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Problem area 
It is common practice to determine 
the noise impact of aircraft (both 
civil and military) by using 
computations, rather than by 
measurements. Noise impact 
computations usually make use of 
noise levels, measured at a 
relatively small distance from the 
aircraft, combined with a 
propagation model. These 
propagation models are based on 
linear acoustics and account for 
effects like atmospheric absorption 
and lateral attenuation. 
In the past decades, however, 
evidence has been found that linear 
acoustics is inadequate to describe 
the propagation of high-intensity jet 
noise. More specifically, it is found 
that the high frequency part of the 

spectrum is decaying much slower 
than predicted by linear acoustics. 
This behaviour is attributed to 
nonlinear effects in the propagation.  
 
Description of work 
In this paper a computation method 
is described that is based on a 
frequency-domain approach for a 
broadband time signal.The method 
is used to conduct a parameter study 
on the effects of nonlinear 
propagation in terms of overall 
sound pressure levels.  
 
Results and conclusions 
Although measured data are not 
reproduced accurately in a 
quantitative sense, the effects 
attributed to nonlinear propagation 
are qualitatively the same in both 
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computed and measured results: 
acoustic energy is transferred from 
the centre frequencies to the higher 
frequencies, leading to a 
significantly lower decay of this 
part of the spectrum. 
For typical values of the noise 
produced by a fighter jet in the near 
field (~ 10 m), the nonlinear effect 
may be of the order of 6 dB. Even if 
the starting point of the propagation 

is taken at a more practical distance 
(~ 50 m), the nonlinear effect still 
makes a considerable difference in 
the outcome of noise impact 
studies. 
 
Applicability 
The method presented here, can be 
used to improve the noise impact 
assessment related to military jet 
aircraft. 
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On the effect of nonlinear propagation on perceived jet noise levels 
H.H. Brouwer, National Aerospace Laboratory NLR, The Netherlands 
 
Abstract 
It is common practice to determine the noise impact of aircraft (both civil and military) by 
using computations, rather than by measurements. Noise impact computations usually make 
use of noise levels, measured at a relatively small distance from the aircraft, combined with a 
propagation model. These propagation models are based on linear acoustics and account for 
effects like atmospheric absorption and lateral attenuation. 
In the past decades, however, evidence has been found that linear acoustics is inadequate to 
describe the propagation of  high-intensity jet noise. More specifically, it is found that the 
high frequency part of the spectrum is decaying much slower than predicted by linear 
acoustics. This behaviour is attributed to nonlinear effects in the propagation.  
In this paper a method is described that is based on a frequency-domain approach for a 
broadband time signal. Example calculations are presented, on the simulation of an 
experiment on an F/A-18E/F aircraft, during a static engine run-up test. Although the 
measured data are not reproduced accurately in a quantitative sense, the effects attributed to 
nonlinear propagation are qualitatively the same in both the computed and the measured 
results: acoustic energy is transferred from the centre frequencies to the higher frequencies, 
leading to a significantly lower decay of this part of the spectrum. 
In addition, a parameter study is presented on the effects of nonlinear propagation in terms of 
overall sound pressure levels. The main conclusions of this study are: 
 The sound levels at large distances, predicted by a nonlinear propagation method are 

smaller than those predicted by a linear method. 
 For the same shape of the spectrum, the difference between ‘nonlinear’ and ‘linear’ 

results mainly depends on the product of the sound level and the peak frequency at the 
starting point of the computation.  

 For typical values of the noise produced by a fighter jet in the near field (~ 10 m), the 
nonlinear effect may be of the order of 6 dB. Even if the starting point of the propagation 
is taken at a more practical distance (~ 50 m), the nonlinear effect still makes a 
considerable difference in the outcome of noise impact studies. 

