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Illustration of the global-local data exchange in the barrel and panel level  
optimisation process. 

 
Problem area 
International competition urges 
aeronautic industry in the 
Netherlands, as supplier for Airbus, 
to continuously enhance its 
performance in the engineering 
design process. The application of 
novel materials and innovative 
design methods is of key 
importance for the further reduction 
of design time and increased design 
confidence level.  
 
Composite materials are 
increasingly used on business jets, 
regional and commercial aircraft. 
Composite materials provide higher 
stiffness and strength to density 
ratios than metallic ones. They 
permit the design of more integrated 
structures, with fewer fasteners. 
They are less prone to progressive 
damage under in-service fatigue 
loads with current design rules and 
are also less sensitive to corrosion. 
Therefore, composite solutions can 

deliver lighter structures with less 
maintenance. 
 
The aim of the MAAXIMUS 
project (More Affordable Aircraft 
structure through eXtended, 
Integrated, & Mature nUmerical 
Sizing) is to demonstrate the fast 
development and right-first-time 
validation of a highly-optimized 
composite airframe. This will be 
achieved through co-ordinated 
developments on a physical 
platform, to develop and validate 
the appropriate composite 
technologies for low weight aircraft, 
and on a virtual platform, to identify 
faster and validate earlier the best 
solutions. 
 
Description of work 
This paper presents an innovative 
design method where detailed local 
FE analysis of panel buckling is 
applied in the global level 
optimisation. The required 
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computational efficiency is 
achieved by advanced use of 
surrogate modelling methods on the 
different levels, and by efficient 
representation of the optimised 
local configuration. This yields 
flexibility in the optimisation 
procedure and allows for efficient 
gradient based search methods as 
well as more costly GA-based 
search optimisations. 
 
Results and conclusions 
The method is demonstrated on a 
composite fuselage barrel design 
case considering common structural 

sizing variables like thicknesses and 
stringer dimensions. Optimised 
barrel designs are obtained where 
the constraints that are derived from 
the panel buckling analyses are 
active. The total computational cost 
for the complete local and global 
level optimisation procedures is in 
the order of days on common-
performance hardware. 
 
Applicability 
The method is applicable to 
composite structures but not 
specifically dedicated to these 
materials. 
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Summary 

This paper presents an innovative optimisation method for aircraft fuselage structural design. 
Detailed local finite element analyses of panel buckling are further processed such that they can 
be applied as failure constraints in the global level optimisation. The high computational costs 
involved with the finite element analyses are limited by advanced use of surrogate modelling 
methods. This yields high flexibility and efficiency in the local level optimisation procedure and 
allows for efficient gradient based search methods as well as more costly direct search 
optimisations like genetic algorithms (GAs). The method is demonstrated on a composite 
fuselage barrel design case considering common structural sizing variables like thicknesses and 
stringer dimensions. Optimised barrel designs are obtained where the constraints that are 
derived from the panel buckling analyses are active. The total computational cost for the 
complete local and global level optimisation procedures is in the order of days on common-
performance hardware. 
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Abbreviations 

ANN Artificial neural network 
stgoptA  Optimum stringer area on global level 

gc  Global level constraints 

glc  Global-local constraints 

lc  Local constraints 

DFEM Detailed Finite Element Model 
DOE Design of experiment 
DOF Degree of Freedom 
Ex, Ey Elastic Young’s moduli in x/y directions 

skinε , stringere  Strain in skin, stringer 

F  Load level applied in local level model 
maxmin , FF  Minimum and maximum load level applied in local level 

model 
FE Finite Element 

efmod  Mode factor to distinguish between skin- and frame or 
stringer modes 

gΦ  Barrel internal forces 

lΦ  Local loading 

Gxy Elastic shear moduli in x/y directions 
GA Genetic Algorithm 
GFEM Global Finite Element Model 

sth  Omega stringer height 
LL Limit load 

frglsk lll ,,  Eigenvalues for skin, global and frame buckling 
NxyNy,Nx,,N  Load intensities expressed in N/mm 

MAAXIMUS More Affordable Aircraft structure through eXtended, 
Integrated and Mature nUmerical Sizing 

gM  Mass of the barrel in global level model 

lM  Specific mass of the panel in local level model 
spm  Specific panel mass expressed in cross-sectional area 
stp  Stringer pitch 

skt  Skin laminate thickness 
skgoptt  Optimum skin thickness on global level 
stt  Stringer laminate thickness 
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),,( rϕθ  Spherical coordinates in which the load vector is expressed 
framestringerskin uuu ,,  Absolute displacement values in all the nodes of the skin, 

stringers and frames in the local level model 
UL Ultimate load 

stw  Omega stringer cap width 
gx  Design variables on global level 

lx  Design variables on local level 

νxy Poisson ratio 
 
 



  
NLR-TP-2012-377 

  
 7 

 

1 Introduction 

International competition urges aeronautic industry to continuously enhance its performance in 
the engineering design process. The application of innovative design methods and novel 
materials is of key importance for the further reduction of design time and increased design 
confidence level. On the materials side, carbon composite materials are being used more and 
more on commercial aircraft, up to more than 50% of the structural weight of current state of the 
art aircraft like the Boeing B787 and the Airbus A350 [1]. Composite materials have several 
advantages compared to metallic materials, such as higher ratios of stiffness and strength to 
density, less progressive damage under in-service fatigue and lower sensitivity to corrosion [1]. 
On the design methods side, fast and accurate design analyses and optimisation methods are a 
prerequisite to identify the most beneficial design options and to achieve optimised local sizing 
of structural components. But the design of large structures like aircraft fuselages requires a 
variety of tools and methods, including computationally expensive analyses, to accurately assess 
the typical failure modes for weight optimised design, like local buckling [2]. Therefore the 
design of such structures is usually performed by analyses and optimisations on different levels 
(e.g. see [3]): relatively simple analyses and optimisations on the global fuselage barrel level 
and more detailed analyses and optimisations on the local level of a single stiffened skin bay 
[2]. The aim of the study behind this paper is to develop new design methods for 
computationally efficient optimisation of aircraft fuselage structures. 
 
An early implementation of a design optimisation method for fuselage structures considering 
multiple levels was presented in [4]. This method considered structural modelling on two levels 
of detail: a so-called lumped finite element (FE) model for the over-all stress and deflection 
analysis and refined models based on handbook formulas for detailed design and constraint 
evaluation of frames and stringer cross sections and skin thicknesses. Although quite 
computationally efficient, this implementation was also quite specific to the considered 
application (e.g. z-stringers, I and C frames). 
 
