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Abstract: Recently (Cérou et al., 2002) developed an elegant factorization of
rare event probabilities appearing in diffusion processes and other strong Markov
processes, and a sequential Monte Carlo simulation approach to estimate the
factorized rare event probability. The paper extends this approach towards rarely
switching diffusions, and demonstrates the effectiveness for a simple example.
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1. INTRODUCTION

Stochastic dynamical modeling of accident risk is
of high interest for the safe design of complex
safety-critical operations, such as in nuclear and
chemical industries, and advanced air traffic man-
agement, e.g. see (Smidts et al., 1998; Labeau
et al., 2000; Blom et al., 2003a) and their refer-
ences. In comparison with statistical analysis of
collected data (Embrechts et al., 1997), stochas-
tic dynamical modeling approach has the advan-
tage of enabling stochastic analysis and advanced
Monte Carlo (MC) simulation approaches (Doucet
et al., 2001).

Obtaining accurate estimates of rare event prob-
abilities, say about 10−9 to 10−12, is not real-
istic just by using straightforward MC simula-
tion. This makes MC simulation to be a prac-
tical alternative only when it is possible to re-
alize a high speed up. The techniques used in
(Smidts et al., 1998; Labeau et al., 2000; Blom
et al., 2003a) for speeding up MC simulation are

1 This research has been performed with support of the
European Commission through the HYBRIDGE project.

model specific risk decompositions. Hence there is
need for a more systematic and general approach.
A well known approach is importance sampling
(Liu, 2003), which is based on a modification of
the underlying probability distribution in such a
way that the rare events occur much more fre-
quently. Unfortunately, for rare event simulation,
importance sampling alone often does not provide
the required speed-up. An alternative approach to
increase the relative number of visits to the rare
event is to make use of the fact that there exist
some well identifiable intermediate states that are
visited much more often than the rare event states
themselves and behave as gateway states to reach
the rare event states (Townsend et al., 1998). In
(Cérou et al., 2002) this idea has been elaborated
in terms of stochastic analysis, and subsequently
combined with a sequential MC based evaluation.
The result is a specific Interacting Particle System
(IPS) algorithm (Moral, 2004). In (Krystul and
Blom, 2004) it has been shown that this IPS
approach works very well for a diffusion example.
The aim of this paper is to extend this IPS ap-
proach to estimate the rare event probability for
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rarely switching diffusions (Ghosh et al., 1993),
(Ghosh et al., 1997).

Straightforward application of the IPS approach
of (Cérou et al., 2002) to rarely switching diffu-
sions has certain limitations. First, there will be
few particles in a mode with small conditional
probability, i.e. a ”light” mode. Second, if switch-
ing rate is small it may be unlikely that there is
even one switch during a simulation run. In such
case, the possible switching between modes is not
properly taken into account and this badly affects
estimator performance. In order to improve for
this, the paper develops two extensions: sampling
per mode to cope with large differences in mode
weights, and importance switching to cope with
rare mode switching.

The paper is organized as follows. Section 2 states
the problem studied. Sections 3 and 4 respectively
present the factorization approach and the IPS
algorithm background of (Cérou et al., 2002). Sec-
tions 5 and 6 extend the IPS algorithm in order
to cope with large differences in mode probabil-
ities and rarely switching diffusions respetively.
Numerical evaluation and comparison of different
versions of the IPS algorithms are given in section
7. Section 8 draws conclusions.

2. THE PROBLEM CONSIDERED

Throughout this and the next sections, all stochas-
tic processes are defined on a complete stochastic
basis (Ω,F ,F,P,T) with index set T = R+, and F
a right continuous filtration (an increasing family
of sub-σ-algebras of F).

Let {xt, θt} be a switching diffusion taking its
values in Rn ×M according to

dxt = a(θt, xt)dt + b(θt, xt)dWt, (1)
Pθt+δ|θt,xt

(θ|η, x) = ληθ(x)δ + o(δ), η 6= θ, (2)

where M is a finite set of modes and (Wt)t≥0 is a
Brownian motion in Rn independent of {θt} and
of initial condition (x0, θ0), a prescribed (Rn ×
M)−valued random variable. Under assumption
on Wt, (x0, θ0), and on functions a, b and λij ,
equation (1,2) admits an a.s. pathwise unique
solution (Ghosh et al., 1993) and which is a strong
Markov process (Blom et al., 2003b).

