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Problem area 

Composite structures are known for their high specific strength properties and, 
unfortunately, for their low damage tolerance. Especially impact events (e.g., bird 
impact, hail impact, tool drops, or runway debris) are can result in significant 
damage which is difficult to predict. To compensate for these uncertainties, knock-
down factors are used, which increase the weight and cost of the structure.  
 
Thick composite structures (i.e., 20-50mm) are found in highly loaded aerospace 
structures, such as landing gear components and lugs. Their response to impact 
and the resulting damage can be completely different compared to thin composite 
structures.  In addition, it is difficult to predict and quantify the damage using 
numerical modelling strategies. 

Description of work 

The goal of this report is to study the impact response of thick composite 
structures and identify the differences with the impact response of thin composite 
structures. An analytical impact response model is developed that determines the 
response of a thick laminate to impact in terms of force and displacement histories. 
A sensitivity analysis is performed that identifies the influence of impactor and 
laminate properties on the response. For each parameter a small-mass (i.e., 

Impact response of thick composite structures 

 

REPORT NUMBER 
NLR-TP-2017-460 
 
AUTHOR(S) 
N. van Hoorn 
C. Kassapoglou 
W.M. van den Brink 
 
REPORT CLASSIFICATION 
UNCLASSIFIED 
 
DATE 
December 2017 
 
KNOWLEDGE AREA(S) 
Computational Mechanics 
and Simulation Technology 
Aircraft Material and 
Damage Research 
    
 
DESCRIPTOR(S) 
Impact 
Thick composites 
Impact response 
Sensitivity analysis 
            



 

 

UNCLASSIFIED 

EXECUTIVE SUMMARY 

GENERAL NOTE 
This report is based on a presentation held at the 6th ECCOMAS 
Thematic Conference on Mechanical Response of Composites, 
Eindhoven, The Netherlands, September 20-22, 2017. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NLR 

Anthony Fokkerweg 2 

1059 CM  Amsterdam 

p ) +31 88 511 3113  f ) +31 88 511 3210 

e ) info@nlr.nl  i ) www.nlr.nl 

runway debris) and large-mass (i.e., tool drop) impact case is studied.  In addition a 
numerical model is developed and the results generally agree with the analytical 
model.  

Results and conclusions 

The results of the sensitivity analysis show the influence of several impactor and 
laminate properties. A small-mass impact results in a localised response where the 
force and plate deflection histories are out of phase, in contrast to a quasi-static 
response due to a large-mass impact. By increasing the impactor velocity the force 
and displacement increase by approximately the increase in velocity. For a large 
impactor radius the contact stiffness is higher, which results in a higher force and 
lower indentation.  
 
A small-mass impact is not sensitive to the laminate dimensions. On the other 
hand, for large-mass impact the boundaries (i.e., laminate dimensions) play a 
significant role. Increasing the laminate thickness (or decreasing the laminate area) 
increases the laminate bending stiffness; as a result less energy is absorbed in 
bending and more in indentation.  
 
Thicker laminates have a higher bending stiffness and therefore less impact energy 
transfers to bending and more is converted to indentation. Thick composite 
structures generally have a localised impact response which will have a significant 
effect on the resulting damage mechanism.  

Applicability 

This study is part of an on-going research program on the impact damage tolerance 
of thick composite structures and provides useful information for modelling the 
complex damage mechanisms. The next step is to develop a numerical model that 
can predict the impact damage in a thick composite structure. To make this model 
efficient the results from the analytical impact response model can be used for 
simplifications while keeping the same accuracy.   
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Summary 

Thick composite structures are used in highly loaded aerospace structures and their response to impact is not 
completely understood. Therefore, the goal is to study the impact response of thick composite structures and identify 
the differences with the impact response of thin composite structures.  
 
Combining a Hertzian contact formulation with an analytical impact response model results in the force and 
displacement histories as a function of the impactor and laminate properties. Generally, the analytical impact 
response model agrees with numerical results. A sensitivity analysis for a small-mass and large-mass impact event 
shows the influence of the impactor and laminate properties on the response.  
 
The response is especially sensitive to the impactor mass and laminate dimensions. For small-mass impact the 
laminate thickness significantly influences the response. On the other hand, for large-mass impact the laminate area 
and aspect ratio dictate the response. Thicker composite structures have a more localised response, which indicates 
almost no bending and more energy transfer to indentation. As a result, these structures have only internal damage in 
contrast to thin composite structures.  
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Abbreviations 

ACRONYM DESCRIPTION 

CLPT Classical Laminate Plate Theory 

FSDT First-order Shear Deformation Theory 

NLR Netherlands Aerospace Centre 

ODE Ordinary Differential Equation 

 
 
 
 
 
 
 



 
 
 

7 

NLR-TP-2017-460  |  December 2017 

 

1 Introduction 

Fibre reinforced composite materials are increasingly being used in the aerospace industry. For instance, the new 
Airbus A350 and Boeing 787 both contain over 50% composites. Recently, these materials have been implemented in 
highly-loaded aerospace structures, such as lugs and landing gear components, resulting in thick laminates (i.e., 20-
50mm or 80-200 layers). Although these composites are known for their high specific mechanical properties, their 
tolerance to damage is low. Impact damage (e.g., due to tool drops or runway debris) can be complex and therefore 
difficult to predict. To compensate for these uncertainties, conservative design strategies are used, which increases 
the weight and cost of the structure. Accurate damage models might be able to quantify the damage tolerance and 
clarify the damage mechanisms. In turn, these models could aid the design and certification process resulting in lighter 
and cheaper composite structures.   
 
The laminate response to impact directly relates to the resulting damage [1]. Analytical models to predict this 
response are already available, for example the models of Shivakumar [2], Christoforou [3, 4], Olsson [5, 6], and more 
recently Talagani [7] and Esrail [8]. Their methods include energy-balance models for peak force prediction, simple 
spring-mass models for determining the response over time, and more complex models requiring numerical solution 
techniques. Despite their accurate response predictions, no studies have focused on the response of thick composite 
structures to impact. In addition, the difference between impact on thin and thick composite structures is unclear, 
including the effect of the response on the damage. 
 
Therefore, the goal is to study the impact response of thick composite structures and identify the differences with the 
impact response of thin composite structures. This study is part of an on-going research program on the impact 
damage tolerance of thick composite structures and provides useful information for modelling the complex damage 
mechanisms. To obtain the elastic response, a Hertzian contact formulation is used and combined with the model of 
Christoforou. This model gives the force, indentation, impactor displacement, and plate deflection history depending 
on the laminate properties and impact characteristics (i.e., mass and velocity). These results are compared with a 
numerical impact response model. The sensitivity of the laminate and impact properties is analysed to determine their 
influence on the response, which helps to understand the impact response and identify the differences between 
impact on thin and thick composite structures. 
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2 Impact Response Prediction 

This section presents an analytical and a numerical impact response model. These models predict the impact response 
of the laminate and impactor in terms of force and displacement. An anti-symmetric balanced transversely isotropic 
layup was chosen in order to comply with the assumptions in the governing equations, see below. 
 