Various multi-level optimisation methodologies were developed for multi-disciplinary design 
and optimisation of aircraft. In general these methodologies considered algorithms for the multi-
level decomposition of the multi-disciplinary design problem and the coordination of the 
evolving multiple coupled optimisation problems in computational frameworks. Coordination 
methods for decomposed optimisation problems initially focussed on linearizing the coupling 
between the problems in the hierarchy. The problem on the top-levels prescribes the necessary 
coupling parameters to the problems at the lower level. The lower levels provide the top-level 
with sensitivity data on the behaviour under various coupling conditions. Early implementations 
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of such decomposition-coordination methods for multi-level optimisation were proposed in 
[5][6] and [7] amongst others. The need for optimum sensitivity analysis in order to provide 
additional information to other parts of the decomposed optimisation problem was published in 
[8]. Research showed that not all complex systems could be modelled as a hierarchy. Therefore 
non-hierarchic formulations were developed by Sobieszczanski-Sobieski [9] that relied on 
linearization techniques via calculation of the Global Sensitivity Equations [10]. Various other 
methods were developed from the initial multi-level optimisation frameworks. For example so-
called “variable-complexity” multi-disciplinary optimisation methods for the design of high-
speed civil transport wings were originally proposed in [11] and extended with exploitation of 
response surface approximations for the computationally expensive detailed model evaluations 
[12].  
 
Alternative techniques were proposed in [13], [14] and [15] amongst others. These alternative 
techniques focussed on additional terms in the linearized coupling equations, construction of 
response surfaces to replace the Global Sensitivity Equations and relaxation of the coupling via 
Augmented Lagrangian relaxation. More recently, Paiva and co-workers [16] investigated the 
computational performance benefits in using these approximations in conjunction with multi-
disciplinary design optimization for the preliminary design of aircraft wings. They concluded 
that standard polynomial interpolation is only well-suited to very simple problems. At higher 
dimensionality, the usage of more complex kriging models and artificial neural networks can 
result in considerable performance benefits. 
 
Aircraft level optimisation of fuselage structures considers global level analyses of the fuselage 
structure while focussing on the sizing of local structural design variables that represent the 
thin-wall properties of the structure, like skin thicknesses and stringer dimensions [2]. The 
global analyses typically use (coarse) finite element (FE) models (e.g. of 10 or 20 fuselage 
frame bays) and consider basic sizing variables like skin thicknesses and stiffener cross section 
areas and account for global stress re-distribution during the global optimisation iterations. The 
local analyses typically use dedicated skill tools for very efficient evaluation of many different 
design criteria (buckling, reparability, damage tolerance, etc.) for local structural elements (e.g. 
so-called super-stringers [2]) and consider detailed local sizing variables like composite 
laminate properties and detailed stiffener dimensions in the local optimisations. These skill tools 
are often developed in-house in industry and are based on simplified geometries and physical 
assumptions and equations. Hence there are some limitations of these dedicated skill tools, such 
as their limited validity for the specific conditions (geometry, loading, materials, etc.) for which 
they were developed and the cost of maintenance and further development (related to legacy 
codes, programming choices) and validation of these tools [17]. Instead, more generic analysis 
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tools like commercial FE codes can be used for the local analyses and optimisations (e.g. 
[18][19]), but because of the typical high computational cost of FE analysis this requires highly 
efficient evaluation procedures for these detailed local FE models. 
 
This paper presents an innovative design method where detailed local FE analysis of panel 
buckling is applied in the global level optimisation. The required computational efficiency is 
achieved by advanced use of surrogate modelling methods ([20], [17]) on the different levels, 
and by efficient representation of the optimised local configuration. This yields flexibility in the 
optimisation procedure and allows for efficient gradient based search methods as well as more 
costly GA-based search optimisations. In accordance with recommendations given in [21] and 
[16] the more advanced methods like kriging models and artificial neural networks in 
combination with adaptive sampling algorithms are considered here for surrogate modelling. 
 
Other investigations into exploiting efficient surrogate modelling approaches for representation 
of composite panel buckling behaviour were recently published, e.g. [17][22], where simplified 
panel buckling analyses based on composite lamination parameters were considered. The 
method in the present paper makes direct use of FE panel buckling analyses, which can contain 
extensive detail. The method is applicable to composite structures but not specifically dedicated 
to these materials and will be demonstrated on a composite fuselage design case considering 
common structural sizing variables like thicknesses and stringer dimensions. 
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2 Design problem 

The design problem considered in this study is the weight optimisation of a realistic fuselage 
barrel structure representative of a forward section (located between the nose fuselage and the 
centre section) of a single aisle aircraft (Figure 1). A number of realistic barrel sizing load cases 
is applied, including loads due to turbulence, manoeuvre, braking, taxiing etc. 
 

Figure 1: Side-view illustration of the location of the considered GFEM barrel model (middle) in 
the aircraft fuselage (upper) and indication of the global optimisation design regions as 
considered in the barrel model (lower: skin thicknesses in blue shell elements; stringer areas in 
red rod elements). 

 
The considered cylindrical barrel is implemented as a 3D FE model (in this case in NASTRAN 
[22]) consisting of linear elements for all the relevant structural components like skins, frames, 
stringers, window frames, door surround structures, passenger floor and cargo floor structures. 
In this global finite element model (GFEM) of the barrel, typically each skin panel between two 
stringer and frame segments is represented with one linear shell element, each stringer segment 
and frame segment are represented with one linear rod and one linear beam element, 
respectively. The total barrel model comprises 21 frames with frame pitch of about 584 mm and 
a total length of 11786 mm and has about 19k degrees of freedom (DOF). The barrel cross-
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section is (approximately) circular with mean radius of about 2100 mm. About 70 stringers are 
distributed over de circumference of the barrel with various stringer pitches (approximately 225, 
210, 205, 185 and 170 mm). Windows and doors are surrounded by specific stiffening structures 
consisting of rods, beams and thicker skins. Passenger and cargo floor structures are modelled 
by beams. 
 
The fuselage barrel design problem is considered as the global level optimisation problem and is 
formulated as weight minimisation subject to a set of failure constraints: 

)(
min

gg
g

xM
x  

(Eq. 1) 

subject to 
( ( )) 0g g gc xΦ ≤ . (Eq. 2) 

 
Here gM  is the total mass of the barrel and gx  are the design variables on global level. The 

global level constraints gc  are based on strain criteria in skins and stringers which depend on 

the internal forces gΦ  that follow from the global level equilibrium for all considered load 

cases. The internal forces gΦ  depend on the global level variables gx . The strain criteria used 

here are the following: 

005.0003.0 <<− skinε  
(Eq. 3) 
 

005.0002.0 <<− stringere . 
(Eq. 4) 
 

The global design variables ( gx ) in the present study are the skin thickness (defined for each 

shell element; bounds: 1.6mm ≤ g skinx − ≤8.0mm) and stringer cross sectional area (defined for 

each rod element; bounds: 101mm2 ≤ g stringerx − ≤457mm2). The global design variables as well as 

the global constraints are applied only in certain design regions of the barrel model, see Figure 1 
above. All other dimensions in the barrel model (i.e. all frames and all windows and doors 
surrounding areas and all floor structures) are unchanged. 
 
