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Summary1

The physical problem under consideration here is turbulent natural convection at a high Rayleigh

number in a square cavity. The flow is driven by a temperature difference imposed on opposing

vertical side-walls of the enclosure. The buoyancy mechanism forces the flow upward near the

hot wall and downward near the cold wall. Due to the presence of horizontal walls, an enclosed

circulating flow is established, which is characterized by thin fast-flowing vertical boundary layers,

thick slowly-moving horizontal boundary layers and an almost stagnant core region. Furthermore,

the corners where the vertical boundary layers impinge on horizontal walls are characterized by

strong streamline curvature.

The results presented in this report show that a two-equationk-" based turbulence model predicts

the mean velocity profiles quite well in regions with no or only moderate streamline curvature.

However, for more accurate predictions of strongly curved flow and of the turbulence structure in

general, a more advanced turbulence model is needed, e.g. a stress/flux transport model.

The models used here are thek-" model of Chien [12] and the stress/flux transport model of

Peeters and Henkes [10], including the impinging-jet fix of Craft and Launder [11]. The two-

equation model is based on the standard Jones and Launder model, applying different constants

and low-Reynolds-number modifications in the" equation. The Reynolds-stress model is based

on the Gibson and Launder model and on similar closure hypotheses for the turbulent heat-flux

transport equation, which originate from the period 1970–1980 and can be regarded as standard

second-moment closure technology.

The application of a stress/fluxtransport model reflects the approach in selecting a turbulence

model to contrast with the two-equation eddy-viscosity model. A more economical (explicit)

algebraic stress/flux closure could possibly have provided the same qualitative similarities and

differences between the results as found here.

1The research reported in this NLR Technical Publication has been conducted at Delft University of Technology

and has been supported by the Netherlands Foundation for Fundamental Research on Matter (FOM) with financial aid

from the Netherlands Technology Foundation (STW).
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Abstract

A computational study of turbulent natural convection in a side-heated near-cubic enclosure at a

high Rayleigh number (Ra = 4:9 � 10
10) is performed, aimed at gaining a better insight into

the flow pattern, particularly in the corner regions. Two types of thermal boundary conditions are

applied at the horizontal walls: adiabatic and isothermal. Also, two kinds of lateral vertical walls

are studied, corresponding to different experimental approximations of adiabatic conditions: the

first by insulation and the second by imposing a stratified wall heating. The latter conditions ensure

better flow two-dimensionality, with the temperature stratification on the vertical walls close to

that expected in the parallel mid-plane. Computations are performed with both a two- and three-

dimensional code using a low-Reynolds-number differential second-moment stress/flux closure

and the relatedk-" model simplification. The numerical computations show that the second-

moment closure is better in capturing thermal three-dimensionality effects and strong streamline

curvature in the corners. Thek-" model, however, still provides reasonable predictions of the first

moments away from the corners.
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Nomenclature

D depth of cavity

gi gravitational acceleration vector(0;�g; 0)

H height of cavity

k turbulent kinetic energy,1
2
u2i

L width of cavity

`I integral length

ni wall-normal unit vector

P pressure

Pr Prandtl number,�=�

Ra Rayleigh number,g��TH3Pr=�2

Ret turbulence Reynolds number,k2=(�")

T temperature

T 0 temperature fluctuation

Tav average temperature,(Thot + Tcold)=2

Tcold cold-wall temperature

Thot hot-wall temperature

Tref reference temperature

t time

Ui velocity vector,(U; V;W )

U� wall-friction velocity (�w=�)1=2

ui velocity-fluctuation vector,(u; v; w)

uv turbulent shear stress

Vb buoyant velocity,(g��TH)
1=2

xi Cartesian coordinate vector,(x; y; z)

xn shortest distance to the nearest wall
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Greek symbols

� thermal diffusivity

� volumetric thermal-expansion coefficient,1=Tav

" dissipation ofk

� dimensionless temperature,(T � Tcold)=�T , �T = Thot � Tcold

�, ' angles

� kinematic viscosity

� mass density

�w wall shear stress,��j@Up=@xnjw

Subscripts

b buoyant

m mechanical

n wall-normal

p wall-parallel

rms root-mean-square

s stress

t turbulent

th thermal

w wall value
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1 Introduction

The EUROTHERM/ERCOFTACWorkshop “Benchmark Computation and Experiment for Turbu-

lent Natural Convection in a Square Cavity” (Henkes and Hoogendoorn [1]) revealed that, despite

simplicity in geometry and boundary conditions, computational predictions with various models

showed significant discrepancies between each other and with the experimental results. Based on

this experience, two important conclusions can be drawn: first, there is a lack of experimental

cavity data suited for validation of turbulence models and numerical computations and, second,

the available Reynolds-averaged Navier-Stokes (RANS) turbulence models are not adequate for

confined buoyancy-driven flows1. In the meantime, some improvements in modelling buoyancy-

driven flows have been reported, primarily at the level of algebraic stress/flux modelling, see e.g.

