current Js and the magnetic current Ms

are unknowns, and in order to obtain sufficient equations, one has to consider the EFIE, resp.

MFIE, in both media:

4πE inc
t = η1L

1(Js) + K 1(Ms)

4πη1H
inc
t = L1(Ms)− η1K

1(Js)

0 = η2L
2(Js) + K 2(Ms)

0 = L2(Ms)− η2K
2(Js),

where η1 is the impedance of the exterior medium and η2 the impedance of the dielectric. The

operators Li and K i are the integral operators acting on a tangential vector field X :

Li(X ) = jki

(ˆ
S

(
Xφ− 1

(ki)2
(∇′ ·X )∇′φ

)
dr ′
)

t

, (1)

K i(X ) =
( 

S
X ×∇′φdr ′

)
t

+ 2πn i ×X , (2)

where ki is the wavenumber in medium i, φ = e−jkR/R the free space Green’s function (R =

|r − r ′|), the normal n i on the surface S points into medium i (so n2 = −n1), and the subscript

t refers to the tangential part of the vector field.

The first two equations are a condition on a pair of currents (J ,M ) to be the traces of solutions

of the exterior Maxwell equations. Similarly, the last two equations are fulfilled by any pair of
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currents that are the traces of solutions to the interior Maxwell equations. As such, neither the

first two nor the last two can be solved uniquely in isolation from the other pair. This is a con-

sequence of the physical fact that solving the transmission problem requires knowledge of the

interior of the object.

In order to arrive at a set of equations that can be uniquely solved, certain linear combinations of

the exterior and interior equations need to be taken. Some of the most popular choices are briefly

revisited in the next paragraphs.

As explained in the introduction, we will be considering different formulations in the integral

formulation, different basis functions, and different testers used for the equations. Therefore

the integral equations will be formulated in the weak sense, including the test functions. In the

following, the EFIE will be tested with either RWG or n×RWG test functions, where the first

choice is conforming. The two formulations will be denoted by T-EFIE, resp. N-EFIE. The

MFIE will be tested with either RWG, n×RWG, or BC functions. These three formulations

will be denoted by T-MFIE, N-MFIE, and W-MFIE (W for well-tested). For PEC scatterers it is

known (Ref. 4) that T-MFIE is conforming (and unstable), N-MFIE is well conditioned, and W-

MFIE is both conforming, stable and well conditioned. With a stable discretization we mean that

the absolute value of the diagonal entry of the system matrix is greater than the off-diagonal en-

tries (note that this is not the same as diagonally dominant, which means that the absolute value

of the diagonal entry is greater than the sum of the absolute values of the off-diagonal entries).

Stability of a discretization is beneficial for the performance of linear solvers, but in general not

equivalent to a good condition number(Ref. 5).

For an integral operator X mapping the space of divergence conforming vector fields to curl con-

forming vector fiels denote

Xhh′ = 〈h, X(h′)〉,

for h, h′ in the divergence conforming function space. In this notation, the system matrix of

EFIE discretized with RWG functions for a PEC scatterer is

(Lfefe′ )ee′ ,

for the edges e, e′ of the mesh. Here, and in the following, fe will be the RWG function defined

on edge e, and ge the BC function. We will use the shorthand Lff for the matrix (Lfefe′ )ee′ .

Similarly, the system matrix of W-MFIE for a PEC scatterer is denoted by Kgf : the current is ex-

panded in RWG functions and MFIE is tested with BC functions. The system matrix of N-MFIE

for PEC is denoted by Knf : the MFIE is tested with n×RWG. From Cools et al. (Ref. 4) we
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know that the system matrices Lff , Lgg, Kgf and Kfg are stable and obtained from a conform-

ing testing procedure. (It should be noted that Lff and Lgg are not well conditioned; Calderon

preconditioning (Ref. 1) can improve the conditioning of these matrices).