The GFEM barrel model is adequate for global structural analyses and the global level 
optimisation problem can be very efficiently solved for linear static analyses (in the present 
study by using the NASTRAN finite element method (FEM) solvers SOL101 for the linear 
static solution and SOL200 for the structural optimisation [22]). However, besides the basic 
strain criteria used here the optimisation should also take into account other (probably more 
critical) failure criteria, in particular related to buckling. But that would require other types of 
analyses and a (much) higher degree of detail in the structural modelling. For example the local 
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lay-up definitions of composite skins and stringers and detailed stringer dimensions (height, 
width, etc.) have strong influence on the local buckling behaviour. Therefore more detailed local 
level structural models (e.g. by dedicated so-called “skill tools”) are commonly used to analyse 
and optimise the local structures [2]. In this paper a local level detailed finite element model 
(DFEM) is applied to incorporate the local structural details and to take into account the local 
buckling behaviour. This DFEM model is further described in the following sections. 
 
The aim on the barrel level is to incorporate the optimised local structure in an efficient and 
proper way in the global level optimisation. Therefore we stick to the efficient global level 
optimisation procedure described above and incorporate the optimised local structure via extra 
global-local constraints 

0))(,( * ≤Φglggl xxc . (Eq. 5) 

 
These global-local constraints glc  represent the coupling of the global level to the local level 

optimisation. Here *
lx  represent the optimised local variables, which are expressed as a function 

of the internal forces gΦ . The global-local constraints here are simply formulated as 

))(( *
glglg xx Φ≥ x , (Eq. 6) 

where glξ  represents the relation between the global and local level variables, which is typically 

a relatively simple analytical function (e.g. the relation between stringer cross sectional area and 
stringer variables like stringer height and cap width). These optimised local variables *

lx  result 

from the local level optimisation, which is expressed as 
)()min(arg*

llll xMxx =  (Eq. 7) 
subject to 

0),( ≤Φlll xc . (Eq. 8) 

 
Here lM  is the local specific mass (e.g. per unit of panel surface area) and lx  are the design 

variables on local level. lc  are the local level constraints, which are expressed in the local level 

variables and the local loading lΦ  which shall be consistent with the global internal forces gΦ . 

The local level constraints represent the failure criteria related to local buckling. 
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3 Panel model 

On the local level we use a DFEM model of a fuselage panel with loading, boundary conditions, 
and skin, stringer and frame details that are consistent with the GFEM barrel model. Critical 
loads for different failure modes can be calculated with this model, but the present study is 
limited to only buckling failure modes. The DFEM model is set up such that it allows for 
buckling load evaluation for any given local loading condition, which corresponds to the 
internal loading in the barrel. The detailed structural design variables are included as parameters 
in the DFEM model and thus can be optimised subject to constraints for the considered failure 
modes. For flexibility and ease of use, the local level optimisation is implemented as a surrogate 
based optimisation procedure. Therefore the DFEM model is evaluated for given sets of 
loadings and design variables combinations and the responses are collected and further 
processed into accurate surrogate models. 
 
The detailed design of the panel structure in this study is based on composite skin, co-bonded 
composite omega stringers and aluminium C-frames. Mouseholes in the frames have been 
ignored. The frames and stringers are attached to the skin over the whole contact area by tie 
constraints. Fasteners could be used for stringer and frame attachment but have not been 
modelled in this study. The detailed panel model is built up from the three parts skin, stringer 
and frame, see Figure 2 below, and is implemented in ABAQUS FEM software [24]. Five 
stringers and four frames are used in the panel assembly in order to obtain two central bays in 
the panel that have reasonable distance from the boundary conditions applied to the panel edges. 
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Skin part and lay-up Stringer part and lay-up 

  
Frame part Panel assembly 

  
Figure 2: The DFEM panel model assembly and its parts. For skin and stringer the part 
geometries and the composite layups are shown. Frames are aluminium. 

 
All the parts are modelled by quadratic shell elements. The Alu frames are modelled with 
isotropic linear elastic material (coefficients given below in Table 1). The skin and stringers are 
modelled as composite laminates with symmetric layups (45°/-45°/90°/0°)s where 0° is in the 
stringer-length direction. The ply thicknesses are tuned to match the total laminate thickness of 
skin and stringer, which are design variables in the local level optimisation. For the skin, equal 
ply thickness of 12.5% of total skin thickness for all plies is used. For the stringers variable ply 
thickness of (15%,15%,10%,60%)s is used for each ply in the (45°/-45°/90°/0°)s lay-up. The 
considered materials are characterised by the coefficients in Table 1. The composite material is 
the same for skin and stringers. The DFEM panel model allows for consideration of many 
different design variables, like detailed structural sizing variables, stringer or frame pitches, 
material properties, composite lay-ups, stringer cap thickness, etc. To demonstrate the feasibility 
of the proposed approach, we limit this study to the set of local level design variables given in 
Table 1. The upper bounds of these variables are also limited because buckling is expected to be 
not a critical failure mode for higher values. 
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Table 1: Material properties for composite plies of skin and stringers and for (isotropic) frame 
and local level design variables in DFEM panel model. 

Material 
Property 

Values for 
Skin&Stringer 

Values for 
Frame 

 Design variable Lower/upper bounds 

Ex 157 GPa 72 GPa  Sk. thickness: 1.6mm ≤ tsk ≤ 2.8mm 
Ey 8.5 GPa 72 GPa  Str. thickness: 1.5mm ≤ tst ≤ 3.0mm 
Gxy 4.2 GPa -  Str. height: 15mm ≤ hst ≤ 30mm 
νxy 0.35 0.3  Str. cap width: 15mm ≤ wst ≤ 30mm 

 
This choice of these local level design variables is related to the aims, the modelling and the 
variables that are used in the global level optimisation. In the present study the variables that are 
considered in the GFEM barrel optimisation are the skin thicknesses and stringer dimensions 
while stringer and frame pitches, frame dimensions and curvature radii remain constant. In 
accordance with the GFEM barrel model, a skin curvature radius of 2100 mm and frame pitch 
of 584 mm are used. However, because the stringer pitch is not the same in all design regions in 
the GFEM model, but varies between about 170 mm and 225 mm, this stringer pitch variation 
shall also be accounted for in the DFEM panel optimisations. 
 
The boundary conditions in the DFEM panel model should resemble the edge conditions as 
would be experienced by the panel in the global GFEM model under the given load. This is 
simplified to the following cylindrical boundary conditions for the panel: 

• All 3 rotations of all skin edges (straight and curved edges) are suppressed; 
• All radial displacements of all skin edges (straight and curved edges) are suppressed; 
• All tangential displacements of the straight skin edges are constrained by a linear 

interpolation between their end nodes such that their angular rotation about the fuselage 
axis is linear over the full length of these edges; 

• All 3 rotations of all frames and stringer end-cross-sections (i.e. near the straight and 
curved edges of the panel) are suppressed; 

• Tangential and axial displacements of one skin corner point are suppressed to avoid 
rigid body motion. 