Dol et al. [2], Hanjalić [3] and Kenjereˇs [4]. The study by Dol et al. [2] revealed serious short-

comings of the eddy-diffusivity approach to model buoyancy-driven flows. It also showed that

the algebraic stress/flux models fail to reproduce the individual terms in the transport equations

in accord with Direct Numerical Simulations (DNS) and that a straightforward analogy with the

modelling practice for isothermal turbulent flows and its simple extrapolation to model buoyancy

effects fails in many respects. Recently, a systematic term-by-term derivation of a thermal second-

moment closure model, based on DNS results for turbulent natural convection in a vertical infinite

plane channel, was reported by Dol et al. [5]. The simplicity of the geometry and boundary condi-

tions of such a channel flow, which can be computed accurately with standard numerical methods,

allowed to focus on details of the turbulence modelling of each term in the transport equations.

Further testing of this model should be done in other situations, primarily with heating from below.

Although the term-by-term based model of Dol et al. [5] is certainly appealing, for the computa-

tion of complex high-Rayleigh-number three-dimensional flows it requires a fine numerical grid

in regions adjacent to solid walls and, consequently, significant computational effort.

The aim of the work reported here was to perform full three-dimensional (3D) computations with

one of the popular low-Reynolds-numberk-" models and with a low-Reynolds-number differen-

tial second-moment stress/flux closure, using realistic boundary conditions. Although the models

chosen may not be the current ‘state-of-the-art’, a comparative analysis of the effects captured

or ignored by these two distinct classes of models is expected to provide useful information on

the model performance for this class of flows and to indicate possible directions for model im-

provements. The experiments used are those reported by Opstelten [6] and Dol et al. [7] for the

1The models presented in ref. [1] include a variety of two-equation eddy-viscosityk-" closures with wall functions,

their low-Reynolds-number variants and with some modifications for buoyancy. Also the application of two differential

and several algebraic second-moment models were reported.
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side-heated near-cubic enclosure (H=L=1:5D) depicted in Fig. 1. As compared with earlier pub-

lished experimental investigations in similar cavities (Cheesewright et al. [8], King [9]), these ex-

periments ensured better two-dimensionality, which reduces the uncertainty in the interpretation of

results and makes them suitable for two-dimensional (2D) model validations. The thermal bound-

ary conditions, which are often the origin of deviations between measurements and computation

results, are better defined. The Rayleigh number considered,Ra = 4:9 � 10
10, was sufficiently

high to reduce the importance of the laminar-to-turbulent transition in the downstream corners,

which were in focus of our study. The temperature difference was kept sufficiently low to neglect

the temperature dependence of fluid properties, eliminating thus any hereto related uncertainty.

The experimental boundary conditions are used to perform 2D and 3D computations for various

situations, using the Peeters and Henkes [10] second-moment closure with (and without) the Craft

and Launder [11] wall-reflection model and using the Chien [12]k-" model, both including low-

Reynolds-number and near-wall modifications. The finite-volume numerical computations, with

a fine staggered grid and higher-order schemes, ensure confidence in the computational results,

enabling thus far a reliable validation of the turbulence models used.
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2 Numerical computations

The applied numerical methods and turbulence models are all adopted from existing literature.

Hence, we give here only a brief outline of major features of the method used.

2.1 Governing equations and discretization method

The flow considered is described mathematically by the Reynolds-averaged Navier-Stokes (RANS)

equations, including the averaged energy equation for the mean temperature field that drives the

flow by the buoyancy force. The transport equations have been simplified using the Boussinesq

approximation, which is valid for fluids with Prandtl numbers close to one (for dry airPr = 0:71)

and a sufficiently small overheat ratio. The comparison of 2D computational results obtained

with and without using the Boussinesq approximation (for details see Henkes and Hoogendoorn

[1]) shows a negligible difference in the vertical velocity profiles aty=H = 0:5 for the present

boundary conditions. Applying the Boussinesq approximation, the Reynolds-averaged equations

for mass, momentum and energy conservation reduce to:

@Uj

@xj
= 0 (1)

DUi

Dt
= �gi�(T � Tref)�

1

�

@P

@xi
+

@

@xj

 
�
@Ui

@xj
� uiuj

!
(2)

DT

Dt
=

@

@xj

 
�
@T

@xj
� T 0uj

!
(3)

The turbulent stressuiuj and heat fluxT 0uj are provided from the turbulence closure models,

which are discussed below. The resulting equations are discretized using the finite-volume method.

The cavity is ‘filled’ with a non-uniform rectangular staggered grid with a very fine spacing near

the heated vertical walls needed for accurately resolving the steep gradients in the thin buoyancy-

driven boundary layers. All variables are calculated straight up to the walls, applying the models

with low-Reynolds-number and near-wall modifications. Homogeneous Dirichlet boundary con-

ditions are applied at all walls for all variables, except for the temperature and the pressure, of

which the latter does not need any boundary conditions.

Second-order accurate central discretization is used, except for the convection terms where a

second-order accurate bounded upwind scheme is adopted. This bounded upwind scheme belongs

to the class of TVD/MUSCL schemes described by Hirsch [13]. For all variables, the upwind
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scheme is based on the two nearest upstream grid points (known as the Linear Upwind Differenc-

ing Scheme, LUDS). Van Leer’s TVD limiter [14], which keeps the solution locally bounded, is

applied to the velocity components and the temperature, while the ‘minmod’ type (see Hirsch [13])

is applied to the turbulence variables. Because the limiters are nonlinear, which is essential for

global second-order accuracy, the TVD/MUSCL scheme is implemented in a deferred-correction

manner: deviations from the first-order upwind scheme were lumped into the source term. For

more details, see Dol [15].