 
 
Nomenclature 
A = dimensionless diffusivity 
c0 = small-signal speed of sound 
f = frequency 
fs = sample rate 
fc = peak frequency 
LA = A-weighted Overall Sound Pressure Level 
M = ratio of peak frequency to frequency resolution  
N = number of Fourier coefficients 
P = dimensionless acoustic pressure 
PSD = Power Spectral Density 
p = acoustic pressure 
Q = parameter in simulation of broadband spectrum 
r = radial distance 
t = time 
x = distance in one-dimensional problems 
x  = plane-wave shock formation distance 
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Greek: 
 = atmospheric absorption coefficient 
  = dimensionless atmospheric absorption coefficient 
0 = thermoviscous attenuation coefficient 
 = dimensionless coefficient of nonlinearity 
 = sound diffusivity for a thermoviscous fluid 
 = integer parameter, equals 0 for a one-dimensional problem and 1 for a three-

dimensional problem 
 = dimensionless retarded time 
0 = density of air 
 = dimensionless distance 
 = retarded time 
 = angular frequency 
 
subscripts: 
0 = reference 
l = linear propagation model 
nl = nonlinear propagation model 
rms = root-mean-square 
s = source 

 
 
1. Introduction 
It is common practice to determine the noise impact of aircraft (both civil and military) by 
using computations, rather than by measurements. Noise impact computations usually make 
use of noise levels, measured at a relatively small distance from the aircraft, combined with a 
propagation model. These propagation models are based on linear acoustics and account for 
effects like atmospheric absorption and lateral attenuation. 
In the past decades however, evidence has been found that linear acoustics is inadequate to 
describe the propagation of high-intensity jet noise, as generated by fighter aircraft like the F-
22 or the F/A-18 1. More specifically, it is found that the high frequency part of the spectrum 
is decaying much slower than predicted by linear acoustics. This behaviour is generally 
attributed to nonlinear effects in the propagation. In order to verify this assumption, and to 
enable a quantitative assessment of the nonlinear effects, computational methods are required 
for the numerical simulation of the nonlinear propagation of broadband noise. In the recent 
past two such methods have been published2,3. 
Computational methods for nonlinear propagation are usually based on the (generalised) 
Burgers equation for the acoustic pressure (e.g. Ref. 4). In the case of the original, one-
dimensional Burgers equation, analytical approximations are known for an initial sinusoidal 
waveform. No such solution is known, however, for the generalised Burgers equation, which 
incorporates 3-dimensional spherical spreading. A second, even more complicating aspect is 
that a main component of jet noise (in the case of subsonic jets the only significant one) is 
mixing noise. This broadband noise is generated by stochastic, turbulent processes, and 
solutions for deterministic, periodic time signals seem useless for this application. 
Therefore, most prediction methods are focused on the Power Spectral Density (PSD), a 
quantity that contains meaningful time-averaged spectral information, but no phase 
information. The PSD is usually the quantity in which experimental results are reported. For 
the PSD, being the Fourier transform of the second order moment of the pressure time signal, 
an equation can be derived by using the Burgers equation for the pressure. However, in the 
right hand side of this equation a third order moment appears, which again can be inserted 
into the Burgers equation, leading to a right hand side with a fourth order moment. By 
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continuation of this scheme an infinite hierarchy of equations is obtained. In some papers the 
analysis is based on a truncated series, but it appears that such a series cannot predict the 
nonlinear propagation over longer distances5. In Ref. 6 an attempt is made to remedy this 
shortcoming by transforming the second term of the series into a new differential equation, 
valid for the whole domain. In this approach it is assumed that the initial signal is Gaussian, 
and stays almost Gaussian. Another method has been proposed by Menounou and 
Blackstock7. Their approach is based on including ever-higher order moments, all evaluated 
at the source, while marching the numerical solution forward along the spatial variable. At 
present their model does not incorporate spherical spreading nor atmospheric absorption.  
Furthermore it can only be used if the moment of any order can be evaluated at the source. 
The authors give two examples where this is possible: a sinusoidal waveform and a Gaussian 
stochastic process.  
In the present paper a method is described that is based on solving the generalised Burgers 
equation in the frequency-domain, starting from a measured or simulated time signal. A 
simulated time series is used in case only an initial (source) PSD is known (i.e. no phase 
information). By using a time signal no assumptions are needed with respect to the higher 
order averaged moments of the acoustic pressure. The way in which the data, representing a 
pressure time series, are handled in the presented method is similar to the way measured data 
are handled in digital signal processing.  
In section 2 of the paper the basic equations are derived and the solution method is explained. 
The results of the application to a jet noise experiment are presented in section 3. In section 4 
a parameter study is presented, which gives some insight in the expected magnitude of 
nonlinear effects, depending on noise level and characteristic frequency. Results in this 
section are given in terms of the A-weighted Overall Sound Pressure Level, to facilitate an 
estimate of the effect of nonlinearity on environmental impact studies. Finally, conclusions 
and recommendations are given in section 5. 
 