[-45,45,0,90,45,-45,90,0,0,90,45,-45,90,0,-45,45]n 
 

The number n defines the thickness (h), for example h = 4·n mm if the ply thickness (tply) is 0.25mm. For this layup 

the B-matrix is zero, as well as the shearing-stretching coupling terms (A16=A26=0) and bending-twisting coupling 
terms (𝐷𝐷16 = 𝐷𝐷26 = 0). The ply properties in Table 1 are assumed, which correspond to a fabric material with an 
85/15 warp/weft yarn distribution. The equivalent laminate membrane properties in Table 2 are derived from the 
laminate stiffness tensor see appendix A. The contact stiffness and equivalent laminate membrane properties in Table 
2 do not depend on the value of n, but the bending properties (i.e., D-matrix) increase with approximately h3. 
 

Table 1: Ply properties 

E11 110 GPa 
E22 25 GPa 
E33 7 GPa 
G12 5 GPa 
G13 5 GPa 
G23 4 GPa 
v12 0.06 - 
v13 0.3 - 
v23 0.1 - 
tply 0.25 mm 

   
 

Table 2: Equivalent laminate membrane properties 

Ex 49.11 GPa 
Ey 49.11 GPa 
Ez 7.00 GPa 

Gxy 19.05 GPa 
Gxz 4.5 GPa 
Gyz 4.5 GPa 
vxy 0.29 - 
vxz 0.15 - 
vyz 0.15 - 
h 4·n mm 

 

Reference properties are established for the sensitivity analysis. A rigid spherical impactor with a radius (Ri) of 10mm 
is used for impact on a 200x200mm plate with a thickness of 20mm (i.e., n = 5). Two 50J impact cases are considered; 
a small-mass 0.04kg (vi= 50m/s) impact case (e.g., runway debris), and a large-mass 4kg (vi= 5m/s) impact case (e.g., 
tool drop). 

2.1 Contact Formulation 

The Hertz contact law defines the relation between the impactor indentation (δ) and contact force (F). 
 

 𝐹𝐹 = 𝑘𝑘𝛼𝛼𝛿𝛿3/2 (1) 
 
Where the indentation is the difference in impactor displacement (wi) and centre plate deflection (wp), 

 
 𝛿𝛿 = 𝑤𝑤𝑖𝑖 − 𝑤𝑤𝑝𝑝 (2) 

and the contact stiffness (kα) is defined as, 
 

 𝑘𝑘𝛼𝛼 =
4𝐸𝐸𝑧𝑧�𝑅𝑅𝑖𝑖

3(1 − 𝜈𝜈𝑟𝑟𝑧𝑧𝜈𝜈𝑧𝑧𝑟𝑟)
 (3) 
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We assume that the impactor stiffness (Ei) is significantly larger than the laminate stiffness, so that the impactor can 
be modelled as rigid. For a layup that is not transversely isotropic νxz is not equal to νyz. Therefore, νrz is determined 

by averaging the two out-of-plane Poisson's ratios. In Equation 3 the through-thickness tensile modulus (Ez) and the 
out-of-plane Poisson's ratios (νrz and νzr) are given in Table 2. Olsson [5] and Christoforou [4] assume that Ez ≈ E22 
and that νzr ≈ 0 for unidirectional plies. For unidirectional plies E22 is approximately equal to E33, in contrast to 
woven fabric plies. Table 1 and 2 show that Ez= E33 and νzr can be determined to be 0.021. Olsson’s and 
Christoforou’s assumption is in line with these results considering it is a fabric material. However, Ez might be larger 
than E33 in the case the out of plane Poisson ratios ( ν13, ν23) are higher. 
 
The above is only accurate when the indentation is smaller than the impactor and laminate dimensions [5, 7]. 
However, the results in Chapter 3 show that impact on thick composite plates results in large indentation due to the 
lack of plate bending. Talagani concluded this also after an extensive contact study [7]. Despite this, the Hertz contact 
law is considered sufficient to determine elastic response. 

2.2 Analytical Model 

The analytical impact response model is based on Christoforou's analytical model [4]. He assumed that the plate 
centre deflection (wp) is described by a series expansion. 

 

 𝑤𝑤𝑝𝑝 = �  
∞

𝑚𝑚=1

� 𝑞𝑞𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚

∞

𝑚𝑚=1

 (4) 

 
Here qmn is the unknown amplitude and smn for centrally loaded plates is given in Equation 5. The amount of terms 
used (i.e., m and n) in Equation 4 defines the accuracy. 
 

 𝑠𝑠𝑚𝑚𝑚𝑚 = sin 
𝑚𝑚𝑚𝑚

2
sin 

𝑛𝑛𝑚𝑚
2

 (5) 

 
Whitney and Pagano developed plate equations of motion that include transverse shear stresses [9]. Transverse shear 
stresses are more dominant in thick composites, because there is almost no bending, and therefore have to be taken 
into account. A specially orthotropic form (A16=A26=Bij=D26=D26=0) was derived by Dobyns, see Equation 56 [10]. 

Inserting Equation 4 into these plate equations of motion gives a system of second-order Ordinary Differential 
Equations (ODEs). 
 

 
𝑑𝑑2𝑞𝑞𝑚𝑚𝑚𝑚

𝑑𝑑𝑡𝑡2 + 𝜔𝜔𝑚𝑚𝑚𝑚
2 𝑞𝑞𝑚𝑚𝑚𝑚 =

4𝐹𝐹
𝑚𝑚𝑝𝑝

𝑠𝑠𝑚𝑚𝑚𝑚  (6) 

 
The force is described by Equation 1 and mp is the plate mass. The natural frequencies (𝜔𝜔𝑚𝑚𝑚𝑚

2 ) of a simply supported 

composite laminate are determined using the method of Christoforou and Swanson [3], see Appendix B. In addition to 
a description of the plate motion, the ODE in Equation 7 describes the impactor behaviour. This equation results from 
substituting Equations 2 and 4 into Newton's Second Law (i.e., 𝑚𝑚𝑖𝑖𝑤𝑤𝑖𝑖

¨
= −𝐹𝐹). 

 

 �  
∞

𝑚𝑚=1

� �
𝑑𝑑2𝑞𝑞𝑚𝑚𝑚𝑚

𝑑𝑑𝑡𝑡2 𝑠𝑠𝑚𝑚𝑚𝑚�
∞

𝑚𝑚=1

+
𝑑𝑑2𝛿𝛿
𝑑𝑑𝑡𝑡2 = −

𝐹𝐹
𝑚𝑚𝑖𝑖

 (7) 
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Here mi and vi are the impactor mass and velocity. The system of m x n + 1 second-order ODEs has to be reduced to 
the first order by introducing the set of variables below. 
 