Numerical accuracy was checked by monitoring the variables and residuals during the iteration

process (see below) and by refining the grid from90� 60 to 120� 80, 150� 100 and180� 120

for 2D computations. Unless explicitly stated otherwise, the presented results are always for the

finest grid. In case of the 3D computations, the finest grid consisted of90 � 60 � 30 cells.

Consequently, full grid independence is not claimed for the 3D calculations. Nevertheless, useful

qualitative information can be obtained by comparing the 3D computation results with the 2D

ones obtained on the coarsest grid. When the problem is symmetric with respect to the centre line

at (x=L; y=H) = (0:5; 0:5), which is the case when experimental boundary conditions are not

applied, only half of the domain needs to be calculated. For the 3D calculations, the computational

domain can be (further) reduced by 50% when the thermal conditions allow symmetry with respect

to the plane atz=D = 0:5.

2.2 Iteration method

Although the computations performed in this study all aim at a steady solution, a fully-implicit

first-order time integration is used to obtain this solution, the time marching thus serving as a

kind of under-relaxation. Hence, the transient terms are kept in the discretized equations and the

computations are started from the best initial guess available (different turbulence model, grid size

or Rayleigh number, first-order upwind). The pressure field is solved using the SIMPLE method

and a preconditioned Conjugate Gradient solver applied to the whole domain. All other variables

are solved using a line-Gauss-Seidel procedure, sweeping alternatingly in the horizontal direction

within z-planes, the latter being traversed forwards and backwards in the spanwise direction in

case of 3D computations. The computations are considered to be converged when the maximum

absolute change per iteration of the solution and the maximum absolute finite-volume residuals

are below prescribed thresholds. In addition, visualizations of the streamlines, isotherms and

other isolines are monitored during the iteration process.
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2.3 Turbulence models

The turbulence models used to close the RANS equations in the present work are the low-Reynolds-

numberk-" model (KEM) of Chien [12] and the second-moment closure (SMC) of Peeters and

Henkes [10].

The k-" model of Chien [12] is based on the standardk-" model with low-Reynolds-number

and near-wall modifications. The model is similar to the Jones and Launder model, but with

damping functions expressed in terms of both the turbulence Reynolds numberRet = k2=(�")

and wall distancex+n = xnU�=�. The" equation contains an additional term expressed also as a

function ofx+n . While the use of wall distance seriously limits the application of the Chien model

to only regular geometries (the treatment of corners in the present study is already somewhat

problematic), its computational robustness offers decisive advantage as compared with physically

sounder or more advanced but computationally more demanding models. Another simplification

in the present work is the use of the isotropic eddy diffusivity to provide the turbulent heat flux

(‘simple gradient-diffusion hypothesis’), i.e.T0uj = �(�t=�T )@T=@xj , which was shown to have

serious deficiencies in capturing the thermal turbulence field both for heating from below and from

sides, see e.g. Ince and Launder [16] and Hanjali´c [3]. Nevertheless, the Chien model is adopted

here because thek-" computations are only used to illustrate principal differences in performance

of the eddy-diffusivity and second-moment modelling approaches.

In the second-moment closure, the modelled transport equations for the turbulent stressuiuj and

heat fluxT 0uj are solved to close the mean equation set (2)–(3). The model of Peeters and Henkes

[10], used in this work, is based on the basic high-Reynolds-number Reynolds-stress model of

Gibson and Launder [17] and on the flux model of Launder [18] for forced heat convection in

which the buoyancy terms are introduced. In addition to retaining molecular diffusion in all equa-

tions, low-Reynolds-number and near-wall effects are introduced by adopting the modifications of

the" equation of Chien [12] and with some additional interventions. The complete model (see ref.

[10]) is summarized in the Appendix, and it will suffice here to only outline its major features:

– The stress dissipation tensor"ij is adopted from Hanjali´c and Launder [19], with near-wall

values expressed in terms of turbulent stress components, wall distance and wall-normal

unit vectors.

– The coefficientc"3 in the" equation, associated with the buoyancy production, is evaluated

from the expressionc"3 = tanh j cot(�)j, where� = 6 (Ui; gi) (no summation), leading to

c"3 � 1 in the vertical boundary layers, andc"3 � 0 in the horizontal flows, with a smooth

transition in between.
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– Two versions of the wall-reflection model are considered: the original Gibson and Launder

[17] model and the model of Craft and Launder [11]. The latter was originally designed to

improve predictions in stagnation regions, as encountered in impinging jets, and is regarded

here as a better approach to modelling the flow in cavity corners.

– The nearest wall distance, used in both wall-reflection models, is computed from the har-

monic mean of distances from all surrounding walls, integrating the reciprocal of the dis-

tance over the space angle (Dol [15], see also the Appendix).

In the following text, the abbreviations KEM and SMC will be used for thek-" and second-moment

closure models, respectively, with the latter subdivided into SMC-PH for the model of Peeters and

Henkes [10] and SMC-CL for the same model but extended with the impinging-jet correction of

Craft and Launder [11].