 
2. Basic equations and solution procedure 
In Refs. 4 and 8 it is shown that the weakly nonlinear propagation of acoustic waves is 
described by the Burgers equation. ‘Weakly nonlinear’ means here that terms of the relative 
order of (u0/c0)

2 are neglected, where u0 is the velocity amplitude of a plane wave and c0 is 
the small-signal speed of sound. In Ref. 8 it is argued that for a plane wave the relative error 
is less than 0.5% at a sound level of 154 dB. 
The (one-dimensional) Burgers equation is given by: 
 

 
2
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 (1) 

 
where p is the acoustic pressure, x the spatial variable, β the coefficient of nonlinearity, ρ0 the 
ambient density of air, τ = t – x/c0 is the retarded time, and δ is the sound diffusivity for a 
thermoviscous fluid. Equation (1) does not include spherical spreading nor the absorption by 
molecular relaxation. A generalised form of the Burgers equation that does include these 
effects is given by: 
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where r is the radial distance and  is the atmospheric absorption coefficient. The parameter 
 equals 0 for a one-dimensional problem and 1 for a three-dimensional problem. To solve 
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this equation we follow a procedure outlined in Ref. 8, pp. 312-314. Note that details, e.g. in 
the scaling, may not be the same. First, we introduce the following dimensionless variables: 
 
 0 0 0/ , / , , ,P p p r x A x x            (3) 

 

where p0 is a reference pressure, 0 a reference angular frequency, 3
0 0 0 0/x c p   is the 

lossless plane-wave shock formation distance for a signal with source condition 
p = p0 sin(0t), and 2 3

0 0 0/ 2c   the thermoviscous attenuation coefficient at frequency 0. 
Substituting this into Eq. (2) we find: 
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To solve Eq. (4) we assume that the pressure can be written as a finite Fourier sum: 
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   (5) 

 
The integer number M (which is not present in Ref. 6) is introduced because we intend to 
apply the method to broadband noise. The frequency resolution determined by Eq. (5) should 
be much smaller than the frequencies of main physical interest (i.e.  << 0), which 
necessitates the factor M. In practice, this factor is determined by the frequency at which the 
initial spectrum has its maximum. Note that *

n nP P  , where * denotes complex conjugate, 
because P is real. Substitution of Eq. (5) into Eq. (4) and rearranging terms according to 
Ref. 8 yields: 
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   (6) 

 
where it is assumed that P0 (the time-averaged pressure) vanishes. So we end up with N 
coupled ordinary differential equations.  
Starting from a time series representing a broadband noise signal (either from measurement 
or simulation) at some distance r0 (or equivalently  0), the initial Fourier coefficients Pn can 
be determined, and the system of Eq. (6) can be integrated numerically to any other distance. 
Input to the algorithm is a pressure time series, i.e. a set of pressure values (samples) pj, in 
Pascal, denoting the pressure values at a given sample rate fs (in s-1), i.e. pj = p(tj) with tj = j/fs. 
First, the largest number (smaller than the total number of samples) is determined which is a 
power of 2, in order to enable the use of Fast Fourier Transforms (FFT’s). The result 
determines the number N. Note that the maximum frequency in the system is given by fs/2, 
and the frequency resolution by Δf = fs/N, which are relations well-known from digital signal 

analysis. The reference pressure p0 is set to 2 rmsp where the root-mean-square value is 
determined by: 

 2

1

1 N

rms j
j

p p
N 

   (7) 