 

qmn,1 = qmn 
 

 qmn,2 = q'
mn 

 
 δ1= δ 

 
  δ2= δ' 

(8) 

 
Substituting these variables and the Hertz contact law in Equations 6 and 7 gives a 2 x m x n + 2 system of first-order 
ODEs. 

 

q'
mn,1= qmn,2 

 

                                  q'
mn,2  =  

4𝑘𝑘𝛼𝛼

𝑚𝑚𝑝𝑝
𝑠𝑠𝑚𝑚𝑚𝑚𝛿𝛿1

𝑞𝑞 − 𝜔𝜔𝑚𝑚𝑚𝑚
2 𝑞𝑞𝑚𝑚𝑚𝑚,1 

 
𝛿𝛿′

1 =  𝛿𝛿2 
 

                                             δ'
2 = -

kα

mi
δ1

q- �  
∞

m=1

� smnqmn,2
'

∞

n=1

  

(9) 

With the corresponding initial conditions, 
 

 

qmn,1(0) = 0 
 

qmn,2(0) = 0 
 

      δ1(0) = 0 
 

       δ2(0) = vi 

(10) 

 
The system of first-order ODEs described above is solved using ode45 in Matlab1. As a result the indentation and qmn 
are obtained as a function of time. The force history is subsequently determined using the Hertz contact law, and the 
plate deflection history is obtained from Equation 4. The impactor displacement history is retrieved using Equation 2, 
from which the impactor velocity history can be estimated. 
 
In Figure 1, the obtained solution is compared to the results obtained by Christoforou [4]. The first peak is in perfect 
agreement, but there is a discrepancy in the second peak. This is probably due to small differences in the numerical 
solution procedure and the determination of the plate natural frequencies. Despite this, the result in Figure 1 verifies 
the method because only the first peak is of interest for this study.  
 
Talagani compared his solution with 5J impact experiments on a thin composite plate performed by Lopes [11, 7]. The 
results of the current implementation of Christoforou's model are added in Figure 2. This validation is limited because 
it considers a low-energy impact on a thin laminate, which is outside the scope of this study. Beside a shift in the plate 
oscillations, the results agree with the experimental results of Lopes, and are in line with Talagani's model. 
 

                                                                 
1 ode45 solves non-stiff differential equations based on a variable step Runge-Kutta method. 
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Figure 1: Comparison of the analytical impact response 

model solution and Christoforou's solution [4]. 

 
Figure 2: Comparison of the analytical impact response 

model solution and experiments performed by Lopes 
[11, 7]. 

Flexural waves significantly affect the response in certain cases. These waves travel a certain distance within the 
impact duration (timp). This impact duration, or end of impact, is defined as the moment when the impactor 

displacement is zero again. The area affected by these travelling flexural waves (i.e., wave affected area) can be 
determined from the wave front of the first mode. Equation 11 describes this area in terms of an ellipse with r(θ) [6, 
12]. Dr(0°) = D11 and Dr(90°) = D22 which are the only two values required to define the wave affected area in 
terms of an ellipse. 

 𝑟𝑟(𝜃𝜃) = �𝑚𝑚𝑡𝑡𝑖𝑖𝑚𝑚𝑝𝑝 �
𝐷𝐷𝑟𝑟(𝜃𝜃)

ℎ𝜌𝜌
�

𝐷𝐷12 + 2𝐷𝐷33

�𝐷𝐷11𝐷𝐷22
+ 1��

1/4

 (11) 

 
   

2.3 Numerical Model 

To compare the analytical impact response model to numerical results we developed a numerical model in 
ABAQUS/Explicit. The impact times are short (e.g., 0.1ms for small-mass impact and 1ms for large-mass impact), which 
makes an explicit solver suitable. As will become clear, different modelling strategies result in a trade-off between 
computational time and accuracy.  
 
The most expensive and accurate model is a layer-by-layer model with continuum solid elements (C3D8R). For this 
model, the ply properties in Table 1 and the corresponding orientations are assigned to each ply. Hard frictionless 
contact describes the interaction between the impactor and laminate. The model employs quarter symmetry, which 
has a small effect on the response in terms of force and displacement. However, using quarter symmetry affects the 
internal stress distribution because E11 ≠ E22, which will give inaccurate damage predictions.  
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(a) (b) 

Figure 3: Comparison of the layer-by-layer and single equivalent layer numerical impact response model for (a) small-
mass and (b) large-mass impact. 

 
To reduce computational time one can model the laminate as a single equivalent layer with the laminate properties 
given in Table 2. Both models give almost identical results beside a negligible (e.g. 0.15%) increase in peak force for 
the equivalent single layer model, see Figure 3. The computational time of the equivalent single layer model is on 
average 25% lower compared to the layer-by-layer model. An additional advantage is that the mesh density can be 
decreased. 
 
Several meshing strategies are investigated, where the mesh density is expressed in terms of elements through the 
thickness (nt). A uniform mesh with nt = 80 (i.e., one element per ply) is computationally expensive. One option is to 
decrease mesh density towards the plate edges, so that a locally refined region remains at the impact location. 
Compared to the uniform mesh the response is identical while the computational time decreased by 94%. In addition, 
the results converge for nt = 40 (i.e., 0.5mm) and result in an additional 84% decrease in computational time 
compared to nt = 80. At last, the dimensions of the locally refined region are increased and the results converge at 
3x3mm. 
 
Beside C3D8R elements the continuum shell element (SC8R) is commonly used. This element has a shell like response 
but a continuum topology. The simulations show that the SC8R elements have problems with the localised indentation 
due to a limited through-thickness description compared to the C3D8R elements. Moreover, the SC8R elements cause 
a 40% increase in computational time. SC8R elements are not suitable for localised impact cases where large 
indentations are involved. 
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3 Results and Observations 

Section 3.1 compares the numerical and analytical model. This comparison is arbitrary because ideally both models 
should be compared to experimental data. However, Figure 2 shows that the analytical model is reasonably close to 
experimental results. Because both the analytical and numerical models assume that no damage occurs, it makes 
sense to compare these models. In addition to the analytical model based on Christoforou, the comparison includes 
the small-mass impact model of Olsson [5] and the energy-balance model of Esrail [8].  

3.1 Comparison of Impact Response Models 

Figure 3(a) compares the impact response models for the small-mass impact event. The response shape of all models 
is similar, but the peak force and impact duration differ. In contrast to Christoforou's model, Olsson's model uses the 
Classical Laminated Plate Theory (CLPT) to determine the plate natural frequencies. If the transverse shear stresses 
are included in Olsson's model (i.e., by using Equation 57) the results are identical to Christoforou's model. 
Christoforou's model predicts a lower peak force compared to the numerical model, which is also seen for the large-
mass impact event in Figure 4(b). The difference results from a factor 2.2 lower contact stiffness in the analytical 
model compared to 'hard contact' in the numerical model. Nevertheless, the analytical model agrees with 
experimental results (see Figure 2) and the correct response shape is predicted. Olsson's model is based on a single 
mass spring, and is therefore not able to capture the large-mass quasi-static response. 
 