Admittedly, both variants of the SMC model used have a number of deficiencies, to mention the

simple linear model for the pressure-strain term with constant coefficients in both theuiuj and

T 0uj equations (no low-Reynolds-number and near-wall modifications, except through the inclu-

sion of viscous diffusion and modifications of the" equation). Despite these simplifications and

relatively robust but less exact treatment of the near-wall asymptotic behaviour, the computations

with the SMCs cause much more numerical difficulty than with the KEM. It should also be noted

that the full SMC for convective heat transfer entails the solution of 13 differential transport equa-

tions for a 2D flow and 17 for a 3D flow, even if only one length-scale-providing equation is

considered, here for". Besides, the set of SMC equations have to be stabilized using additional

source-term relaxation, staggering of the grid points and introduction of a pseudo eddy-viscosity

in the mean momentum and energy equations, which are provided from the KEM expressions. For

all these reasons, the use of a full SMC for complex industrial 3D buoyancy-driven flows is still

not a viable option. For such a purpose, the algebraic models, derived by ‘truncation’ of differen-

tial stress/flux models, seem a better alternative (see e.g. Hanjali´c [3], Kenjereš [4]). Nevertheless,

the computations reported here can serve as useful, though to a certain degree only qualitative, in-

formation about the predictive performance of an SMC for a relatively complex 3D flow problem

and its comparison with a typical KEM.
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3 Results

In presenting the results, a distinction is made between 2D and 3D computations. Although we

start with the 2D results, the main focus is on the 3D computations, which are especially interesting

for the following reasons:

– To the authors’ knowledge, these are the first computational results for a side-heated 3D cav-

ity obtained using a fully differential second-moment closure for both the Reynolds stresses

and the turbulent heat fluxes, integrated up to the wall.

– The computations are performed using realistic boundary conditions obtained by experi-

ments, eliminating thus far any ambiguity related to possible mismatching of the computa-

tional boundary conditions.

– The confirmed validity of the Boussinesq approximation eliminates any doubt that a possible

departure from it may have caused a discrepancy between the Boussinesq-based computa-

tions and the measurements.

– The availability of measured boundary and field data allows to detect true effects of thermal

and mechanical three-dimensionality and to judge the ability of the KEM and the SMC to

reproduce these effects.

3.1 Two-dimensional computations

The application of adiabatic conditions at the horizontal walls has been customary in studies of

side-heated natural convection for a long time. Such a configuration was expected to minimize the

thermal influence of the horizontal walls on the flow, giving full attention to the vertical boundary

layers. 2D computations for such an adiabatic configuration (with isothermal vertical walls and

adiabatic horizontal ones) forRa = 5 � 10
10 were reported earlier by Dol et al. [20]. These

2D results were compared with experimental data available at that time, obtained with insulated

lateral walls (passive case, see next section). The adiabatic results for isotherms and streamlines

are shown in Fig. 2 by solid lines. The differences between the KEM and the SMC for the velocity

and temperature appeared to be quite large in the corner regions where the vertical boundary layers

impinge on the horizontal walls. The DNS data of Janssen [21] and the experiments of Opstelten

[6] supported qualitatively the SMC computational results. The impinging boundary layers carry

in their outer regions the entrained fluid that is colder than the local fluid in the upper left corner

and warmer than the fluid in the bottom right corner, causing in both regions notable reverse flow

loops and subsequent monotonic or oscillatory recovery. A small recirculation bubble, attached to

the horizontal wall downstream from the corner loop was detected in each corner. Detail plots also

depicted another, even smaller bubble, trapped in each loop. This phenomenon, accompanied with

strong streamline curvature, was, on the whole, better captured by the SMC than by the KEM.
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The SMC-CL impinging-jet correction damped somewhat the strength of the streamline loops,

but still much stronger flow reversal and weaker stratification was predicted by the SMC-CL than

by the KEM. The velocity profiles computed for adiabatic horizontal walls aty=H = 0:9 and

x=L = 0:1 (positions marked by dots in Figs. 2d–f) were compared with the experimental data

in Figs. 3 and 4 (passive case only). Fig. 4(b) shows that the SMC-CL impinging-jet correction

decreases the normal stress perpendicular to the horizontal wall. The correction, which is still

small aty=H = 0:9, improves the prediction of the velocity profile, as can be seen from Fig. 3(a)

for the horizontal component on which the effect is most felt. Just downstream of the impingement

at x=L = 0:1 (see Figs. 3b and 4a), the differences between the models are more pronounced

owing to a different prediction of position and size of the attached recirculation bubble. It is no

longer clear whether the impinging-jet correction improves the results, but one can say that the

SMC results are in better overall (qualitative) agreement with the experiments than the KEM.

However, the computation results forisothermalhorizontal walls, which corresponds to the ex-

perimental conditions, show that the effect of these boundary conditions on the flow structure is

rather large for the SMCs, as is clearly shown by the other lines in Figs. 2–4. The isotherms and

streamlines predicted by the SMCs are now almost equal to the KEM results, which means a large

stratification near the horizontal walls and consequently only little recirculation due to damped

turbulence levels and reduced entrainment in the vertical boundary layers. The conclusions drawn

from the comparison between the experiments and the computations for theadiabatichorizontal

walls do not apply anymore. In the sequel on the 3D results it will be made plausible that the dif-

ferences between the 2D computation results (isothermal horizontal walls) and the experimental

data are caused by 3D effects. The resemblance of the adiabatic 2D computation results with the

experiments is fortuitous and the added value of the SMCs is not as small as might be concluded

from the isothermal 2D computation results.

3.2 Three-dimensional computations

The availability of the measured thermal boundary conditions at all walls makes it possible to

extend the computations from two dimensions to three. This requires a large computational ef-

fort: the 3D computations converge very slowly because of some oscillations in the core region,

which do not have a large impact on the prediction of the flow in the boundary layers and corners.