 
Next an FFT routine is applied to the time series, yielding the complex amplitudes of the N/2 
frequency components. The reference parameter that reflects the level of nonlinearity, is the 
lossless plane-wave shock formation distance x . If there is no nonlinearity this parameter is 
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infinite. In the algorithm the value of x is determined for each frequency component, with 
the corresponding amplitude as reference pressure (note that summing the positive and 
negative frequency terms yields a real value). Out of this set of N/2 values for x , the smallest 
one is selected; the corresponding index is chosen as M, and the corresponding frequency 
determines 0. This procedure ensures that, if the input signal is a single pure tone, it satisfies 
p = p0sin(0t) (apart from a possible phase shift) and x satisfies its original definition. Now 
we have determined all the reference parameters necessary to make the equations 
dimensionless. 
Also input to the algorithm is a step size Δ. At each step in , the right hand side of Eq.(6), 
denoted here by RHSn(), is determined for n=1,2,3,….N/2 successively, by using the current 
values of {Pn}. Before moving to n+1, the new value of Pn is determined by 
Pn = Pn + Δ  RHSn(). This means that in the calculation of RHSn(), the new values of 
Pm are used if m < n, whereas the old values are used if m  n. This amounts to the 
application of an explicit Euler scheme at the low-frequency end (n=1), gradually evolving 
into an implicit Euler scheme at the high-frequency end (n=N/2). Stepping from a given 
initial value of   to a given end value, results into the final Fourier coefficients Pn, which 
can be transformed again, if desired, into a pressure time series.  
 
 
3. Application to test cases 
In reference 3 the method outlined above is applied to both a single pure tone and the jet 
noise experiment published in reference 1. The application to a single pure tone showed that 
for distances smaller than the lossless plane-wave shock formation distance, the results from 
the method presented here agree almost exactly with the analytic solution. For larger 
distances discrepancies occur, as finite Fourier sums cannot adequately represent shocks. 
The jet noise experiment described in reference 1 consisted of the measurement of the noise 
of an F/A-18E/F aircraft. In this experiment noise data were acquired at distances of 18 m, 
74 m, and 150 m from the nozzle of this aircraft, during a static engine run-up test. In this 
section we will try to simulate the propagation from 18 m to 150 m, for the military thrust 
case. The spectrum measured at 18 m (red curve of Fig. 1) is used to create an input time 
signal.  

 
The measured time series, needed as input of the algorithm, was not available to the author. 
Therefore, a broadband time signal was constructed, starting from the plotted Power Spectral 

 
Figure 1. PSD of F/A-18E/F noise at 18 m (from Ref. 1). 
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Density, written as PSDs(f). The objective thus is to construct a time series of N samples 
corresponding to a sample rate fs, the Power Spectral Density of which equals PSDs(f). This 
is achieved in the following steps: 
 A sequence of N random numbers satisfying a Gaussian distribution with zero mean and 

unit variance is generated. This sequence represents band-limited white noise. 
 This white noise time series is Fourier-transformed. 
 The Fourier coefficients are scaled to the starting spectrum PSDs(f). 
By application of an inverse Fourier transformation, a broadband time signal is obtained with 
the desired PSD. 
It is observed that the low frequency part of the (Mil) spectrum at 18 m behaves as f 1.7, 
whereas the high frequency part behaves as f--2.7. Therefore, the following approximation for 
the PSD was adopted: 
 

 
19 1.7

10
s 11 4.4

2.5 10
PSD ( ) 10 log

4.21 10

f
f

f

 
    

 (8) 

 
with f in Hz. With this function as input, a time signal was generated, using the procedure 
described above. This time signal consists of N = 216 samples, with a sample rate of  
fs = 216 s-1, leading to a time record of 1 s, a frequency resolution of 1 Hz, and a maximum 
analysis frequency of 32768 Hz. The Overall Sound Pressure Level (OASPL) of the 
simulated time signal is 148 dB, close to the measured result 147 dB. 
The time signal is fed into the computer program outlined in reference 3, with r = 18 m as 
starting point and r = 150 m as end point. The atmospheric absorption coefficients are 
determined according to the method by Bass et al.10 ,11. 
The result (averaged over 32 blocks of 1024 data) is shown in figure 2, together with the 
measured results, the extrapolation from 18 m based on linear acoustics, and the results 
computed by Gee et al. (Ref. 2) based on a time-domain method. 