The classical PMCHWT formulation, denoted by T-PMCHWT in this paper, solves the following

discretized equations:(
η1L

1
ff + η2L

2
ff K1

ff + K2
ff

−(K1
ff + K2

ff ) L1
ff/η1 + L2

ff/η2

)(
j

m

)

=

(
〈fe, 4πE inc

t 〉e
〈fe, 4πH inc

t 〉e

)
, (3)

where j , resp. m , are the expansion coefficients of the electric current Jh =
∑

e jefe, resp. of

the magnetic current Mh =
∑

e mefe. The identity-like terms in the K-operators cancel each

other (since the normals have opposite sign), ensuring that the hypersingular terms of the L-

operators dominate the system matrix. Hence, the T-PMCHWT is a stable formulation (Ref. 3).

The classical N-Müller formulation solves the following discretized equations:(
−K1

nf − µrK
2
nf L1

nf + k2
k1

L2
nf

L1
nf + k2

k1
L2

nf K1
nf + εrK

2
nf

)(
j

m/η1

)

=

(
〈n1 × fe, 4πH inc

t 〉e
〈n1 × fe,

4π
η1

E inc
t 〉e

)
. (4)

The hypersingular terms of the L-operators cancel each other, ensuring that the identity-like

terms in the K operators dominate the system matrix (the normal in the test functions are medium-

specific). So N-Müller is stable, but suffers from the same accuracy issues as N-MFIE for PEC

and tends to yield results that lack in accuracy compared to the EFIE, especially in the presence

of non-smooth geometries.

The modern Müller formulation of Yan et al. (Ref. 14), denoted by W-Müller in this paper, re-

places the n×RWG test functions with BC functions to obtain:(
−K1

gf + µrK
2
gf L1

gf −
k2
k1

L2
gf

L1
gf −

k2
k1

L2
gf K1

gf − εrK
2
gf

)(
j

m/η1

)

=

(
〈ge, 4πH inc

t 〉e
〈ge,

4π
η1

E inc
t 〉e

)
. (5)
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As demonstrated by Yan et al., the W-Müller formulation improves the accuracy compared to

that of N-Müller.

Although the diagonal blocks of T-PMCHWT and W-Müller contain the well-tested and stable

system matrices Lff and Kgf , the off-diagonal blocks are not well-tested. This may have a nega-

tive effect on the accuracy of the formulations. In the following, mixed formulations will be pre-

sented for which all the four blocks in the systems matrix are well-tested and stable. The mixed

formulations use different basis functions for the electric and magnetic current: the electric cur-

rent is expanded in RWG functions and the magnetic current is expanded in BC functions. The

mixed formulations have been first introduced in (Ref. 12).

The mixed formulation of PMCHWT, denoted by M-PMCHWT, is given by:(
η1L

1
ff + η2L

2
ff K1

fg + K2
fg

−(K1
gf + K2

gf ) L1
gg/η1 + L2

gg/η2

)(
j

m

)

=

(
〈fe, 4πE inc

t 〉e
〈ge, 4πH inc

t 〉e

)
, (6)

where m is now the vector of expansion coefficients of the magnetic current with respect to BC

functions. Note that the first equation is tested with RWG functions, whereas the second is tested

with BC functions.

The mixed formulation of Müller, denoted by M-Müller, is given by:(
−K1

gf + µrK
2
gf L1

gg − k2
k1

L2
gg

L1
ff −

k2
k1

L2
ff K1

fg − εrK
2
fg

)(
j

m/η1

)

=

(
〈gi, 4πH inc

t 〉i
〈fi, 4π

η1
E inc

t 〉i

)
. (7)

Note that again different test functions are used for the different equations.