Therefore, the convergence criterion is relaxed for the 3D computations.

A selection of results will be shown for two types of thermal boundary conditions at the lat-

eral walls, corresponding to two different experimental approximations of adiabatic conditions

by Opstelten [6] and Dol et al. [7]: (1) application of (imperfect) insulation, and (2) imposing a
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temperature distribution corresponding to a stratified wall heating minimizing uncontrolled heat

losses and thus improving flow two-dimensionality. The first situation is referred to as thepassive

caseand the second as theactive case. For both situations, the measured wall-temperature pro-

files have been applied in the computations. Furthermore, computations have also been performed

with perfect adiabatic boundary conditions at the lateral walls, which is referred to as theadiabatic

case. All computation results shown in this section are for isothermal horizontal and vertical (side)

walls.

Although different wall conditions generated somewhat different flow patterns close to the lateral

walls, we focus here, for brevity, only on the midplane atz=D = 0:5. Specific attention was given

to the corner flow and the vertical boundary layers, of which the latter have traditionally been in

focus of earlier literature on natural-convection cavity flows. More details can be found in Dol

[15].

3.2.1 The corner flow

In order to investigate whether 3D effects are responsible for the large deviations between 2D

computation results and the experimental data obtained for the passive case, Figs. 2–4 are replotted

with superimposed 2D and 3D results (in the mid-plane) enabling a direct comparison, see Figs. 5–

8. In Figs. 5 and 6, the left half shows KEM results, while the right half shows SMC-CL results. In

the upper half, 2D computation results are compared with 3D computation results for the passive

case. In the lower half, 3D computation results for the active and adiabatic case are compared.

Since the 3D computations have all been performed on a90�60�30 grid, the 2D results presented

here are for the90� 60 grid to enable comparisons with the same numerical resolution.

Fig. 5 shows that moving in sequence from the passive to the active, adiabatic and 2D case, the

isotherms in the left-upper quarter of the mid-depth plane of the cavity become less curved, with

the largest jump between passive and active, whereas the difference between the adiabatic and 2D

case remains relatively small. Apparently, an increase of heat losses through the lateral walls tends

to increase the curvature of the isotherms, while the presence of the lateral walls itself is of minor

influence in the mid-plane. Consequently, it can be concluded that the 3D effect has a thermal

nature (heat losses) and not a mechanical one (friction). A further observation that can be made

from Fig. 5 is that the differences between the KEM and the SMC(-CL), which are small for the

2D results, also increase with the heat losses. As expected, the second-moment closure predicts

stronger curvature than the KEM.

The influence of the thermal 3D effect on the streamlines is depicted in Fig. 6. The streamlines for
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the SMC-CL in the passive case show the same kind of corner structure as was obtained with 2D

computations applying adiabatic boundary conditions at the horizontal walls. On the other hand,

the stratification near the top wall (see Fig. 5) is very large for the passive case, whereas it was

small for the adiabatic 2D computations. It can be concluded that the destabilizing effect of the

heat losses is stronger than the stabilizing effect of the stratification.

Figs. 7 and 8 validate the corner flow structure as predicted by the SMC-CL in the passive case

by comparing the results with the corresponding measurements and with the other computation

results. The SMC-CL predicts the 3D corner flow better than the KEM does. In general, the

3D computations for the passive case yield higher values of velocity components and their second

moments than for the active-case and 2D computations and hence they are in better agreement with

the measurements in that respect. Again, similarity is observed with the 2D results for adiabatic

horizontal walls, shown in Figs. 3 and 4.

Comparison of the 2D computation results in Figs. 7, 8, 3 and 4 (isothermal horizontal walls)

illustrates the effect of grid refinement from90 � 60 to 180 � 120 (see also Figs. 5, 6 and 2).

Even aty=H = 0:9, the coarse grid results are still quite accurate. However, the differences are

more pronounced atx=L = 0:1, owing to the streamline curvature which requires fine grids for

accurate solutions. Further downstream, e.g. atx=L = 0:3, the coarse grid is sufficient, just as for

the vertical boundary layers and the core region.

In the horizontal boundary layers, far enough downstream for the turbulence intensity to become

small, the differences between the KEM and SMC-CL results are mainly due to convection of

upstream differences and are small compared to the 3D effect. Fig. 9 shows the horizontal velocity

along the top wall atx=L = 0:3 andx=L = 0:5. The 3D computational results are closer to the

measurements than the 2D ones, but the 3D results are still much smoother (i.e. more turbulent)

compared to the measurements, which exhibit notable oscillations when approaching the wall.