  
(a) (b) 

Figure 4: Comparison of the analytical impact response model (Christoforou), Olsson's small-mass impact response 
model, Esrail's energy-balance model, and the numerical impact response model for (a) small-mass and (b) large-mass 
impact. For small-mass impact, Christoforou's and Olsson's model give identical results, but Olsson's model is not able 
to capture the response for large-mass impact. The numerical model is in line with Christoforou's model and the peak 

force prediction of Esrail. 
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3.2 Sensitivity Analysis 

In this section, a sensitivity analysis determines the sensitivity of the impact and laminate parameters using the 
analytical impact response model. Each case evaluates a small-mass and large-mass impact event, except for the 
impactor mass sensitivity. The parameters that determine the response are varied independently compared to the 
reference properties in bold. 
 

− Impactor mass (mi):  0.04 - 0.4 - 4 kg  (constant Ei) 
− Impactor energy (Ei):  50 - 128 - 200 J  (constant mi)  
− Impactor radius (Ri):  5 - 10 - 20 mm  
− Laminate thickness (h):  12 - 20 - 40 mm 
− Laminate area (a,b):  100 - 200 - 400 mm  
− Laminate aspect ratio (AR): 1 - 2 - 4   (constant area) 

 
The sensitivity to the impactor mass is high and it can significantly change the impact response. For instance, the 
impact duration increases from approximately 0.12 to 0.50 and to 1.47ms. Figure 5 shows the difference between the 
three types of impact (i.e., small-mass, intermediate-mass, and large-mass impact) by plotting the force and plate 
deflection versus normalised time. In contrast to a large-mass impact, the force and plate deflection are out of phase 
for a small-mass impact. For the intermediate-mass impact, the force and plate deflection are also out of phase. In 
addition, the force history is complex, as it can increase and decrease significantly over time, simulating multiple 
impacts (see Figure 7(b)). 
 

   
(a) (b) (c) 

Figure 5: Force and plate deflection histories illustrating the impactor mass sensitivity for (a) small-mass,  
(b) intermediate-mass, and (c) large-mass impact. In contrast to large-mass impact, the force and plate deflection are 

out of phase for small-mass impact. 
 
The transition between the response types also involves the wave affected area as discussed in Section 2.2 and 
determined by Equation 11. For the reference plate, it takes 0.066ms for the flexural (i.e., bending) waves to reach the 
boundaries of the specimen. At 0.132ms (i.e., 2x0.066ms) the flexural waves are back at the impact location and the 
plate oscillations start to affect the response. However, for small-mass impact the event is already over, and thus 
these oscillations have no influence on the response. On the other hand, the plate oscillations are visible in Figure 5(c) 
but the impact duration (i.e., 1.47ms) is too long to significantly affect the response. For some intermediate-mass 
impacts, the plate oscillations can significantly affect the response. 
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(a) (b) 

Figure 6: Force histories illustrating the laminate thickness sensitivity for (a) small-mass and (b) large-mass impact. 
 
For a constant impactor mass, the response sensitivity to the impactor energy is low. However, the force and 
displacements are increased with approximately the impactor velocity while the impact duration is only slightly 
decreased. This is expected, as the velocity is only an initial condition and can be seen as the amplitude of the system 
of differential equations. Similarly, the sensitivity to the impactor radius has no significant effect on the response 
shape, but increasing the impactor radius increases the force and decreases the impactor displacement. This effect is 
identical to scaling the contact stiffness (kα). 
 
The laminate dimensions have a high sensitivity, for instance the thickness (Figure 6), the area (Figure 7), and the 
aspect ratio (Figure 8). Increasing the thickness as well as the area doubles the laminate mass and according to Olsson 
the impactor/plate mass ratio dictates the response [6]. Olsson stated that a ratio below 0.23 can be considered small-
mass and above 2.0 large-mass impact. However, the results show that the sensitivity to these parameters is different. 
This indicates that the laminate bending stiffness also plays a significant role. For example, increasing the thickness or 
decreasing the area results in a higher bending stiffness. Overall, the area within the force-displacement curve 
decreases for an increasing thickness. For thicker laminates, more energy is absorbed into indentation during the 
loading phase, instead of bending energy. For example, according to the model of Esrail [8], for a thickness of 12mm 
about 88% of the energy converts to bending energy compared to 17% for a 40mm thick laminate. For small-mass 
impact not all energy is transferred back to kinetic energy. However, increasing the laminate thickness results in a 
residual velocity closer to the initial velocity. For large-mass impact, all energy is converted back to kinetic energy 
resulting in a residual velocity equal to the initial velocity. 
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(a) (b) 

Figure 7: Force history illustrating the laminate area sensitivity for (a) small-mass and (b) large-mass impact. 
 
In contrast to large-mass impact, increasing the laminate area above 200x200mm has almost no effect on the 
response for small-mass impact (see Figure 7). Figure 8 shows the sensitivity to the laminate aspect ratio. For large-
mass impact the sensitivity is low compared to Figure 7(b). However, for small-mass impact a higher aspect ratio 
results in a significant higher force. The results in this section show that there are many parameters that affect the 
response. In contrast to a localised small-mass impact, the laminate dimensions and boundary conditions significantly 
influence the large-mass impact response, which agrees with Olsson's conclusions [6]. 
 

  
(a) (b) 

Figure 8: Force history illustrating the laminate aspect ratio sensitivity for (a) small-mass and (b) large-mass impact. 
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4 Conclusions and Future Work 

This paper has studied the impact response of thick composite structures and identified the differences with the 
impact response of thin composite structures. An analytical impact response model was developed, based on the 
methodology of Christoforou [4], which includes the Hertz contact law. The results were compared with a numerical 
impact response model and overall the response of both models agreed. A sensitivity analysis on several key 
parameters was performed using the analytical impact response model. Two 50J impact cases, a small-mass (0.04kg) 
and a large-mass (4kg), were studied. The sensitivity analysis lead to the following conclusions: 
 

− For small-mass impact, the force and plate deflection histories are out of phase (i.e., localised response). 
− On the other hand, a large-mass impact has a quasi-static response where these histories align. 
− A complex response, with multiple impact events, can occur for impactor masses between small-mass and 

large-mass (i.e., intermediate-mass). 
− Increasing the impactor velocity, while keeping the impactor mass constant, scales the force and 

displacement by approximately the increase in velocity.  
− For a large impactor radius, the contact stiffness is higher, which results in a higher force and lower 

indentation.  
− Beside the increase in peak force for thicker laminates, a small-mass impact is not sensitive to the laminate 

dimensions. 
− For large-mass impact, the laminate dimensions play a significant role.  

o A thicker laminate has a higher laminate bending stiffness. As a result, the impact energy is mainly 
converted to indentation instead of bending. The peak force is therefore significantly higher for 
thicker laminates, while the impact duration is shorter. 

o Decreasing the area gives similar results as increasing the thickness. 
o A higher aspect ratio (constant area) increases the peak force, but the impact duration decreases. 