Apart from the above formulations, four other formulations are evaluated in this paper, three

existing ones and a new one. The existing ones are CNF, CTF, and JMCFIE of Ylä-Oijala et

al. (Ref. 16). All three expand both the electric and magnetic current in RWG functions. Using

the notation at the beginning of the section, CTF is defined as{
1
η1

T-EFIE1 + 1
η2

T-EFIE2

T-MFIE1 + T-MFIE2;
(8)
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CNF is defined as{
N-EFIE1 + N-EFIE2

1
η1

N-MFIE1 + 1
η2

N-MFIE2;
(9)

and JMCFIE is defined as{
1
η1

T-EFIE1 + 1
η2

T-EFIE2 − 1
η1

N-MFIE1 − 1
η2

N-MFIE2

N-EFIE1 + N-EFIE2 + T-MFIE1 + T-MFIE2.
(10)

The last, new, formulation is a CFIE formulation, denoted by M-CFIE and based on the mixed

expansion as used in M-PMCHWT and M-Müller:(
αη1L

1
ff + (1− α)η1K

1
gf αK1

fg − (1− α)L1
gg

αη2L
2
ff + (1− α)η2K

2
gf αK2

fg − (1− α)L2
gg

)(
j

m

)

=

(
α〈fi, 4πE inc

t 〉i − (1− α)〈gi, 4πη1H
inc
t 〉i

0

)
. (11)

The M-CFIE is a linear combination of M-EFIE and M-MFIE in the weak sense. Note that the

diagonal blocks are not dominant in the M-CFIE formulation. Also note that the system matrix

of the corresponding W-CFIE, defined as a linear combination of T-EFIE and W-MFIE, contains

columns with only the unstable matrices Kff and Lgf , turning it useless.

3 Buffa-Christiansen functions as interpolators

In the mixed formulations defined in the previous section, the BC functions are used as basis

functions. It is not obvious that the BC functions are good interpolators, on the contrary, there

is reason to think they are not. Being defined as a linear combination of RWG functions on the

barycentric mesh, the BC functions are not continuous on a triangle. Hence the classical proof

for interpolation accuracy using a sufficiently smooth mapping of the triangle to a master ele-

ment breaks down.

Numerical experiments have been performed to assess the performance of BC functions as in-

terpolators. Let J be an arbitrary tangential, divergence conforming, vector field on the object.

Given a mesh, the current can be either expanded in RWG or BC functions, as:

J ≈
∑

e

jRWG
e fe, J ≈

∑
e

jBC
e ge,
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since both basis functions are divergence conforming. The expansion in basis functions is com-

puted in the weak sense, by testing the above expressions with test functions defined on the same

mesh and solving the resulting system. The choice of the test function is determined by two re-

quirements:

• the test function should be in the dual of the divergence conforming function space, that is,

the curl conforming function space;

• the resulting system should be well-conditioned.

Examples of curl-conforming test functions are the rotated RWG and BC functions: n×RWG

and n×BC. As the system matrices 〈n × fe, fe′〉 and 〈n × ge, ge′〉 are both ill-conditioned,

the only options which satisfy both requirements are to test the RWG expansion with n×BC

functions, and the BC expansion with n×RWG functions.

In order to investigate the error in the interpolation, a norm on the difference between the exact

current and the interpolated current could be taken. We prefer to compute the radar signature

from the interpolated current and compare that with the radar signature of the RWG interpola-

tion obtained on a very fine mesh. The main reason for this is that in most applications the radar

signature is the quantity of main interest.

Let H be the magnetic field of a plane wave. The function to be interpolated is the electric cur-

rent defined by the field n ×H restricted to the surface of the scatterer. The magnetic current is

set to zero. Two geometries are considered: a sphere and a cube. The sphere has a radius of 1m,

the cube a width of 1m, the frequency of the radar wave is 100MHz. The cube is aligned with the

coordinate axes and the wave direction of the plane wave corresponds to 10 degrees azimuth and

45 degrees elevation. Polarization is vertical. The first mesh has a mesh width of λ/7, where λ is

the frequency of the radar wave, and the mesh width is halved with each successive mesh. A grid

series consisting of six meshes is generated in this way. The farfield radar signature is computed

from the interpolated electric current. The error in the farfield radar signature is computed with

respect to the signature on the finest, sixth, mesh in the series using the RWG basis functions.