Fig. 10 shows that, more than the velocity components themselves (see Figs. 7b and 8a), the

profiles for their root-mean-square (rms) fluctuations atx=L = 0:1 look reasonably similar for

the KEM and the SMC-CL. This is surprising in view of the known inadequacy of the KEM for

predicting turbulent normal stresses and is probably due to the relatively low level of turbulence in

these cross sections. When compared with the measurements for the passive case, the turbulence

level for y=H < 0:9 is better predicted by the 3D computations than by the 2D computations,

which predict a lower level. However, even the 3D computations are unable to capture the sharp

near-wall peaks aty=H > 0:9, consistent with the prediction of the velocity components.
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3.2.2 The vertical boundary layers

The vertical boundary layers act as the driving force of the flow and their proper simulation is cru-

cial for accurate prediction of the rest of the flow downstream (corner, horizontal boundary layer)

and in the cavity core region. The vertical boundary layers have received a lot of attention in the

literature, both along semi-infinite plates (Tsuji and Nagano [22], Henkes and Hoogendoorn [23],

Peeters and Henkes [10]) and in cavities (e.g. Cheesewright et al. [8]). Fluid velocity develops a

wall-jet like profile with a peak very close to the wall, which needs to be resolved. Adequate wall

functions are not available and very fine grids are thus needed in the near-wall region. From a

modeller’s point-of-view, the major problem related to the vertical boundary layers is the laminar-

to-turbulent transition. Predicting laminar-to-turbulent transition is a challenge for any turbulence

model, particularly in external (buoyant or non-buoyant) boundary layers, when the transition oc-

curs by natural instability and less by turbulence entrainment from the outer flow. Unlike on an

infinite plate where the incoming flow can be fully laminar, even at moderate Rayleigh numbers

in enclosures the circulating fluid always convects some disturbances and remnants of upstream

decaying turbulence, despite possible laminarization along horizontal walls. Hence, the transi-

tion in enclosures is usually associated with a revival of weak background turbulence when the

conditions are favourable (sufficiently strong buoyancy and strain rate). In this respect, the transi-

tion in enclosures is less uncertain and more suitable for validating the transition performance of

a model. Nevertheless, most models with low-Reynolds-number modifications that perform rea-

sonably well for transitionalforcedconvection, predict a too late transition innatural-convection

boundary layers. Some other models are more successful, see e.g. Kenjereˇs [4]. A not very elegant

but effective remedy is the use of artificial triggering by injecting a sufficient amount of turbulent

energy into the laminar boundary layer at a given point in the upstream part of the developing

vertical boundary layer.

Figs. 11 and 12 show the vertical velocity at several heights in the hot vertical boundary layer.

First, in Fig. 11, the profiles in the laminar and transitional part of the boundary layers are shown.

At those locations, the differences between the computational results with different models and for

different boundary conditions are small owing to the low turbulence intensity, short development

track and relatively little (accumulated) influence of the lateral-wall boundary conditions. The

same applies to the measured results. The main differences appear between the computations and

the measurements. The numerical models are all able to predict the fully laminar (Fig. 11a) and

fully turbulent (Fig. 11c) boundary layer reasonably well, but are incapable to predict the transition

from laminar to turbulent in accordance with the experimental data (see Fig. 11b). For the hot

boundary layer, the measurements indicate a quick transition somewhere betweeny=H = 0:3 and

y=H = 0:5, whereas the transition trajectory obtained by the computations is longer, as it starts
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already aroundy=H = 0:1.

Since we focused only on the fully turbulent region, the local triggering suggested by Henkes [24]

is used here, providing fixed profiles for the turbulent kinetic energy and its dissipation rate in the

areas (x=L < 0:15, y=H < 0:15) and (x=L > 0:85, y=H > 0:85). Without this triggering the

numerical transition would have been delayed until as far asy=H = 0:7 along the hot wall. The

chosen triggering method ensures a fully turbulent boundary layer aty=H = 0:5. Fig. 12 shows

in more detail the profiles at the more downstream locations in the hot boundary layer, where both

the computations and measurements are now fully turbulent. Fig. 12 shows that the differences

between the measurements for the passive and the active case are reproduced by the computations.

The 2D computation results are in reasonably good agreement with the measurements (and com-

putations) for the active case. The excellent matching of the 3D SMC-CL computation results for

the passive case aty=H = 0:9 ensures that optimal starting conditions are provided for the corner

flow, in order to make a comparison between computations and experiments worthwhile.

The experimental data for the vertical velocity in the hot vertical boundary layer at heighty=H =

0:7 are shown for the passive (Fig. 13a) and the active (Fig. 13b) case. Also shown are lines that

represent the velocity profiles predicted by 2D and 3D KEM computations at the same location.

The computed profiles at heighty=H = 0:3 in the cold vertical boundary layer are added after

reflecting them with respect to the centre of the cavity. It can be observed that in the active case

all computational results coincide and agree quite well with the measurements, especially for the

maximum velocity close to the wall. This means that there is a high degree of two-dimensionality,

obtained by the thermally controlled lateral walls. Consequently, the measurements for the active

case are suitable for validation of 2D computations of the flow considered. Practical details are

given in Dol et al. [7].

The asymmetry caused by the heat losses through the insulated lateral walls in the passive case

is captured well by the 3D computations. Surprisingly, the reflected 3D results coincide with the

results from the 2D computations. This means that the flow downwards the passively-heated lateral

walls (see Dol et al. [7]) does not slow down the downward flow in the cold vertical boundary layer.

The additional flow along the lateral walls is counter-balanced purely by an increase in the upward

flow by more than 50% in the hot vertical boundary layer. Hence, the effect of heat losses through

the insulation of the lateral walls is a significant enhancement of the flow velocity in the hot vertical

boundary layer and, consequently, stronger impingement and streamline curvature in the left-upper

corner. However, a convincing explanation for this preference is lacking, since the decreased core

temperature leads to an increase of the local Rayleigh number in the hot vertical boundary layer
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and to a decrease on the opposite cold wall. Confusingly, the numerical results published by Ince

and Launder [25] show that the effect of three-dimensionality is mainly areductionof the vertical

velocity along thecold wall. These authors accounted for heat losses through the lateral walls by

using experimental wall-heat-transfer relations.