The effects attributed to nonlinear propagation are present in both predicted curves and the 
measured data: acoustic energy is transferred from the centre frequencies to the higher 

150 m Measurement

Linear Pred. from 18m

Nonlinear Pred. from 18 m, Ref.2

Nonlinear Pred. from 18 m, present method

 
Figure 2. Measured and predicted PSD of F/A-18E/F noise at 150 m 
(partly from Ref. 2). 
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frequencies, leading to a significantly lower decay of this part of the spectrum. Quantitatively 
however, both predicted curves deviate significantly from the measured data. The cause of 
this is unknown; the effect of ground reflections on the measured data may be part of the 
cause. In the lower frequency region the predicted curves are different as well; it is not clear 
whether this is caused by differences in the method or in the input data. At and above the 
centre frequencies the agreement between both predicted curves is excellent. 
Although the application to these test cases do not constitute a definite validation, the results 
seem to justify the use of the method as a research tool, e.g. to study the effect of nonlinearity 
on noise impact computations, which will be done in the next section. 
 
 
4. Parameter study on the results of noise impact computations 
To study the effects of noise level and characteristic frequency on the magnitude of nonlinear 
effects, we will focus on the differences in the accumulated A-weighted Overall Sound 
Pressure Level at infinity, LA(r=) in dBA, computed with linear propagation and with 
nonlinear propagation, from a given starting point r0: 
 
 , 0 , 0 , 0( ) ( ; ) ( ; )A nl A nl A lL r L r r L r r        (9) 

 
In practice ‘infinity’ means a distance rmax where LA,nl(r0) has become negligible. Starting 
with a given initial time signal, the propagated time signal will be calculated for a series of 
distances (i.e. values of r0), up to rmax, by using the nonlinear propagation model. From each 
of these distances the resulting time signal will also be propagated to rmax with the linear 
model, and LA,nl(r0) can be evaluated from both time signals at rmax . The definition of 
LA,nl(r0) is illustrated in figure 3. 
 

For the present study we will make use of a simulated generic jet noise time signal. For the 
initial PSDs of this signal we make the choice: 

 

LA,nl

LA,l

r0 rmax

LA,nl(r0)

 
 
Figure 3. Definition of the accumulated nonlinear effect on the A-weighted 
Overall Sound Pressure Level, as function of starting distance r0 . 
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This choice means that the spectrum is proportional to f 2 at low frequencies and to f –2 at high 
frequencies, not uncommon to what is observed in test data or resulting from theoretical 
models (see e.g. reference 12). The maximum sound pressure level occurs at f = fc . The 
Overall Sound Pressure Level of this spectrum can be evaluated analytically: 
 

 10OASPL 10 log
2 2 c

Q

f

 
  

 
 (11) 

 
The expression given in eq. (10) is used to create a broadband time signal, following the 
procedure presented in the previous section, with a sample rate fs = 81920 Hz, number of 
samples N = 8192, yielding a frequency resolution of 10 Hz. As baseline case we choose an 
OASPL of 150 dB at a distance of 10 m from the source, and a peak frequency of 400 Hz, 
leading to Q = 3.6  1017. If the OASPL is determined numerically from the simulated 
broadband time signal, up to a frequency of 20 kHz, the result is 149.65 dB. The A-weighted 
level is LA = 148.28 dBA. In the sequel the baseline case will be denoted by case I.  
For the second case (II), we simply double the initial pressure values, i.e. Q = 1.44  1018, 
leading to an increase of the sound pressure level of 6 dB. In the third case (III) we take the 
same level as in the baseline case, but with a peak frequency which is twice as high: 
Q = 7.2  1017,  fc = 800 Hz. For all these cases it appears that at 250 m the nonlinear effects 
become negligible, so we take rmax = 250 m. The accumulated difference LA,nl is computed 
for the distances r0 = 10 m, 25 m, 50 m, 100 m, 150 m, and 200 m. The results are plotted in 
figure 4. 