 
The response of thick composite structures to impact can be completely different from the response of thin composite 
structures. In the end, the energy that goes into bending and indentation will result in damage. Thick composite 
structures generally have a localised impact response, whereas thin composite structures tend towards a quasi-static 
impact response with more bending. The difference in response will have a significant effect on the resulting damage 
mechanism. According to literature and previous studies a local response results in mostly internal damage (e.g., 
matrix cracking and delaminations) and maybe a dent at the impact location. A quasi-static response can result in 
external damage in the form of fibre breakage. The results of this paper give valuable information about the effect of 
impactor and laminate characteristics on the resulting response. The next step is to use this information to predict the 
extent and type of damage with a numerical model. This model can aid the design and certification process of thick 
composite structures, which can result in lighter aerospace components. 
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Appendix A Derivation of the Equivalent Laminate 
Membrane Properties 

The compliance tensor that relates the stresses to the strains, for an orthotropic laminate can be defined [13]. 

 

⎩
⎪
⎨

⎪
⎧

𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝜀𝜀𝑧𝑧
𝛾𝛾𝑦𝑦𝑧𝑧
𝛾𝛾𝑥𝑥𝑧𝑧
𝛾𝛾𝑥𝑥𝑦𝑦⎭

⎪
⎬

⎪
⎫

=

⎣
⎢
⎢
⎢
⎢
⎡
𝑆𝑆11 𝑆𝑆12 𝑆𝑆13 0 0 𝑆𝑆16
𝑆𝑆12 𝑆𝑆22 𝑆𝑆23 0 0 𝑆𝑆26
𝑆𝑆13 𝑆𝑆23 𝑆𝑆33 0 0 𝑆𝑆36
0 0 0 𝑆𝑆44 𝑆𝑆45 0
0 0 0 𝑆𝑆45 𝑆𝑆55 0

𝑆𝑆16 𝑆𝑆26 𝑆𝑆36 0 0 𝑆𝑆66⎦
⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧

𝜎𝜎𝑥𝑥
𝜎𝜎𝑦𝑦
𝜎𝜎𝑧𝑧
𝜏𝜏𝑦𝑦𝑧𝑧
𝜏𝜏𝑥𝑥𝑧𝑧
𝜏𝜏𝑥𝑥𝑦𝑦⎭

⎪
⎬

⎪
⎫

 (12) 

 

For each ply k that is at an angle θ the values for 𝑆𝑆𝑖𝑖𝑖𝑖
𝑘𝑘  can be determined by transforming the ply properties to the 

laminate coordinate system. 

 𝑆𝑆11
𝑘𝑘 =

1
𝐸𝐸11

𝑐𝑐𝑐𝑐𝑠𝑠4 𝜃𝜃 + �
1

𝐺𝐺12
−

2𝜈𝜈12

𝐸𝐸11
� 𝑠𝑠𝑠𝑠𝑛𝑛2 𝜃𝜃 𝑐𝑐𝑐𝑐𝑠𝑠2 𝜃𝜃 +

1
𝐸𝐸22

𝑠𝑠𝑠𝑠𝑛𝑛4 𝜃𝜃 (13) 

   

 𝑆𝑆12
𝑘𝑘 = �

1
𝐸𝐸11

+
1

𝐸𝐸22
−

1
𝐺𝐺12

� sin2 𝜃𝜃 cos2 𝜃𝜃 −
𝜈𝜈12

𝐸𝐸11
(sin4 𝜃𝜃 + cos4 𝜃𝜃) (14) 

   

 𝑆𝑆13
𝑘𝑘 = −

𝜈𝜈13

𝐸𝐸11
cos2 𝜃𝜃 −

𝜈𝜈23

𝐸𝐸22
sin2𝜃𝜃   (15) 

   

 𝑆𝑆22
𝑘𝑘 =

1
𝐸𝐸11

sin4 𝜃𝜃 + �
1

𝐺𝐺12
−

2𝜈𝜈12

𝐸𝐸11
� sin2 𝜃𝜃 cos2 𝜃𝜃 +

1
𝐸𝐸22

cos4 𝜃𝜃 (16) 

   

 𝑆𝑆23
𝑘𝑘 = −

𝜈𝜈13

𝐸𝐸11
sin2 𝜃𝜃 −

𝜈𝜈23

𝐸𝐸22
cos2 𝜃𝜃 (17) 

   

 𝑆𝑆33
𝑘𝑘 =

1
𝐸𝐸33

 (18) 

   

 𝑆𝑆16
𝑘𝑘 =

2
𝐸𝐸11

cos3 𝜃𝜃 sin 𝜃𝜃 −
2

𝐸𝐸22
cos 𝜃𝜃 sin3 𝜃𝜃 + �

1
𝐺𝐺12

−
2𝜈𝜈12

𝐸𝐸11
� (cos 𝜃𝜃 sin3 𝜃𝜃 − cos3 𝜃𝜃 sin 𝜃𝜃) (19) 

   

 𝑆𝑆26
𝑘𝑘 =

2
𝐸𝐸11

cos 𝜃𝜃 sin3 𝜃𝜃 −
2

𝐸𝐸22
cos3 𝜃𝜃 sin 𝜃𝜃 + �

1
𝐺𝐺12

−
2𝜈𝜈12

𝐸𝐸11
� (cos3 𝜃𝜃 sin 𝜃𝜃 − cos 𝜃𝜃 sin3 𝜃𝜃) (20) 

   

 𝑆𝑆36
𝑘𝑘 = 2 �

𝜈𝜈23

𝐸𝐸22
−

𝜈𝜈13

𝐸𝐸11
� cos 𝜃𝜃 sin 𝜃𝜃 (21) 

   

 𝑆𝑆44
𝑘𝑘 =

1
𝐺𝐺13

sin2 𝜃𝜃 +
1

𝐺𝐺23
cos2 𝜃𝜃 (22) 

   

 𝑆𝑆45
𝑘𝑘 = �

1
𝐺𝐺13

−
1

𝐺𝐺23
� sin 𝜃𝜃 cos 𝜃𝜃 (23) 

   

 𝑆𝑆55
𝑘𝑘 =

1
𝐺𝐺13

cos2 𝜃𝜃 +
1

𝐺𝐺23
sin2 𝜃𝜃 (24) 
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 𝑆𝑆66
𝑘𝑘 = 4(

1
𝐸𝐸11

+
1

𝐸𝐸22
+

2𝜈𝜈12

𝐸𝐸11
)sin2 𝜃𝜃cos2 𝜃𝜃 +

1
𝐺𝐺12

(sin4 𝜃𝜃 + cos4 𝜃𝜃 − 2sin2 𝜃𝜃cos2 𝜃𝜃) (25) 

 

The inverse of the ply compliance tensor gives the ply stiffness tensor, for instance 𝑪𝑪 = (𝑺𝑺)−1. With the equal strain 
assumption, the laminate stiffness tensor can be obtained by averaging the components, 

 𝐶𝐶𝑖𝑖𝑖𝑖 =
1
ℎ

� 𝐶𝐶𝑖𝑖𝑖𝑖
𝑘𝑘

𝑚𝑚

𝑘𝑘=1

𝑡𝑡𝑘𝑘 (26) 

 
where 𝑡𝑡𝑘𝑘 is the thickness of ply k and h the laminate thickness. 
 