Figs. 14 and 15 show the rms of the velocity fluctuations in the hot vertical boundary layer at

y=H = 0:5 andy=H = 0:7. The higher the location, the more developed the boundary layer

becomes, and the larger is the separation between the passive case and the active case for both

the measurements and the computations. Of course, the turbulence level is largest for the passive

case, caused by the increased flow velocity, as reported above. The 2D results coincide with the

3D results for the active case almost everywhere, except at the outer edge of the boundary layer

where the 2D SMC-CL results yield larger normal stresses, especially aty=H = 0:7.

It is well known that, unlike second-moment closures,k-" models are unable to cope with turbu-

lence anisotropy, leading to unrealistically similar components of the normal stress at the same

location. Paradoxically, this would have been beneficial aty=H = 0:5, although the level pre-

dicted by the KEM is too low. The SMC-CL predicts the vertical component at this height quite

well, except for the peak very close to the wall that is measured for both the passive and active con-

figuration and that is supported by 2D DNS of Janssen [21]. Unfortunately, the strong anisotropy

predicted by the SMC-CL leads to a much too low level for the horizontal component. The ex-

perimental values ofurms at y=H = 0:5, on the other hand, are probably too large due to slow

oscillations of the horizontal velocity that have been observed at that location during the measure-

ments. Aty=H = 0:7, the experimental results indicate significant anisotropy, but the SMC-CL

still yields strong overpredictions, resulting in an overshoot for the vertical component, whereas

the horizontal component is predicted satisfactory.

Fig. 16 shows the turbulent shear stress in the hot vertical boundary layer. Aty=H = 0:5, the

computations underpredict the experimental results, but as mentioned above, the experimental

correlations at this location containing the horizontal velocity fluctuationu are probably too large.

At y=H = 0:7, the situation is opposite, although the discrepancy is less serious and the differ-

ences between the measurements for the passive and active case are predicted qualitatively correct.

The 2D results are again close to the active 3D results. Aty=H = 0:9, the shear stress is predicted

very well by the 3D computations, whereas the 2D computations underpredict the turbulence level.
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4 Conclusions

The computational study of turbulent natural convection in a near-cubic cavity with differentially-

heated isothermal side walls provides useful and novel information on the flow pattern and tur-

bulence characteristics in this generic type of buoyancy-driven internal flow for several sets of

boundary conditions. Considered are two types of horizontal walls, adiabatic and isothermal (cold

bottom and hot top wall), and two types of lateral walls, imperfectly-insulated (passive case) and

nearly-adiabatic (active case). The latter type is realized with stratified wall heating by which heat

losses are compensated to ensure a near-two-dimensional thermal situation. A second-moment

closure and ak-" model, both with low-Reynolds-number modifications, are used for two- and

three-dimensional numerical computations of the flow. The following conclusions are drawn:

1. The three-dimensional computations with thek-" model of Chien [12] and with the second-

moment closure of Peeters and Henkes [10], both with low-Reynolds-number modifications

allowing integration up to the wall, show realistic reproduction of the general mean flow

pattern. The second-moment closure, particularly with the improved model of Craft and

Launder [11] for the pressure-reflection term, shows to be superior to thek-" model in

capturing the strongly curved flow pattern in the corner regions, as well as in reproducing

3D effects owing to heat losses through the imperfectly insulated lateral walls. Despite

several known deficiencies of both models used, the computational results are believed to

yield useful qualitative information about the predictive performance of each class of models

in enclosed side-heated buoyancy-driven flows.

2. Because of needs to integrate the equations up to the wall and to resolve thin boundary lay-

ers with a sufficiently fine computational grid, the three-dimensional computations are pro-

hibitively tedious and computationally demanding. For computation of three-dimensional

complex internal buoyancy-driven flows, a middle-of-the route in form of algebraic models,

based on truncation of here considered or other differential second-moment closures, may

be more suitable for the time being.
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Appendix: Second-moment closure model

This appendix lists the equations, functions and constants used for the SMC-PH of Peeters and

Henkes [10] and the impinging-jet correction of Craft and Launder [11], which is referred to as

SMC-CL when applied to the SMC-PH.
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In the above equation for̀I, � runs through a horizontal plane intersecting the fixed point where

`I is to be determined,' runs through a side half of the vertical plane intersecting the mentioned

point and the mentioned horizontal plane at angle�, and` is the distance between the fixed internal

point and the running wall point.
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Fig. 1 A schematic picture of the cavity (a) and the plane at z=D = 0:5 (b). In the latter, possible

thermal boundary conditions and examples of streamlines (left half, circulating clockwise)

and isotherms (right half) are depicted.
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Fig. 2 Isotherms (a–c) and streamlines (d–f) in the left-upper quarter of the cavity with adiabatic

(—, 1: � = 0:82, 2: � = 0:76) and isothermal (– –, 3: � = 0:82, 4: � = 0:76) horizontal

walls. The results are obtained by 2D computations applying the KEM (a,d), SMC-PH