The first observation is that the differences are negative: acoustic energy is scattered to 
higher frequencies, which results into a lower total acoustic energy. This can be understood 
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Figure 4. Computed results for the accumulated nonlinear effect, as 
function of starting distance r0 . 
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by comparing a N-shaped pressure wave to a sinusoidal wave of the same amplitude: the 
latter has a higher rms value. This effect is enhanced by atmospheric damping, which is 
stronger at higher frequencies. A second observation is that doubling the amplitude yields 
virtually the same result as doubling the peak frequency, and the effect of both corresponds 
approximately to rescaling the distance. Indeed, it can be deduced easily from eq.(4) that the 
rescaling would be exact without the damping terms (i.e. the last two terms at the right hand 
side). To show this more explicitly, the results are plotted against the local value of x , where 
x is the lossless plane-wave shock formation distance, defined below eq.(3). In this 
definition p0 refers to the amplitude of a sinusoidal wave. For a broadband noise we adopt the 
following definition: 
 

 0 2 rmsp p  (12) 

 
which is consistent with the definition for a sinusoidal wave. The value of x is evaluated at 
each starting distance, i.e. based on the local sound pressure level. 

Only the value at the lowest value of x for the baseline case is somewhat deviant (by less 
than 1 dB), otherwise the curves coincide.  
Plotted on a logarithmic scale, the curves follow a straight line for the largest part, which 
gives us the opportunity to give a simple approximate expression for the accumulated 
nonlinear effect, as a function of x at the starting distance: 
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with x given in meters. 
For our baseline case (fc = 400 Hz) the value of LA,nl becomes zero for p0 = 46.2 Pa, 
corresponding to LA = 121 dBA, meaning that for this and lower noise levels the nonlinear 
effect is negligible. Note that the approximate relation given by eq.(13) may not be generally 
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Figure 5. Computed results for the accumulated nonlinear effect, as 
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valid; it only applies to a spectrum of the form of eq.(10), and the form it takes after 
(nonlinear) propagation. 
In figure 6 the value of LA,nl, calculated from eq.(13), is presented in a color plot, as function 
of the Overall Sound Pressure Level and peak frequency f0. Note that the OASPL is not A-
weighted; the value for LA is usually a few dB’s lower, depending on the spectrum. 

The values obtained for the accumulated nonlinear effect in the present analysis could have a 
significant effect on the result of noise impact studies. For example, if an aircraft produces 
the noise level of the baseline case defined above at a distance of 10 m (which is comparable 
to that of the F-18 measurement described in section 3), and the A-weighted noise level LA 
would be measured at 50 m, an analysis based on linear acoustics would introduce an error of 
1.3 dBA. In a noise impact study expressed in, say, Lden, 1.3 dBA corresponds to a difference 
in number of flights of 35%. When measurements are performed nearer to the aircraft or if 
the spectrum peaks at higher frequencies, this difference will even be larger. 
 
 
5. Conclusions 
In this paper a method is presented for the numerical simulation of the nonlinear propagation 
of broadband noise. The method is based on a frequency-domain approach. Results of this 
method applied to a published test on the noise of a F/A-18E/F aircraft have been compared 
to the measured data and the results of an alternative, time-domain method. The results of 
both computation methods compare well; there is only qualitative agreement with the test 
results. Although the method has not been validated yet, it was applied to a parameter study 
on a simulated broadband, jet noise-like sound spectrum. 
The main conclusions are: 
 The sound levels at large distances, predicted by a nonlinear propagation method are 

smaller than those predicted by a linear method. 
 For the same shape of the spectrum, the difference between ‘nonlinear’ and ‘linear’ 

results mainly depends on the product of the sound level and the peak frequency at the 
starting point of the computation. An simple, approximate relation between the plane-

 
Figure 6. The accumulated nonlinear effect at infinity from eq.(13), 
as function of OASPL and the peak frequency at the starting point. 



  
NLR-TP-2008-232 

  
 13 

wave shock formation distance at the starting point, and the nonlinear effect at infinity is 
given. 

 For typical values of the noise produced by a fighter jet at in the near field (~ 10 m), the 
nonlinear effect may be of the order of 6 dB. Even if the starting point of the propagation 
is taken at a more practical distance (~ 50 m), the nonlinear effect still makes a 
considerable difference in the outcome of noise impact studies. 

For future research it is recommended to obtain suitable test data for the validation of this 
(and other) computation methods for nonlinear propagation. 
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