In the local level analyses the loading in the DFEM panel model shall be representative for the 
internal loads in the global level GFEM model. To account for all the relevant internal loadings 
occurring in the GFEM model, the panel loading is defined as axial compression/tension, shear 
and tangential compression/tension. The loads are applied as uniform edge loads (i.e. load 
intensities expressed in N/mm) on the skin at the panel edges: tension/compression at the curved 
edges ( Nx ), tension/compression at straight edges ( Ny ), shear at curved and straight edges 
( Nxy ). The resulting load vector is represented as a 3D load vector (Nxy,Ny,Nx)=N .  
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This load vector is expressed in the spherical coordinates ( , , )rθ φ , where r=N , 

Nx  cos( )r φ= , Ny  sin( ) sin( )r φ θ=  and Nxy  sin( )cos( )r φ θ= . 

 

 
Figure 3: Illustration of the loading in the panel model; edge loads (in N/mm) in the DFEM panel 
model (left) and definition of the 3D load vector N in spherical coordinates (right). 

 
Because we use linear analysis at the local level, we only consider the unit load 1=N . 

Therefore the loading in the DFEM panel model can then be fully parametrically defined by the 
angular coordinates ( , )θ φ . The considered ranges for the spherical angular coordinates ( , )θ φ  
are [0, 2 , [0,θ π φ π∈ 〉 ∈ 〉 . Note that the cases 2θ π=  and φ π=  have been excluded in these 
ranges because ( 0, ) ( 2 , )θ φ θ π φ φ= = = ∀N N  and because ( , )θ φ π θ= ∀N  represents the 

axial tension loading, which would not yield sensible DFEM buckling analysis results and 
would deteriorate the reliability of the local level surrogate models. It should be noted that the 
buckling eigenvalues are evaluated for each unit load combination (Nxy,Ny,Nx) . Each of 
these load components can be positive, yielding compression for (Ny,Nx)  (in accordance with 
the definition of edge loads in ABAQUS [24]), or negative, yielding tension for (Ny,Nx) . 

Hence for each load combination, there exists another load combination that is exactly the 
opposite; see Figure 4 below. From a symmetry point of view, only the load combinations with 
at least one compression component would need to be evaluated. However, in general it cannot 
obviously be pre-determined whether a load combination yields a compression-dominated (i.e. 
first eigenvalue is positive) or tension-dominated (i.e. first eigenvalue is negative) buckling 
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response. Therefore each possible load combination is evaluated and only the first positive 
buckling eigenvalues ( 1λ

+ ) are computed. 

 

           
Figure 4: Illustration of the 3D load vector N for which the first positive and first negative 
buckling eigenvalues are shown (left); for the opposite loading (right), in general, exactly the 
opposite values for the first positive and first negative buckling eigenvalues are found. 

 
Moreover, the apparent geometric symmetry of the panel seems to imply equal buckling values 
for load cases with opposite shear loadings ( Nxy,Ny,Nx)± . However, this shear-symmetry is 

not the case due to the directional dependency of (mainly) the skin bending stiffness for shear 
loading. In other words: because the outer skin plies have 45o angles, there is “directional 
preference” for the shear loading that is applied and the skin modes that occur. The linear 
buckling analyses with the DFEM model are intended to efficiently capture the relevant panel 
buckling behaviour. Because of the detail in the geometry and mesh of the DFEM model, 
different buckling mode-shapes will arise depending on the applied loading and on the detailed 
design variables. Besides local skin buckling modes, also global modes and frame modes may 
occur. See Figure 5 below. 
 

Skin buckling mode Global buckling mode Frame buckling mode 

 
 

 

Figure 5: Illustration of various possible buckling mode shapes found with the DFEM panel 
model. 

 
To distinguish between the various buckling mode types, the deformation fields of the mode 
shapes are evaluated and the maximum displacements of skin, stringers and frames are 
separately retrieved. 
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Global buckling mode Skin displacements Stringer-frame displacements 

 
  

Figure 6: Illustration of separate displacement fields of skin, stringers and frames in a global 
buckling mode of the DFEM panel model. 
 
The type of mode is determined according to the following criteria: 

1. Skin mode:  modmax( ) max(( ), ( ))skin e stringer frameu f u u>   

2. Frame mode:  modmax(( ), ( )) max( )frame stringer e skinu u f u>  

3. Global mode:  in all other cases. 
where 1{ , , }nskin

skin skin skinu u u= 
, 1{ , , }nstringer

stringer stringer stringeru u u= 
, 1{ , , }nframe

frame frame frameu u u= 
 

are the arrays with the absolute displacement values in all the ( , ,nskin nstringer nframe ) nodes of the 
skin, stringers and frames, respectively, in the DFEM model. The variable modef is a mode 

factor to distinguish between skin- and frame or stringer modes, for which a value of 10.0 was 
used here. Note that the frame modes include the modes where maximum displacement occurs 
in stringers. The accuracy or reliability of the global and frame buckling modes will be less than 
for the skin modes because the DFEM panel model is less adequate for prediction of these types 
of buckling. But it should be noted that these global and frame buckling modes will mostly 
occur for relatively high skin thickness values (e.g. >2.2 mm) for which the buckling constraint 
will be less critical in the global level optimisation. 
 
The DFEM panel model contains in total about 3.5k quadratic shell elements (ABAQUS 
element code S8R: 8-node doubly curved thick shell, reduced integration [24]), yielding about 
11k nodes and about 40k DOF. The DFEM panel model is deployed in linear buckling analyses 
that are executed for any given loading condition and local design variable combination. These 
analyses are run in ABAQUS Standard 6.11 [24] using the Lanczos solver.  The first 10 positive 
eigenvalues and corresponding buckling mode shapes are retrieved. This analysis requires about 
100s on a standard PC (Intel Core2 Duo, 2.93 GHz, 3GB RAM), or about 30s on a compute 
server (SGI Altix ICE8200, Intel Xeon Quad Core, 2.6 GHz, 24GB RAM, 8 CPU/node). From 
these 10 mode shapes, ordered by increasing buckling eigenvalue, it was determined which 
were the first skin mode, global mode and frame mode to occur. Then the lowest eigenvalues for 
skin buckling ( skλ ), global buckling ( gll ) and frame buckling ( frλ ) were retrieved and stored 

for each given loading condition and local design variable combination. 
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4 Panel post-buckling verifications 

For computational efficiency the panel buckling loads are computed by linear buckling analysis 
(ABAQUS Lanczos solver [24]; ~30s CPU time on single node of compute server). As a small 
verification of the linear buckling load predictions, the skin, global and frame buckling values 
for some load cases were checked with non-linear post-buckling analysis (ABAQUS Riks 
solver [24]; ~2000s CPU time on single node of compute server). The linear mode shapes and 
buckling values were reasonably reproduced by the non-linear analyses, but only few load cases 
were checked. Panel optimisation fully based on non-linear buckling analyses would be 
obviously much more complex and expensive and was therefore not further considered in this 
study. 
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5 Panel surrogate models 