(b,e) and SMC-CL (c,f). The pitch between the isotherms is fixed at �� = 0:03. The

dots in (d–f) mark the positions x=L = 0:1 and y=H = 0:9.
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Fig. 3 The horizontal velocity U=Vb at y=H = 0:9 (a) and x=L = 0:1 (b). The symbols (�) are

measurements at z=D = 0:5 for the passive case and the lines are 2D computational

results for adiabatic (� � � = KEM, – – = SMC-PH, - - = SMC-CL) and isothermal horizontal

walls (— = KEM, –�– = SMC-PH, –��– = SMC-CL).
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Fig. 4 The vertical velocity V=Vb at x=L = 0:1 (a) and its rms fluctuation vrms=Vb at y=H = 0:9

(b). The symbols are measurements at z=D = 0:5 (� = passive, 4 = active case) and the

lines are 2D computational results for adiabatic (� � � = KEM, – – = SMC-PH, - - = SMC-CL)

and isothermal horizontal walls (— = KEM, –�– = SMC-PH, –��– = SMC-CL).
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Fig. 5 Isotherms in the left-upper quarter of the 2D cavity and of the 3D cavity’s midplane

(z=D = 0:5). The results are obtained by 2D computations applying the KEM (a: —) and

SMC-CL (b: —), and 3D computations applying the KEM (a: – – = passive, c: — = active,

– – = adiabatic case) and SMC-CL (b: – – = passive, d: — = active, – – = adiabatic case).
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Fig. 6 Streamlines in the left-upper quarter of the 2D cavity and of the 3D cavity’s midplane

(z=D = 0:5). The results are obtained by computations, see the caption of Fig. 5 for an

explanation of the line types.



- 34 -
NLR-TP-2000-467

0 0.05 0.10 0.15 0.20 0.25
0

5

10

15

20

(a)

U
=
V
b
�

1
0
�
3

x=L

0.75 0.80 0.85 0.90 0.95 1.00
�0:01

0

0.01

0.02

0.03

0.04

0.05

(b)

U
=
V
b

y=H

Fig. 7 The horizontal velocity U=Vb at y=H = 0:9 (a) and x=L = 0:1 (b). The symbols (�) are

measurements at z=D = 0:5 for the passive case and the lines are 2D computational

results for isothermal horizontal walls (— = KEM, – – = SMC-CL) and 3D computations

for the passive case (- - = KEM, � � � = SMC-CL).
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Fig. 8 The vertical velocity V=Vb at x=L = 0:1 (a) and its rms fluctuation vrms=Vb at y=H = 0:9

(b). The symbols are measurements at z=D = 0:5 (� = passive, 4 = active case) and

the lines are 2D computational results for isothermal horizontal walls (— = KEM, – – =

SMC-CL) and 3D computations for the passive (- - = KEM, � � � = SMC-CL) and active case

(–�– = KEM, –��– = SMC-CL, only for those cases for which measurements are available).
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Fig. 9 The horizontal velocity U=Vb at x=L = 0:3 (a) and x=L = 0:5 (b). The symbols (�) are

measurements for the passive case at z=D = 0:5 and the lines are 2D computational

results for isothermal horizontal walls (— = KEM, – – = SMC-CL) and 3D computations

for the passive case (- - = KEM, � � � = SMC-CL).
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Fig. 10 The horizontal (a) and vertical (b) components of the rms velocity fluctuation ui;rms=Vb

at x=L = 0:1. For an explanation of the symbols and line types, see the caption of

Fig. 9.
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Fig. 11 The vertical velocity V=Vb at y=H = 0:1 (a), y=H = 0:3 (b) and y=H = 0:5 (c). The

symbols are measurements at z=D = 0:5 (� = passive, 4 = active case) and the lines

are 2D computational results for isothermal horizontal walls (— = KEM, – – = SMC-CL)

and 3D computations for the passive (- - = KEM, � � � = SMC-CL) and active case (–�– =

KEM, –��– = SMC-CL).
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Fig. 12 The vertical velocity V=Vb at y=H = 0:7 (a) and y=H = 0:9 (b). For an explanation of

the symbols and line types, see the caption of Fig. 11.
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Fig. 13 The vertical velocity V=Vb at y=H = 0:7 for the passive (a) and active case (b). The

symbols (�) are measurements and the lines are 2D (� � �) and 3D (—, z=D = 0:5) KEM

computations (- - = 2D data and – – = 3D data at y=H = 0:3, reflected with respect to

the centre of the cavity).
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Fig. 14 The horizontal (a) and vertical (b) components of the rms velocity fluctuation ui;rms=Vb

at y=H = 0:5. The symbols are measurements at z=D = 0:5 (� = passive, 4 = active

case) and the lines are 2D computational results for isothermal horizontal walls (— =

KEM, – – = SMC-CL) and 3D computations for the passive (- - = KEM, � � � = SMC-CL)

and active case (–�– = KEM, –��– = SMC-CL).
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Fig. 15 The horizontal (a) and vertical (b) components of the rms velocity fluctuation ui;rms=Vb

at y=H = 0:7. For an explanation of the symbols and line types, see the caption of

Fig. 14.
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Fig. 16 The turbulent shear stress uv=V 2
b at y=H = 0:5 (a), y=H = 0:7 (b) and y=H = 0:9 (c). The symbols are measurements at

z=D = 0:5 (� = passive, 4 = active case) and the lines are 2D computational results for isothermal horizontal walls (— = KEM, – – =

SMC-CL) and 3D computations for the passive (- - = KEM, � � � = SMC-CL) and active case (–�– = KEM, –��– = SMC-CL).