This numerical experiment is comparable to the numerical experiment on the accuracy of the

identity operator in Section IV of Yan et al. (Ref. 14). The electric current on the scatterers is

the same in both experiments, being the current on a completely transparent scatterer. Yan con-

siders both electric and magnetic current and assesses the accuracy of the numerical discretiza-

tion by measuring to what extent the farfield signatures of the two currents cancel each other (a

completely transparant scatterer induces no scattered field). In the current numerical experiment

only the farfield signature of the electric current is considered, which is more strict since errors
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Fig. 1 Grid convergence in the radar signature of the synthetic current on a sphere. The error

is computed as the difference between the solution and the RWG solution obtained on

the finest mesh. The errors of the RWG and BC expansions are indistinguishable.

in electric and magnetic currents cannot cancel each other. Note that Yan used only RWG expan-

sions.

Results are shown in Figure 1 for the sphere and Figure 2 for the cube. For the smooth geome-

try of the sphere, the RWG and BC expansions are undistinguishable. For the cube, results are

different: generally the slope in the error is steeper. The error in the RWG expansion diminishes

faster than the error in the BC expansion, but non-smoothly.

The radar signature RCSh computed from the interpolated current is assumed to satisfy the Richard-

son interpolation ansatz:

RCSh = RCSexact + Chα + O(hβ) (h → 0),
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Fig. 2 Grid convergence in the radar signature of the synthetic current on a cube. The error is

computed as the difference between the solution and the RWG solution obtained on the

finest mesh.
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Table 1 Order of accuracy of the radar signature of a synthetic current

sphere cube

mesh RWG BC RWG BC

3 1.62 1.62 3.56 2.62

4 2.38 2.38 1.96 3.18

5 1.92 1.92 4.06 3.17

6 1.99 1.99 2.46 3.04

where RCSexact is the exact radar signature from the continuous current, h the mesh width, α

the order of accuracy, C the order constant, and β > α. Neglecting the higher order terms, the

Richardson interpolation ansatz contains three unknowns, which can be determined if we com-

pute the discretized radar signature on three different meshes. The orders of accuracy obtained

from Richardson interpolation on a successive series of three meshes is shown in Table 1.

For the smooth geometry of the sphere both interpolators shows second order accuracy. For the

cube, the order of accuracy is surprisingly third order for the BC expansion, and between second

and fourth order for the RWG expansion.

Based on these numerical experiments there is no reason to dismiss the BC functions as interpo-

lators. Their performance is comparable to RWG basis functions.

Remark: The performance of the interpolators depends heavily on the testing procedure. In the

above, conformal testing has been applied. Nonconformal testing (RWG expansions tested with

RWG functions and BC expansions with BC functions) gives different results: the RWG ex-

pansion is second order on both sphere and cube, but the BC expansion fails to converge. This

demonstrates that in the design of numerical schemes both basis and test functions should be

chosen with care.

4 Results

4.1 Dielectric sphere - frequency sweep
Simulations are performed for a dielectric sphere of radius 1m, εr = 5, for a frequency range

from 100MHz to 138MHz. So as not to pollute the results with grid effects, different meshes are

used for each frequency, each with a mesh width of λ/10, where λ is the wave length inside the

dielectric. Results are compared with the Mie series.

UNCLASSIFIED 13



  
NLR-TP-2015-268 

  
 16 

 

UNCLASSIFIED
NLR-TP-NLR-TP-2015-268

Fig. 3 Radar signature of the dielectric sphere at different frequencies
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Fig. 4 Error in the radar signature of the dielectric sphere at different frequencies (as compared

with the Mie series)
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Fig. 5 Error in the radar signature of the dielectric sphere at different frequencies (as compared

with the Mie series) for the best performing combinations

Overall results are shown in Figure 3. All methods are capable of predicting, at least qualita-

tively, the behaviour of the signature as a function of the frequency. There is, however, quite

some scatter in the results. The relative error with the Mie series is presented in Figure 4 on

a logarithmic scale. Relative errors up to 10% are present. The largest errors occur at the fre-

quency of 115 MHz, where the gradient in the signature is large. The methods CNF, N-Müller,

and JMCFIE have the largest errors overall. The results for the other methods are presented

(again) in Figure 5 for ease of comparison. Of these six methods, none can be said to be much

better than the others.