 

⎩
⎪
⎨

⎪
⎧

𝜎𝜎𝑥𝑥
𝜎𝜎𝑦𝑦
𝜎𝜎𝑧𝑧
𝜏𝜏𝑦𝑦𝑧𝑧
𝜏𝜏𝑥𝑥𝑧𝑧
𝜏𝜏𝑥𝑥𝑦𝑦⎭

⎪
⎬

⎪
⎫

=

⎣
⎢
⎢
⎢
⎢
⎡
𝐶𝐶11 𝐶𝐶12 𝐶𝐶13 0 0 𝐶𝐶16
𝐶𝐶12 𝐶𝐶22 𝐶𝐶23 0 0 𝐶𝐶26
𝐶𝐶13 𝐶𝐶23 𝐶𝐶33 0 0 𝐶𝐶36
0 0 0 𝐶𝐶44 𝐶𝐶45 0
0 0 0 𝐶𝐶45 𝐶𝐶55 0

𝐶𝐶16 𝐶𝐶26 𝐶𝐶36 0 0 𝐶𝐶66⎦
⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧

𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝜀𝜀𝑧𝑧
𝛾𝛾𝑦𝑦𝑧𝑧
𝛾𝛾𝑥𝑥𝑧𝑧
𝛾𝛾𝑥𝑥𝑦𝑦⎭

⎪
⎬

⎪
⎫

 (27) 

 
From the compliance tensor of the full laminate above the equivalent laminate properties (i.e., Ex, Ey, Ez) can be 

determined. For example, to determine  Ex one can assume a uniaxial tension test such that σx≠ 0 and 
σy=σz=τyz=τxz=τxy=0. The system of equations as in Equation 27 can then be rewritten, 

 
   𝐶𝐶11𝜀𝜀𝑥𝑥 + 𝐶𝐶12𝜀𝜀𝑦𝑦 + 𝐶𝐶13𝜀𝜀𝑧𝑧 + 𝐶𝐶16𝛾𝛾𝑥𝑥𝑦𝑦 = 𝜎𝜎𝑥𝑥  (28) 
   
 𝐶𝐶12𝜀𝜀𝑥𝑥 + 𝐶𝐶22𝜀𝜀𝑦𝑦 + 𝐶𝐶23𝜀𝜀𝑧𝑧 + 𝐶𝐶26𝛾𝛾𝑥𝑥𝑦𝑦 = 0 (29) 
   
 𝐶𝐶13𝜀𝜀𝑥𝑥 + 𝐶𝐶23𝜀𝜀𝑦𝑦 + 𝐶𝐶33𝜀𝜀𝑧𝑧 + 𝐶𝐶36𝛾𝛾𝑥𝑥𝑦𝑦 = 0 (30) 
   
 𝐶𝐶16𝜀𝜀𝑥𝑥 + 𝐶𝐶26𝜀𝜀𝑦𝑦 + 𝐶𝐶36𝜀𝜀𝑧𝑧 + 𝐶𝐶66𝛾𝛾𝑥𝑥𝑦𝑦 = 0 (31) 

 
Rearranging Equations 29 - 31 gives, 

 𝜀𝜀𝑦𝑦 =
−𝐶𝐶12𝜀𝜀𝑥𝑥 − 𝐶𝐶23𝜀𝜀𝑧𝑧 − 𝐶𝐶26𝛾𝛾𝑥𝑥𝑦𝑦

𝐶𝐶22
 (32) 

   

 𝜀𝜀𝑧𝑧 =
−𝐶𝐶13𝜀𝜀𝑥𝑥 − 𝐶𝐶23𝜀𝜀𝑦𝑦 − 𝐶𝐶36𝛾𝛾𝑥𝑥𝑦𝑦

𝐶𝐶33
 (33) 

   

 𝛾𝛾𝑥𝑥𝑦𝑦 =
−𝐶𝐶16𝜀𝜀𝑥𝑥 − 𝐶𝐶26𝜀𝜀𝑦𝑦 − 𝐶𝐶36𝜀𝜀𝑧𝑧

𝐶𝐶66
 (34) 

 
Inserting Equation 32 in Equation 33, regrouping, and simplifying gives, 
 

 𝜀𝜀𝑧𝑧 = −𝜈𝜈𝑥𝑥𝑧𝑧𝜀𝜀𝑥𝑥 (35) 
 
where, 

 𝜈𝜈𝑥𝑥𝑧𝑧 =
𝐶𝐶13𝐶𝐶26

2 − 𝐶𝐶16𝐶𝐶23𝐶𝐶26 − 𝐶𝐶12𝐶𝐶26𝐶𝐶36 + 𝐶𝐶16𝐶𝐶22𝐶𝐶36 + 𝐶𝐶12𝐶𝐶23𝐶𝐶66 − 𝐶𝐶13𝐶𝐶22𝐶𝐶66

𝐶𝐶66𝐶𝐶23
2 − 2𝐶𝐶23𝐶𝐶26𝐶𝐶36 + 𝐶𝐶33𝐶𝐶26

2 + 𝐶𝐶22𝐶𝐶36
2 − 𝐶𝐶22𝐶𝐶33𝐶𝐶66

 (36) 

 
The same can be done by inserting Equation 33 in Equation 32, 

 𝜀𝜀𝑦𝑦 = −𝜈𝜈𝑥𝑥𝑦𝑦𝜀𝜀𝑥𝑥 (37) 
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where, 

 𝜈𝜈𝑥𝑥𝑦𝑦 =
𝐶𝐶12𝐶𝐶36

2 − 𝐶𝐶13𝐶𝐶26𝐶𝐶36 − 𝐶𝐶16𝐶𝐶23𝐶𝐶36 + 𝐶𝐶16𝐶𝐶26𝐶𝐶33 + 𝐶𝐶13𝐶𝐶23𝐶𝐶66 − 𝐶𝐶12𝐶𝐶33𝐶𝐶66

𝐶𝐶66𝐶𝐶23
2 − 2𝐶𝐶23𝐶𝐶26𝐶𝐶36 + 𝐶𝐶33𝐶𝐶26

2 + 𝐶𝐶22𝐶𝐶36
2 − 𝐶𝐶22𝐶𝐶33𝐶𝐶66

 (38) 

 
Substituting Equations 35 and 37 into Equation 34 gives, 
 

 𝛾𝛾𝑥𝑥𝑦𝑦 =
−𝐶𝐶12 + 𝐶𝐶26𝜈𝜈𝑥𝑥𝑦𝑦 + 𝐶𝐶36𝜈𝜈𝑥𝑥𝑧𝑧

𝐶𝐶66
𝜀𝜀𝑥𝑥 (39) 