For the creation of the surrogate models of the DFEM panel model buckling behaviour, large 
series of analysis runs are executed to sample different combinations of all the variables in the 
DFEM panel model: the spherical angular coordinates ( , )θ φ  for the load combinations, and the 
local design variables ( , , , )sk st st stt t h w . (Note: the dependency on the stringer pitch variation is 

handled later in the process.) A traditional design of experiment (DOE) based on full-factorial 
sampling with (11x7x5x4x4x4=24640) design points for the 6 variables ( , , , , , )sk st st stt t h wθ φ  
was used here. Recall that the loads for 0,θ φ= ∀  are exactly the same as for 2 ,θ π φ= ∀  and 
therefore need only be evaluated for 0,θ φ= ∀ , and the single evaluation of pure axial 
compression loading ( 0, 0φ θ= = ) can be assigned to all 0,φ θ= ∀ . See Figure 7 below as an 

illustration of the ( , )θ φ  sampling of the first positive buckling eigenvalues ( 1λ
+ ). 

Figure 7: Illustration of the load sampling and resulting buckling values  
for just one combination of the local design variables ( , , , )sk st st stt t h w . 
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Although this type of DOE normally requires more data points than for example latin-hypercube 
sampling (LHS), it has some advantages in the ease of application and certain assessments on 
sub sets of the data that are done later in the procedure. In each of the design points the first 10 
buckling eigenvalues and their corresponding mode-shapes were evaluated from which the 
skin/stringer/frame maximum displacement values were derived. Then each of these 10 
buckling eigenvalues are checked against the buckling mode type criteria given above and the 
lowest values found for the skin, global and frame buckling loads ( skλ , gll , frλ ) are stored for 

each design point, yielding ( skλ , gll , frλ ) as a function of the DOE variables 

( , , , , , )sk st st stt t h wθ φ . Note that at least one, but not necessarily all three, of the ( skλ , gll , frλ ) is 

found in each design point. From the resulting large data sets, 6-dimensional surrogate models 
of the DFEM panel buckling load values are created (skin buckling: ( , , , , , )sk st st stsk t t h wλ θ φ ; 

global buckling: ( , , , , , )sk st st stgl t t h wl θ φ ; frame buckling: ( , , , , , )sk st st stfr t t h wλ θ f ). 

 
A number of different surrogate modelling methods are considered, including standard least-
squares regression with various polynomial orders (e.g. full first, second and third order 
polynomials, indicated here by the codes poly_1, poly_2, poly_3, respectively), generalized 
regressions (indicated here by the code poly_glm etc.), artificial neural nets (ANN’s), radial 
basis functions (RBF’s), mixture of experts (MoE’s) (for further information see [20],[25]). The 
surrogate modelling and quality assessment is performed in an efficient way using the MultiFit 
[20] software tool, which is developed in Matlab [25]. For example, the quality metrics 
evaluated for various surrogate models created for the skin buckling value 
( ( , , , , , )sk st st stsk t t h wλ θ φ ) yields the following results in the Table 2 below. 

 
Table 2: Different surrogate models (poly_1, etc.) and the values for their quality metrics (coded 
here as mape, maxape, etc., see first 2 columns in the table) evaluated for the skin buckling 
value data ( skλ ).  

poly_1 poly_2 poly_3 poly_glm poly_pls poly_regress poly_robust poly_step ann-20 ann-5010
mape mean absolute percentage error 54,12 40,64 37,40 37,40 37,40 37,40 17,48 101,16 8,44 2,01
maxape max absolute percentage error 316,05 331,81 203,07 203,07 203,07 203,07 89,38 498,97 77,92 25,19
10%quant 10% error quantile 17,72 24,48 17,67 17,67 17,67 17,67 42,79 7,48 71,15 98,90
5%quant 5% error quantile 8,71 12,52 8,75 8,75 8,75 8,75 21,15 3,63 45,24 91,21
mse mean square error 45435,62 34828,15 25942,91 25942,91 25942,91 25942,91 44240,92 66596,99 884,09 57,54
rmse root mean square error 213,16 186,62 161,07 161,07 161,07 161,07 210,34 258,06 29,73 7,59
rsquare coefficient of determination 0,27 0,44 0,58 0,58 0,58 0,58 0,29 -0,08 0,99 1,00
raae relative average absolute error 0,50 0,40 0,37 0,37 0,37 0,37 0,30 0,81 0,08 0,02
aae average absolute error 123,28 100,54 92,70 92,70 92,70 92,70 75,46 202,08 18,81 4,68
rmae relative maximum absolute error 10,45 9,82 9,06 9,06 9,06 9,06 11,07 7,69 2,72 0,59
mae mean absolute error 2601,28 2443,73 2254,46 2254,46 2254,46 2254,46 2754,68 1913,61 678,02 146,40  
 
Obviously, the feed-forward ANN with 2 hidden layers with respectively 50 and 10 nodes 
(coded here as ann-5010 model) yields the best accuracy for these data. In fact, also for the 
frame and global buckling data ( frλ  and gll ) the ann-5010 surrogate model provided 

appropriate accuracy. 
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6 Panel level optimisations 

Once the surrogate models of the DFEM panel buckling values are available, the optimisations 
of the panel can be done very efficiently, exploiting various optimisation algorithms (gradient 
based, SQP (sequential quadratic programming), GA’s, etc.) and if desired the analytical 
derivatives of objective and constraints may be exploited. The objective that is considered in the 
panel optimisations is the specific panel mass ( spm , expressed here as cross-sectional area 

because the mass density of skin and stringers are equal), which is defined as function of the 
local design variables ( , , , )sk st st stt t h w  for a fixed stringer pitch ( stp ), see Figure 8 below. 

 

Figure 8: Illustration of the panel model specific cross-sectional area calculation. 
 
The constraint functions in these optimisations are based on the buckling policy that is applied 
for the panel model according to the following criteria: 

• no skin buckling shall occur below 0.7 limit-load (LL) for axial compression and 1.0 LL 
for shear (i.e.: critNxy 0.0: LL 0.7 LL= =  ;  critNx 0.0: LL 1.0LL= = ); 

• an interpolated criterion between 0.7 and 1.0 is applied for combined compression-shear 
loading (i.e.: 

critNxy 0.0 Nx 0.0: LL LL(0.7 0.3 arctan( Nxy/Nx )) / ( / 2)π≠ ∧ ≠ = + ; 

• no global or frame buckling shall occur below ultimate load (UL). 
The load cases that are applied in the barrel level GFEM model represent ultimate loads. Hence 
the load level ( F = N ) applied in the DFEM, which corresponds to the internal load level in 

the GFEM model, is also considered as UL (i.e. ULF = ). Limit load is defined as: 
LL UL/1.5= . The above mentioned buckling criteria are therefore accordingly incorporated in 
the panel level optimisation formulation as follows: 
Given ( , , )Fθ φ ,  
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),,,(
,,,

min
stststsksp

stststsk
whttm

whtt  
subject to 

(Eq. 9) 