The condition numbers of the system matrices of the different formulations have been computed.

There is little dependence on frequency within the given frequency range, and at this grid refine-
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ment level there is a little difference between the different formulations. The condition numbers

will be discussed in more detail in Section 4.4.

4.2 Dielectric cube - frequency sweep
Simulations are performed for a dielectric cube of width 1m, εr = 2, for a frequency range from

100MHz to 350MHz. The cube is aligned with the coordinate axes and the incident plane wave

has an azimuth angle of 10 degrees, an elevation angle of 45 degrees, and vertical polarization.

So as not to pollute the results with grid effects, different meshes are used for each frequency,

each with a mesh width of λ/10, where λ is the wave length inside the dielectric.

Overall results are shown in Figure 6. All methods predict the same behaviour of the signature

as function of the frequency. Note that the signature is on a logarithmic scale. As there is no an-

alytic or reference solution for this case, the grid convergence results of the next sections will be

used to evaluate the different formulations.

4.3 Dielectric sphere - grid convergence
Simulations are performed for a dielectric sphere of radius 1m, εr = 5, at a frequency of 100MHz

on a series of three meshes. The second mesh is the same as used in Section 4.1 for that fre-

quency, the first mesh is once coarsened (about four times less triangles), and the third mesh once

refined (about four times more triangles), with respect to this mesh.

As shown in Figure 7 all formulations give convergent results. From the series of three grids, the

order of accuracy of the methods can be computed from Richardson interpolation. All methods

show at least second order accuracy, apart from maybe N-Müller (see Table 2).

4.4 Dielectric cube - grid convergence
Simulations are performed for a dielectric cube of width 1m, εr = 2, at a frequency of 250MHz

on a series of three meshes. The second mesh is the same as used in Section 4.2 for that fre-

quency, the first mesh is once coarsened, and the third mesh once refined, with respect to this

mesh (as for the sphere).

The results are shown in Figure 8. All formulations give convergent results, but generally at re-

duced order of accuracy (see Table 2). Only CTF and W-Müller maintain their second order ac-

curacy. The reduction in order of accuracy is the most dramatic for the mixed formulations: the

order of accuracy of M-Müller decreases from 2.52 on the sphere to 0.84 on the cube and the

M-CFIE results are not even monotone. The cause of the reduction in accuracy for the mixed

formulations can be the use of the BC functions as basis functions, which have known issues
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Fig. 6 The radar signature of the dielectric cube at different frequencies
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Fig. 7 Grid convergence of the radar signature of the dielectric sphere at 100 MHz
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Table 2 Orders of accuracy obtained from the grid convergence studies

method sphere cube

T-PMCHWT 2.29 1.39

M-PMCHWT 2.36 0.46

N-Müller 1.73 1.41

W-Müller 2.47 2.57

M-Müller 2.52 0.84

CTF 2.45 2.10

CNF 1.97 1.62

JMCFIE 2.02 1.62

M-CFIE 2.57 n.m.

with sharp edges. On the other hand, this cannot explain the reduction in order of accuracy of the

other formulations.

For a given mesh size, the error in the four methods CNF, JMCFIE, N-Müller, and W-Müller, is

greater than in the other methods. This is also true for the simulations on the sphere, apart from

W-Müller. This means that for these methods a finer mesh is required to reach a given accuracy.