 
Finally, insert Equations 35, 37, and 40 back into Equation 28 to give the expression for Ex, 
 

 𝜎𝜎𝑥𝑥 = 𝐸𝐸𝑥𝑥𝜀𝜀𝑥𝑥 (40) 
 
where, 

 𝐸𝐸𝑥𝑥 = 𝐶𝐶11 − 𝜈𝜈𝑥𝑥𝑦𝑦(𝐶𝐶12 −
𝐶𝐶16𝐶𝐶26

𝐶𝐶66
) − 𝜈𝜈𝑥𝑥𝑧𝑧(𝐶𝐶13 −

𝐶𝐶16𝐶𝐶36

𝐶𝐶66
) −

𝐶𝐶16
2

𝐶𝐶66
 (41) 

 
In a similar fashion Ey and  Ez and the corresponding Poisson ratios can be derived, 

 

 𝐸𝐸𝑦𝑦 = 𝐶𝐶22 − 𝜈𝜈𝑦𝑦𝑧𝑧(𝐶𝐶12 −
𝐶𝐶16𝐶𝐶26

𝐶𝐶66
) − 𝜈𝜈𝑦𝑦𝑧𝑧(𝐶𝐶23 −

𝐶𝐶26𝐶𝐶36

𝐶𝐶66
) −

𝐶𝐶26
2

𝐶𝐶66
 (42) 

 

 𝜈𝜈𝑦𝑦𝑧𝑧 =
𝐶𝐶16

2 𝐶𝐶23 − 𝐶𝐶13𝐶𝐶16𝐶𝐶26 − 𝐶𝐶12𝐶𝐶16𝐶𝐶36 + 𝐶𝐶11𝐶𝐶26𝐶𝐶36 + 𝐶𝐶12𝐶𝐶13𝐶𝐶66 − 𝐶𝐶11𝐶𝐶23𝐶𝐶66

𝐶𝐶66𝐶𝐶13
2 − 2𝐶𝐶13𝐶𝐶16𝐶𝐶36 + 𝐶𝐶33𝐶𝐶16

2 + 𝐶𝐶11𝐶𝐶36
2 − 𝐶𝐶11𝐶𝐶33𝐶𝐶66

 (43) 

   
 

𝜈𝜈𝑦𝑦𝑥𝑥 =
𝐶𝐶12𝐶𝐶36

2 − 𝐶𝐶13𝐶𝐶26𝐶𝐶36 − 𝐶𝐶16𝐶𝐶23𝐶𝐶36 + 𝐶𝐶16𝐶𝐶26𝐶𝐶33 + 𝐶𝐶13𝐶𝐶23𝐶𝐶66 − 𝐶𝐶12𝐶𝐶33𝐶𝐶66

𝐶𝐶66𝐶𝐶13
2 − 2𝐶𝐶13𝐶𝐶16𝐶𝐶36 + 𝐶𝐶33𝐶𝐶16

2 + 𝐶𝐶11𝐶𝐶36
2 − 𝐶𝐶11𝐶𝐶33𝐶𝐶66

 
(44) 

 

 𝐸𝐸𝑧𝑧 = 𝐶𝐶33 − 𝜈𝜈𝑧𝑧𝑥𝑥(𝐶𝐶13 −
𝐶𝐶16𝐶𝐶36

𝐶𝐶66
) − 𝜈𝜈𝑧𝑧𝑦𝑦(𝐶𝐶23 −

𝐶𝐶26𝐶𝐶36

𝐶𝐶66
) −

𝐶𝐶36
2

𝐶𝐶66
 (45) 

 

 𝜈𝜈𝑧𝑧𝑦𝑦 =
𝐶𝐶16

2 𝐶𝐶23 − 𝐶𝐶13𝐶𝐶16𝐶𝐶26 − 𝐶𝐶12𝐶𝐶16𝐶𝐶36 + 𝐶𝐶11𝐶𝐶26𝐶𝐶36 + 𝐶𝐶12𝐶𝐶13𝐶𝐶66 − 𝐶𝐶11𝐶𝐶23𝐶𝐶66

𝐶𝐶66𝐶𝐶12
2 − 2𝐶𝐶12𝐶𝐶16𝐶𝐶26 + 𝐶𝐶22𝐶𝐶16

2 + 𝐶𝐶11𝐶𝐶26
2 − 𝐶𝐶11𝐶𝐶22𝐶𝐶66

 (46) 

   
 

𝜈𝜈𝑧𝑧𝑥𝑥 =
𝐶𝐶13𝐶𝐶26

2 − 𝐶𝐶16𝐶𝐶23𝐶𝐶26 − 𝐶𝐶12𝐶𝐶26𝐶𝐶36 + 𝐶𝐶16𝐶𝐶22𝐶𝐶36 + 𝐶𝐶12𝐶𝐶23𝐶𝐶66 − 𝐶𝐶13𝐶𝐶22𝐶𝐶66

𝐶𝐶66𝐶𝐶12
2 − 2𝐶𝐶12𝐶𝐶16𝐶𝐶26 + 𝐶𝐶22𝐶𝐶16

2 + 𝐶𝐶11𝐶𝐶26
2 − 𝐶𝐶11𝐶𝐶22𝐶𝐶66

 
(47) 

 
For determining Gyz one can assume that τyz ≠ 0 and 𝜎𝜎x = σy = σz = τxz = τxy = 0. The system of equations as in 

Equation 27 can then be rewritten, 
 

 𝐶𝐶44𝛾𝛾𝑦𝑦𝑧𝑧 + 𝐶𝐶45𝛾𝛾𝑥𝑥𝑧𝑧 = 𝜏𝜏𝑦𝑦𝑧𝑧 (48) 
   
 𝐶𝐶45𝛾𝛾𝑦𝑦𝑧𝑧 + 𝐶𝐶55𝛾𝛾𝑥𝑥𝑧𝑧 = 0 (49) 

 
Because the resulting equations do not depend on many variables, the derivation is quite straightforward. Rewriting 
Equation 49 and substituting in Equation 48 gives, 
 

 𝜏𝜏𝑦𝑦𝑧𝑧 = 𝐺𝐺𝑦𝑦𝑧𝑧𝛾𝛾𝑦𝑦𝑧𝑧 (50) 
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where, 

 𝐺𝐺𝑦𝑦𝑧𝑧 = 𝐶𝐶44 −
𝐶𝐶45

2

𝐶𝐶55
 (51) 

 
Similarly for Gxz this gives, 

 𝐺𝐺𝑥𝑥𝑧𝑧 = 𝐶𝐶55 −
𝐶𝐶45

2

𝐶𝐶44
 (52) 

 
The derivation of Gxy can be done similarly to the derivation of Ex which will result in, 

 