We set τD
4
= inf{t > 0 : xt ∈ D} for the first

passage time of {xt} to a closed connected Borel
set D. The problem addressed in the sequel is to
estimate the probability Phit(0, T ) that {xt} will
hit the set D on the time interval (0, T ], T < ∞:

Phit(0, T )
4
= P (τD < T ). (3)

Examples of Phit in air traffic are:
1) Conflict probability (Hu et al., 2003; Watkins

and Lygeros, 2003) in which D forms the subset
in the state space where aircraft are closer to each
other than some minimum separation criterion
(e.g. 5 Nm in horizontal direction).
2) Collision probability (Blom et al., 2003a) in
which D is the subset in the state space where
aircraft are closer to each other than their physical
sizes (of order 100m in horizontal direction).

In air traffic, collision probability should be orders
of magnitude smaller than conflict probability. As
such the prime objective of this paper is to address
the more rare collision event.

3. FACTORIZATION APPROACH

In (Cérou et al., 2002; Moral, 2004) a sequence
of gateway states has been used to characterize
the rare event probability as a product of condi-
tional probabilities by using Feynman-Kac model
in path space. Here we explain how this product
form can be obtained for a switching diffusion, the
first component of which counts time. We assume
that switching diffusion (1), (2) starts at t = 0
in a Borel set D̄0 ⊂ {0} × Rn−1 × M with a
known initial probability distribution Px0,θ0(·). As
in (Cérou et al., 2002) we assume a sequence of
nested Borel sets, D̄ = D̄m ⊂ · · · ⊂ D̄1 which are
defined as follows:

D̄k
M= (0, T )×Dk ×M, k = 1, . . . , m (4)

where Dk is a closed Borel set of Rn−1, and D̄1

such that D̄1 ∩ D̄0 = ∅. The first moment that
{xt, θt} hits a set D̄k is defined as the stopping
time:

τk
M= inf{t ≥ 0 : (xt, θt) ∈ D̄k},

τk = ∞ if this set is empty. We want to estimate
P(τm < T ), for some T < ∞, i.e. the probability
that switching diffusion {xt, θt} will hit the rare
event set D̄ before time T . The process {xt, θt},
before hitting D̄, passes through a sequence of
nested Borel sets (4). Following (Cérou et al.,
2002) we introduce the {0, 1}-valued variables
{yk, k = 1, . . . , m}:

yk(ω) M= 1{ω:xτk
(ω)∈(0,T )×Dk}. (5)

Hence, for each k we have

yk(ω) = 1{ω:τk(ω)<T} =
k∏

i=1

1{ω: τi(ω)<T} =
k∏

i=1

yi(ω).

(6)
Next we characterize Phit(0, T ) in terms of the
sequence {yk}. By its definition,

Phit(0, T ) = P(τm < T ) = E[1{τm<T}]

Subsequent substitution of (5) and (6) yields:

Phit(0, T ) = E[ym] = E[
m∏

k=1

yk]. (7)
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Since yk assumes values from {0, 1},

E[
m∏

k=1

yk] =
m∏

k=1

E[yk|yk−1 = 1, . . . , y1 = 1]

Substituting this into (7) yields

Phit(0, T ) =
m∏

k=1

E[yk|yk−1 = 1, . . . , y1 = 1]

=
m∏

k=1

P(τk < T |τk−1 < T, . . . , τ1 < T )

=
m∏

k=1

P(τk < T |τk−1 < T ) (8)

This means that (8) characterizes the probability
Phit(0, T ) of the rare event as a product of con-
ditional probabilities of intermediate ”less rare”
events leading to it. Thus, if we define the condi-
tional probabilities

γk
M= P(τk < T |τk−1 < T ) for k = 1, . . . ,m

and insert this in (8) then we get for Phit(0, T ):

Phit(0, T ) =
m∏

k=1

γk (9)

The estimation of the probabilities γk is sub-
sequently accomplished by the IPS approach of
(Cérou et al., 2002).

4. IPS ALGORITHM

Let us denote E′ = Rn×M, and let E ′ be the Borel
σ−algebra of E′. For any B ∈ E ′, πk(B) denotes
the conditional probability of ξk

M= (xτk
, θτk

) ∈ B
given y1:k = (1, 1, . . . , 1). Then the estimation of
the probability in subsequently hitting the nested
Borel sets by {ξk} is characterized through the
following sequence of transformations

πk−1(·)prediction−−−−−−−→pk(·) conditioning−−−−−−−−→ πk(·),
where pk(B) is the condition probability of ξk ∈ B
given y1:k−1 = (1, 1, . . . , 1). Because {ξt} is a
Markov sequence the prediction satisfies:

pk(B) =
∫

E′
Pξk|ξk−1(B|ξ)πk−1(dξ) for all B ∈ E ′,

(10)
and the conditioning satisfies:

πk(B) =

∫
B

1{ξ∈D̄k}pk(dξ)∫
E′ 1{ξ′∈D̄k}pk(dξ′)

for all B ∈ E ′.
(11)

Then

γk = P (τk < T |τk−1 < T )
= E[yk|y1:k−1 = (1, 1, . . . , 1)]

=
∫

E′
1{ξ∈D̄k}pk(dξ).