),,(LL),,,,,(~
crit Fwhtt stststsksk ϕθϕθλ >  (Eq. 10) 

)(UL),,,,,(~ Fwhtt stststskgl >ϕθl  (Eq. 11) 

)(UL),,,,,(~ Fwhtt stststskfr >ϕθλ  (Eq. 12) 

where the objective function msp is the analytical expression given above and the constraint 
functions are given by the surrogate models of the panel buckling loads ( skλ , gll , frλ ). These 

panel level optimisations are performed for series of load combinations ( , , )Fθ φ , where 
[0, 2 , [0,θ π φ π∈ 〉 ∈ 〉  and a range for min max[ , ]F F F∈ is determined as follows: Because the 

objective spm  is monotonically increasing in each of its variables ( , , , )sk st st stt t h w , the minimum 
spm  is determined by the lower bounds of the variables ( min( , , , )sk st st stt t h w ) if none of the 

buckling constraints are active. This is the case for low values of F , such that LLcrit and UL are 
lower than the minimum buckling values occurring in each load combination ( , )θ φ . Therefore 

an approximate minimum value for F below which the buckling constraints are in-active is 
determined from the buckling data values: 
 

),,,()),(),,()),,(5.1min((),(min stststskfrglsk
crit

whtt
LL
LLF ∀= ϕθlϕθlϕθlϕθ

 

(Eq. 
13) 

Similarly an approximate maximum value for F is determined, above which the optimisations 
are infeasible because all 3 constraints cannot be fulfilled: 
 

),,,()),(),,()),,(5.1max((),(max stststskfrglsk
crit

whtt
LL
LLF ∀= ϕθlϕθlϕθlϕθ

 
(Eq. 14) 

 
Note that the full-factorial sampling scheme that was applied has the advantage here that all the 
data samples for ( ( , ), ( , ), ( , ))sk gl frl θ f l θ f l θ f  are available for each sampled combination of 

( , , , )sk st st stt t h w . Series of load combinations ( , , )Fθ φ  are then defined for the above mentioned 
ranges. The same ( , )θ φ  sampling as in the previous full-factorial DOE is used. Because of the 
high variability over ( , )θ φ  of the range of the force ( )F , that is first transformed by a log 
(log( ))F  for which then an equidistant sampling of 20 points is applied. This results in 
“partial-factorial” sampling in ( , , )Fθ φ of about 1200 points in each of which the above 

mentioned panel level optimisation problem is solved. Figure 9 shows the set of load points in 
which the DFEM optimisations are run and the resulting optimised panel level variables for one 
of these load points. 
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Figure 9: Illustration of the sampling in ( , , )Fθ φ  of about 1200 points in each of which the 
above mentioned panel level optimisation problem is solved (upper graph), and of the optimised 
panel level variables ( , , , )sk st st st optt t h w  as a function of the load condition ( , )θ φ  for a fixed 

force value ( )F  (lower graphs). 
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Various optimisation algorithms may be used (e.g. SQP, interior-point, active-set, or other 
algorithms like GA’s or pattern search). In the present study it was found that the gradient 
algorithm with active-set (based on Matlab’s fmincon function [25]) showed the best 
performance. These optimisations can be run in parallel, but because these optimisations are 
relatively simple and can be executed with about single-second compute time on standard PCs, 
sequential execution requires about 30 minutes which is quite acceptable. This sequential 
execution has the advantage that the optimum in one ( , , )Fθ φ  point can be used as starting 
point for the optimisation in the next neighbouring ( , , )Fθ φ  point. It should also be noted that 

alternative formulations of the local level optimisations can be easily implemented and 
evaluated, e.g. by minimising spm  for series of given ( , , , )skF tθ φ  that would yield the 

optimum stringer dimensions ( , , )st st st optt h w  as a function of loading and skin thickness 

( , , , )skF tθ φ . The results of these optimisations yield the data set of optimised values of 
( , , , )sk st st stt t h w  as function of ( , , )Fθ φ . 

 
)],(),,([;),,(),,,( maxmin ϕθϕθϕθ FFFFfwhtt optxoptstststsk ∈= − . (Eq. 15) 

 
As described above, the optimised values of ( , , , )sk st st stt t h w  are equal to their minimum bounds 

in case the load value F is below the minimum. 
 

),(;),,,(),,,( minmin ϕθFFwhttwhtt stststskoptstststsk <= . (Eq. 16) 
 
In order to evaluate if the load value F is below or above the minimum ( min ( , )F F θ φ< ) a 
surrogate model representation of min ( , )F θ φ  is also required, which is achieved with quite 

good accuracy by a 2nd order polynomial moving-least-squares fit [20]. 
 
The set ( , , , )sk st st st optt t h w  represents, for a given load state expressed by ( , , )Fθ φ , the 

optimised panel design in terms of the local design variables; see illustrations in Figure 9 above. 
The data set of these optimised local variables is transformed to the optimised global stiffness 
variables (skin thickness and stringer cross sectional area) according to (see also Figure 10): 



  
NLR-TP-2012-377 

  
 26 

 

Figure 10: Illustration of the relation between the global and local level variables. 
 

skoptskgopt tt =  (Eq. 17) 
)),,,(( optstststskglstgopt whttA ξ= . (Eq. 18) 

 
The data sets of these two optimised global variables are then fit into surrogate models as 
function of the loading condition: Surrogate model of optimised global skin thickness: 

( , , )skgoptt Fθ φ  and Surrogate model of optimised global stringer cross sectional area: 

( , , )stgoptA Fθ φ . 

Again, various methods including polynomial regression and ANN’s were applied using the 
MultiFit [20] software tool (see Table 3 below), resulting finally in the best accuracy for the 
feed-forward ANN with 2 hidden layers with respectively 40 and 10 nodes (coded here as ann-
4010). 
 