The condition numbers for the grid convergence studies of the sphere, resp. the cube, are tabu-

lated in Table 3, resp. Table 4. The Müller formulations, CNF, and JMCFIE, have comparable

condition numbers, which do not increase significantly with grid size. For the other methods the

condition number increases with mesh size, but at different rates, with M-PMCHWT scoring the

worst. For the classical formulations (which use RWG or n×RWG as testers) it is interesting

to see that the methods with the best accuracy (T-PMCHWT and CTF) have increasing condi-

tion numbers. As in the PEC case, W-Müller combines accuracy with low condition numbers.

Although in general the condition numbers are not good predictors of the number of iterations

required for a linear solver to converge (when the matrix is not symmetric or hermitian (Ref. 5))

in this case the condition number relates well with the required number of iterations: the number

of GMRES iterations for convergence to a relative residual of 10−6 with only a diagonal precon-

ditioner is 25 for M-Müller, 330 for M-CFIE, and 615 for M-PMCHWT, on the medium mesh of

the cube.

5 Discussion and conclusions

Different formulations of the discretized integral equations for dielectrics have been compared.
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Table 3 Condition numbers for the sphere

method coarse medium fine

T-PMCHWT 47 205 995

M-PMCHWT 179 487 3085

N-Müller 30 39 33

W-Müller 35 31 39

M-Müller 50 44 50

CTF 21 89 430

CNF 15 16 71

JMCFIE 10 16 35

M-CFIE 66 147 484

Table 4 Condition numbers for the cube

method coarse medium fine

T-PMCHWT 21 84 373

M-PMCHWT 87 223 63000

N-Müller 13 13 11

W-Müller 16 20 17

M-Müller 23 21 20

CTF 16 61 273

CNF 11 11 13

JMCFIE 9 9 19

M-CFIE 63 101 233

UNCLASSIFIED 21



  
NLR-TP-2015-268 

  
 24 

 

UNCLASSIFIED
NLR-TP-NLR-TP-2015-268

Fig. 8 Grid convergence of the radar signature of the dielectric cube at 250 MHz

Of the ‘classical’ methods which use RWG functions to expand the currents and RWG or rotated

RWG functions as testers, CTF performs best in terms of accuracy on the given two geometries.

CTF is second order accurate both on the sphere and on the cube, and achieves good results on

relatively coarse meshes. T-PMCHWT obtains comparable results but the order of accuracy is

lower on the cube. The condition numbers of CTF and T-PMCHWT are relatively large.

The mixed formulations perform equally well as the classical methods on the smooth geometry

of the sphere, but their order of accuracy deteriorates more severely on the cube. Most probably,

the reduction in order of accuracy is caused by the use of BC functions as interpolators. For non-

smooth geometries and especially near the geometric corners the distortion in mapping from a

planar regular master element to the local physical element is much larger than in the smooth

UNCLASSIFIED 22



  
NLR-TP-2015-268 

  
 25 

 

UNCLASSIFIED
NLR-TP-NLR-TP-2015-268

regions of the object. This may explain the higher impact on using BCs as interpolators on non-

smooth geometries.

Based on the results in this paper, the conclusion is that an improved representation of the off-

diagonal blocks in the system matrix does not improve the accuracy of the overall method.

The well-tested Müller formulation which uses BC test functions, performs best in terms of or-

der of accuracy and in terms of condition number, both on smooth and non-smooth geometries.

The only drawback is that for the cube the error on a given mesh is greater than the error of es-

tablished methods such as T-PMCHWT and the mixed method M-Müller. In order to establish if

this is a consistent feature of W-Müller, more grid convergence studies on non-smooth geome-

tries should be performed.

All-in-all, for low-contrast dielectric bodies, the W-Müller formulation of Yan et al. (Ref. 14)

seems the best choice for modelling dielectric bodies, both in terms of accuracy and efficiency.
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schemes for electromagnetic surface integral equations. International Journal of Numerical

Modelling: Electronic Networks, Devices and Fields, 25:525–540, 2012.

UNCLASSIFIED 24



  
NLR-TP-2015-268 

  
 27 

 

 

UNCLASSIFIED
NLR-TP-NLR-TP-2015-268
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