 𝐺𝐺𝑥𝑥𝑦𝑦 = 𝐶𝐶66 − 𝜈𝜈𝑥𝑥𝑦𝑦𝑦𝑦(𝐶𝐶26 −
𝐶𝐶12𝐶𝐶16

𝐶𝐶11
) − 𝜈𝜈𝑥𝑥𝑦𝑦𝑧𝑧(𝐶𝐶36 −

𝐶𝐶13𝐶𝐶16

𝐶𝐶11
) −

𝐶𝐶16
2

𝐶𝐶11
 (53) 

 
where, 

 𝜈𝜈𝑥𝑥𝑦𝑦𝑧𝑧 =
𝐶𝐶12

2 𝐶𝐶36 − 𝐶𝐶12𝐶𝐶13𝐶𝐶26 − 𝐶𝐶12𝐶𝐶16𝐶𝐶23 + 𝐶𝐶13𝐶𝐶16𝐶𝐶22 + 𝐶𝐶11𝐶𝐶23𝐶𝐶26 − 𝐶𝐶11𝐶𝐶22𝐶𝐶36

𝐶𝐶33𝐶𝐶12
2 − 2𝐶𝐶12𝐶𝐶13𝐶𝐶23 + 𝐶𝐶22𝐶𝐶13

2 + 𝐶𝐶11𝐶𝐶23
2 − 𝐶𝐶11𝐶𝐶22𝐶𝐶33

 (54) 

   

 𝜈𝜈𝑥𝑥𝑦𝑦𝑦𝑦 =
𝐶𝐶13

2 𝐶𝐶26 − 𝐶𝐶13𝐶𝐶16𝐶𝐶23 − 𝐶𝐶12𝐶𝐶13𝐶𝐶36 + 𝐶𝐶12𝐶𝐶16𝐶𝐶33 + 𝐶𝐶11𝐶𝐶23𝐶𝐶36 − 𝐶𝐶11𝐶𝐶26𝐶𝐶33

𝐶𝐶33𝐶𝐶12
2 − 2𝐶𝐶12𝐶𝐶13𝐶𝐶23 + 𝐶𝐶22𝐶𝐶13

2 + 𝐶𝐶11𝐶𝐶23
2 − 𝐶𝐶11𝐶𝐶22𝐶𝐶33

 (55) 
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Appendix B Derivation of the Plate Natural 
Frequencies 

The plate equations of motions for a specially orthotropic plate are given below [10]. 
 

 𝐷𝐷11
∂2Ψ𝑥𝑥

∂𝑥𝑥2 + 𝐷𝐷66
∂2Ψ𝑥𝑥

∂𝑦𝑦2 + (𝐷𝐷12 + 𝐷𝐷66)
∂2Ψ𝑦𝑦

∂𝑥𝑥 ∂𝑦𝑦
− 𝑘𝑘𝐴𝐴55 �Ψ𝑥𝑥 +

∂𝑤𝑤
∂𝑥𝑥

� =
𝜌𝜌ℎ3

12
∂2Ψ𝑥𝑥

∂𝑡𝑡2   

 (𝐷𝐷12 + 𝐷𝐷66)
∂2Ψ𝑦𝑦

∂𝑥𝑥 ∂𝑦𝑦
+ 𝐷𝐷66

∂2Ψ𝑦𝑦

∂𝑥𝑥2 + 𝐷𝐷22
∂2Ψ𝑦𝑦

∂𝑦𝑦2 − 𝑘𝑘𝐴𝐴44 �Ψ𝑦𝑦 +
∂𝑤𝑤
∂𝑥𝑥

� =
𝜌𝜌ℎ3

12
∂2Ψ𝑦𝑦

∂𝑡𝑡2   

 𝑘𝑘𝐴𝐴55 �
∂Ψ𝑥𝑥

∂𝑥𝑥
+

∂2𝑤𝑤
∂𝑥𝑥2 � + 𝑘𝑘𝐴𝐴44 �

∂Ψ𝑦𝑦

∂𝑦𝑦
+

∂2𝑤𝑤
∂𝑦𝑦2 � + 𝑞𝑞(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 𝜌𝜌ℎ

∂2𝑤𝑤
∂𝑡𝑡2  (56) 

 
Here w is the plate deflection, ρ is the laminate density, h is the laminate thickness, t is time, q(x,y,t) the load, and 
ψxand ψy the shear rotations. The plate stiffness components Dij and Aij are determined using the FSDT [9]. The 

shear correction factor k is usually taken to be π2/12 [3]. When assuming simply supported boundary conditions one 
can assume solutions for ψx, ψy, w, and q that satisfy these boundary conditions, for instance in the form of Equation 

4. However, generally the rotary inertia (ψxand      ) are neglected. After substituting Equation 4 in Equation 56 and 

some transformation Equation 6 is obtained. The natural frequencies are given by Equation 57 [3]. 
 

 𝜔𝜔𝑚𝑚𝑚𝑚
2 =

𝐶𝐶13𝐾𝐾𝐴𝐴 + 𝐶𝐶23𝐾𝐾𝐵𝐵 + 𝐶𝐶33

𝜌𝜌ℎ
 (57) 

where, 

 𝐾𝐾𝐴𝐴 =
𝐶𝐶12𝐶𝐶23 − 𝐶𝐶13𝐶𝐶22

𝐶𝐶11𝐶𝐶22 − 𝐶𝐶12
2  (58) 

 𝐾𝐾𝐵𝐵 =
𝐶𝐶12𝐶𝐶23 − 𝐶𝐶11𝐶𝐶23

𝐶𝐶11𝐶𝐶22 − 𝐶𝐶12
2  (59) 

 𝐶𝐶11 = 𝐷𝐷11 �
𝑚𝑚𝑚𝑚
𝑎𝑎

�
2

+ 𝐷𝐷66 �
𝑛𝑛𝑚𝑚
𝑏𝑏

�
2

+ 𝑘𝑘𝐴𝐴55 (60) 

 𝐶𝐶12 = (𝐷𝐷12 + 𝐷𝐷66) �
𝑚𝑚𝑚𝑚
𝑎𝑎

� �
𝑛𝑛𝑚𝑚
𝑏𝑏

� (61) 

 𝐶𝐶13 = 𝑘𝑘𝐴𝐴55 �
𝑚𝑚𝑚𝑚
𝑎𝑎

� (62) 

 𝐶𝐶22 = 𝐷𝐷66 �
𝑚𝑚𝑚𝑚
𝑎𝑎

�
2

+ 𝐷𝐷22 �
𝑛𝑛𝑚𝑚
𝑏𝑏

�
2

+ 𝑘𝑘𝐴𝐴44 (63) 

 𝐶𝐶23 = 𝑘𝑘𝐴𝐴44 �
𝑛𝑛𝑚𝑚
𝑏𝑏

� (64) 

 𝐶𝐶33 = 𝑘𝑘𝐴𝐴55 �
𝑚𝑚𝑚𝑚
𝑎𝑎

�
2

+ 𝑘𝑘𝐴𝐴44 �
𝑛𝑛𝑚𝑚
𝑏𝑏

�
2
 (65) 
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