 
Table 3: Different surrogate models (coded as poly_1, etc.) and their quality metrics (coded as 
mape, etc.) values evaluated for the optimised global skin thickness data ( ( , , )skgoptt Fθ φ ).  

poly_1 poly_2 poly_3 poly_glm poly_pls poly_regress poly_robust poly_step ann-20 ann-4010
mape mean absolute percentage error 14,81 10,56 8,13 8,13 8,13 8,13 8,01 28,72 2,89 1,05
maxape max absolute percentage error 48,08 51,76 41,67 41,67 41,67 41,67 57,57 101,42 18,91 14,45
10%quant 10% error quantile 38,19 58,93 73,97 73,97 73,97 73,97 77,20 21,84 98,01 99,66
5%quant 5% error quantile 18,41 33,45 39,56 39,56 39,56 39,56 46,70 11,95 83,38 98,15
mse mean square error 0,14 0,08 0,05 0,05 0,05 0,05 0,05 0,49 0,01 0,00
rmse root mean square error 0,37 0,29 0,21 0,21 0,21 0,21 0,23 0,70 0,08 0,03
rsquare coefficient of determination 0,26 0,56 0,76 0,76 0,76 0,76 0,71 -1,65 0,97 0,99
raae relative average absolute error 0,71 0,51 0,38 0,38 0,38 0,38 0,37 1,32 0,14 0,05
aae average absolute error 0,31 0,22 0,16 0,16 0,16 0,16 0,16 0,57 0,06 0,02
rmae relative maximum absolute error 1,97 2,01 1,73 1,73 1,73 1,73 2,31 4,20 1,22 0,60
mae mean absolute error 0,85 0,87 0,74 0,74 0,74 0,74 0,99 1,81 0,53 0,26  
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It was found that these surrogate models were difficult to create with sufficient accuracy, 
especially for the stringer cross sectional area. This was due to the high gradients that were 
found in the optimum data set. However, the (local) accuracy of the surrogate models is 
expected to improve if actual load cases (expressed in ( , , )Fθ φ ) coming from the global level 

are evaluated and optimised on the local level (“adaptive surrogate models”). 
 
As mentioned earlier, in the GFEM several different stringer pitch values occur (between about 
170 and 225 mm) that should be accounted for by the surrogate models predictions. This is 
achieved through straight-forward linear interpolation between the predictions of the optimised 
global variables surrogate models that were created according to the above described procedure 
for the smallest and largest stringer pitch values. As such the super-positions of the optimised 
global variables surrogate models can be defined that also include stringer pitch stp  as 

independent variable ( ( , , , )p
skgopt stt F pθ φ  and ( , , , )p

stgopt stA F pθ φ ). Note that this linear 

interpolation for stp  has limited accuracy but can be easily improved by including more than 2 
values for stp , or by creating separate surrogate models ( ( , , )skgoptt Fθ φ , ( , , )stgoptA Fθ φ ) for 

each value of stp that occurs in the GFEM. 

7 Global-local data interface 
The surrogate models of the optimised global variables are then used in the barrel level 
optimisation that is executed by a NASTRAN SOL200 evaluation. In this evaluation the values 
of the optimised global variables are predicted by the surrogate models as a function of the 
internal loads in the barrel. The internal loads are determined in each skin bay in the design 
regions of the GFEM model from the (Nxy,Ny,Nx)  load contributions from the skin, stringers 

and frames elements; see Figure 11. 
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Figure 11: Left: illustration of the internal loads (Nxy_i,Ny_i,Nx_i) computation in a skin bay 
element (Sk_i) with contributions from the neighbouring stringers (Str_i, Str_i+1) and frames 
(Fr_i, Fr_i+1), accounting for the actual stringer pitch (pitch_str) and frame pitch (pitch_fr); 

Right: illustration of the process to incorporate the Matlab surrogate models of the optimum 
global variables (tskg,Astg)opt in the Nastran SOL200 optimisation, yielding the constraints for skin 
thickness of each skin element (Sk_i) and cross-sectional area of each stringer element (Str_i, 
Str_i+1). 

 
The SOL200 NASTRAN optimisation is achieved by encapsulation of the optimised global 
variables surrogate models (that are first created in Matlab and then ported to C-code libraries) 
in FORTRAN code libraries (function file r3svald.f) which are accessed by the D3RESP 
variables in the NASTRAN SOL200 run (see Figure 11 above). The optimum values are 
assigned to the constraints for skin thickness of each skin element and cross-sectional area of 
each stringer element. Note that in the GFEM model the skins are modelled in NASTRAN by 4-
node shell elements (element code CQUAD4 with PSHELL properties [22]) with anisotropic 
membrane and bending stiffnesses (MAT2 material properties [22]). As the bending stiffness 
depends on the skin thickness (proportional to 2

skgoptt ), these bending properties are also 

updated. 
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8 Barrel level optimisations 

As mentioned above, the GFEM barrel model is implemented in NASTRAN and the global 
level optimisation problem is solved with SOL200 [22] where the global objective is the total 
mass of the barrel structure (coded as a DRESP1 variable in NASTRAN). The global design 
variables are the skin thickness and stringer cross sectional area in the design regions of the 
barrel model, yielding a total number of 1584 design variables (coded as DESVAR in 
NASTRAN), 792 for skin thickness and 792 for stringer area. The global level constraints are 
implemented as 1584 constraint functions for skin strain and 792 constraint functions for 
stringer strain (coded as DCONSTR constraints and DRESP1 variables in NASTRAN), and 
2280 constraint functions of external variables (coded as DCONSTR constraints and DRESP3 
variables in NASTRAN) for the optimum skin thickness and stringer area. Hence, the global 
level optimisation comprises 4656 constraint functions that need to be evaluated for each of the 
15 load cases, yielding 69840 constraints in total. The initial values of the design variables are 
set to 3mm for skin thickness and 457mm2 for stringer cross sectional area, yielding an initial 
total barrel mass of 1676 kg. (Recall: the lower and upper bounds of the design variables are set 
to 1.6 mm and 8.0 mm for skin thickness and 101 mm2 and 457 mm2 for stringer cross sectional 
area.) The solution process of this optimisation problem requires about 4 hours on a standard 
workstation (Dual Quad-Core Intel Xeon, 2.3 GHz, 16GB RAM). In the optimisation especially 
the memory usage and disk I/O and data storage (tens of GBs) are quite large, which is due to 
the large matrices in the optimisation resulting from the ~1.5k variables and ~70k constraints. 
The SOL200 solution requires 8 major iterations to achieve the final optimum. The total mass of 
the optimum barrel design has decreased from 1676 kg to 1226 kg (about 25% improvement). 
 



  
NLR-TP-2012-377 

  
 30 

 

initial skin thickness is 3mm 

 

initial stringer cross sectional area 457mm2 

 
total barrel mass during SOL200 iteration 

 
optimum skin thickness 

 

optimum stringer cross sectional area 

 
optimum strain tensor x-component 

 

optimum strain tensor y-component 

 
Figure 12: Skin thickness distribution and stringer areas in the initial barrel configuration (upper 
row) and the barrel mass during the SOL200 iteration (middle row). For the optimised barrel 
(lower 2 rows) the skin thickness, stringer areas and strain tensor x-components and y-
components are shown. 
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In the optimised barrel the skin thickness and stringer areas decreased to their lower bound in 
almost the complete design region, which are about 1.6 mm and 101 mm2. Strains inside and 
outside design regions are within constraint values, i.e. the strain constraints are not active in the 
optimum design, and the strains outside the design regions have allowable levels. 
 
The GFEM barrel optimisation yields the minimum design in almost the whole barrel. 
Consequently the optimum is driven by the lower bounds of the design variables (in almost the 
whole barrel) rather than by the constraints for optimum skin thickness and stringer area. 
Therefore an additional GFEM barrel optimisation is performed with decreased lower bounds of 
the design variables where the minimum values of both skin and stringer thicknesses are 
decreased to 1.0mm. 
 
Because of the decrease of the lower bounds of the skin thickness and stringer cross-sectional 
area in the barrel optimisation, it is also required to decrease the lower bounds in the panel 
optimisations. Therefore the DOE set for the panel analyses are extended to the lower bounds 
by adding for skin thickness and stringer thickness values down to 1.0mm. This results in a total 
additional DOE set of 12320 design points for all the considered variables for each of the 2 
stringer pitches, yielding a total data set of (24640+12320) x 2 data points. The surrogate 

models of the panel buckling loads ( skλ~ , gll~ , frλ~ ) are regenerated with this extended data set. 
Then the panel optimisations again are executed and the surrogate models of the optimised 

global skin thickness ( ),,(~ Ftskgopt ϕθ ) and optimised global stringer cross sectional area 

( ),,(~ FAstgopt ϕθ ) are regenerated. These extended surrogate models of the optimum global 
variables are then applied in the updated GFEM barrel optimisation. The initial values of the 
design variables are set to the optimum values found in the previous optimisation, i.e. 1.6 mm 
for skin thickness and 101 mm2 for stringer cross sectional area with initial total barrel mass of 
1226 kg. The lower and upper bounds of the design variables are set to 1.0 mm and 8.0 mm for 
skin thickness and 70 mm2 and 457 mm2 for stringer cross sectional area. 
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initial skin thickness 1.6mm 

 

initial stringer cross sectional area 101mm2 

 
total barrel mass during SOL200 iteration 

 
optimum skin thickness 

 

optimum stringer cross sectional area 

 
Figure 13: For the updated barrel optimisation, the skin thickness distribution and stringer areas 
in the initial barrel configuration (upper row) and the barrel mass during the SOL200 iteration 
(middle row). For the optimised barrel (lower row) the skin thickness and stringer areas. 
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The SOL200 solution now requires 5 major iterations to achieve the final optimum. The total 
mass of the optimum barrel design has decreased from 1225 kg to 1157 kg (about 5% 
improvement). In the optimised barrel now the skin thickness and stringer areas decreased to 
their optimum values as prescribed by the constraints, and remain clearly above the lower 
bounds. Consequently this optimisation is driven by the constraints for optimum skin thickness 
and stringer area (in large portions of the barrel) rather than by the lower bounds of the design 
variables. 
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9 Conclusions 

This paper presents an innovative optimisation procedure for large aircraft fuselage structures 
based on FEM analyses. The local level FEM analyses have several advantages (like generic 
implementation, based on public commercial analysis tools, allow for detailed modelling and 
analysis), but require substantial computational cost. Computational efficiency is achieved by 
exploitation of advanced surrogate models and optimisation algorithms. The global level 
optimisation includes only variables and constraints in certain design regions of the barrel 
model. This simplification is used under the assumption that the structures in the other regions 
of the barrel (window belt, door surround, floor structures) have been sized with sufficient 
stiffness and strength in the preliminary sizing process. But to ensure no failure in these other 
regions the constraints should actually also be evaluated in these regions. 
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10 Discussion of modelling aspects 

Failure criteria: The present study is limited to only buckling criteria. The panel level analyses 
and optimisations could be further extended to include other detailed failure criteria (e.g. 
strength, damage tolerance, etc.), which would then appear as additional constraint functions in 
the panel level optimisations and would be rather straight-forward to implement. Of course the 
additional panel level analyses would require extra computational effort. 
 
Post-buckling: The present study is limited to linear buckling analysis. Non-linear post-buckling 
analyses could be used instead but are presently out of scope. Besides the dramatic increase in 
computation time of the panel level analyses, also the evaluation of adequate buckling values 
for the panel would become significantly more complex. Therefore we recommend to stick to 
linear panel buckling analyses and only use post-buckling for validation assessments of (small) 
sub-sets of the linear buckling results. 
 
Composites: Composite laminate properties were properly modelled in the panel and barrel FE 
models, but were not specifically included as design variables. Nevertheless these properties 
were included in a simplified way as proportional ply thicknesses in the skin and stringers of the 
panel DFEM model. Variable composite lay-ups could be included in the optimisation 
procedure. However, a complete combinatorial representation of all possible stacking sequences 
of skin and stringers in the panel level optimisations would strongly increase the computational 
effort of the panel level optimisations, especially if large laminate thicknesses (i.e. many plies) 
should be allowed. 
 
Optimum variables: the given approach yields fixed combinations of optimised local design 
variables. On the local level that is adequate, but on the global level it would be preferable if the 
global-local constraints (i.e. here related to the buckling criteria) that are applied to the global 
design variables were more independent. That could allow for example for some relaxation on 
one variable and some restriction on the other, which could lead to a superior global optimum. 
This might be achieved by attaining Pareto sets of non-dominated design on the local level, but 
it would need further investigation on what objectives and constraints should then be applied in 
the lower level optimisations. 
 
Post-identification: although the global level optimisation yields only the final global design 
variables, the local sizing variables (in particular, the stringer variables) can be retrieved by 
local level assessment, i.e. by executing the local level optimisation for the internal loadings in 
the optimised barrel model. For better accuracy, first the surrogate models of the buckling loads 
could be improved by evaluating the DFEM analysis for these internal loading conditions. 



  
NLR-TP-2012-377 

  
 36 

 

11 Discussion of computational aspects 

Accuracy: It is difficult to achieve surrogate models of the panel buckling behaviour with 
sufficient accuracy. The accuracy can be improved by using denser DOE sampling, i.e. more 
(expensive) DFEM evaluations, and better surrogate modelling methods. Similarly, the accuracy 
of the surrogate models of the optimum panel level variables can be further improved by denser 
DOE sampling, i.e. by running the panel level optimisations in more loading conditions. These 
panel level optimisations can be run very efficiently (around 1 s on standard PC) thanks to the 
previously generated surrogate models of the panel buckling behaviour. 
 
Global-local iteration: although the initial accuracy of the surrogate models is not very high, the 
procedure does allow to adaptively improve this accuracy by feeding the internal loads after 
each barrel level optimisation into the panel level analyses and optimisations, yielding 
additional DFEM analysis results in the data base for the local level surrogate models. This 
adaptive surrogate modelling process can yield (locally) accurate but cheap surrogate models. 
 
Gradients: in the panel level optimisations the analytical gradients of the objective function and 
of the surrogate models for the constraint functions could be exploited, but are not used here 
because of the implementation effort and the limited gain in time (few seconds or less) that 
could be achieved. In the global level optimisation the analytical gradients of the surrogate 
models for the optimum global variables are available, but could not be exploited because the 
gradients of the DRESP3 variables could not be applied in the NASTRAN version that is used 
(MSC NASTRAN R2005.5). 
 
Design variables: The panel level optimisations consider only a limited number of detailed 
sizing variables. Of course more variables could be considered but would require proportionally 
more computational effort on the panel level. 
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