With this each of the m terms γk in (9) is char-
acterized as a solution of a sequence of “filtering”

kind of equations (10,11). However, an important
difference with “filtering” equations is that (10,11)
are ordinary integral equations, i.e. they have no
stochastic term entering them.

The sequence of transformations (10),(11) leads
to the IPS algorithm of (Cérou et al., 2002)
to estimate Phit(0, T ) = P(τm < T ). In this
algorithm γ

Np

k , p
Np

k and π
Np

k denote the numerical
approximations of γk, pk and πk respectively:
Step 0. Level sets

• Choose appropriate nested sequence of closed
subsets of Rn−1: D = Dm ⊂ Dm−1 ⊂
· · · ⊂ D1, and define D̄k = (0, T )×Dk ×M,
k = 1, . . . ,m.

Step 1. Initial sampling; k = 0.

• For i = 1, . . . , Np generate initial state value
outside D̄1:
(xi

0, θ
i
0) ∼ Px0,θ0(·) and set ξi

0 = (xi
0, θ

i
0)

• For i = 1, . . . , Np set the initial weights:
ωi

0 = 1/Np.
• Then

π
Np

0 =
Np∑

i=1

ωi
0δ{ξi

0}.

Iteration k; k = 1, . . . , m over step 2 (prediction)
and step 3 (resampling)
Step 2. Prediction step: πk−1 −→ pk ;

• For i = 1, . . . , Np simulate a new path (see
(Krystul and Bagchi, 2004)) starting at ξi

k−1

until the k-th set D̄k is hit, or till t = T .
• This yields new particles {ξ̂i

k, ωi
k−1}Np

i=1.
• p

Np

k is the empirical distribution associated
with the new cloud of particles:

p
Np

k =
Np∑

i=1

ωi
k−1δ{ξ̂i

k
}.

• The particles which do not reach the set D̄k

are killed, i.e. we set ω̂i
k = 0 if ξ̂i

k /∈ D̄k and
ω̂i

k = ωi
k−1 if ξ̂i

k ∈ D̄k.
• The new set of particles is {ξ̂i

k, ω̂i
k}Np

i=1.
• Approximation of γk:

γk ≈ γ
Np

k =
Np∑

i=1

ω̂i
k.

If all particles are killed, i.e. γ
Np

k = 0, then
the algorithm stops without Phit(0, T ) esti-
mate.

Step 3. Resampling step: pk −→ πk

• For i = 1, . . . , Np set ξ̃i
k = ξ̂i

k and

ω̃i
k =

ω̂i
k∑Np

j=1 ω̂j
k

, i = 1, . . . , Np,
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• Resample with replacement Np particles ξi
k

according to the empirical measure

π
Np

k =
Np∑

i=1

ω̃i
kδ{ξ̃i

k
}.

• The new set of particles is {ξi
k, ωi

k}Np

i=1, with
ωi

k = 1/Np.
• If k < m then repeat steps 2, 3 for k := k+1.
• Otherwise, stop with Phit(0, T ) ≈ ∏m

k=1 γ
Np

k .

In (Cérou et al., 2002) it is proven that the particle
estimates are unbiased, i.e.

E[
m∏

k=1

γ
Np

k ] = P(τm < T ) = Phit(0, T )

and also that:

(E(
m∏

k=1

γ
Np

k −
m∏

k=1

γk)p)
1
p ≤ apbm√

Np

,

for some finite constant ap which depends on
the parameter p, and for some finite constant bm

which depends on the parameter m.

5. SAMPLING PER MODE

The initial sampling step 1 and the resampling
step 3 of the IPS algorithm require very many
particles for hybrid state processes the conditional
mode probabilities of which may be small. There-
fore, we propose ”sampling per mode” for the
initial sampling step 1 and for the resampling step
3. This idea of sampling per mode was successfully
introduced in (Blom and Bloem, 2003) for target
tracking problems.

If the initial probabilities of some particular
modes are very small then it is highly unlikely
to draw particles in these modes. To avoid this,
at the initial sampling step we start with a fixed
number of particles in each mode whatever small
the initial probability is, i.e.:
Step 1H. Initial sampling; k = 0.

• Choose for each mode ei ∈M = {e1, . . . , eN},
i = 1, . . . , N an integer N i

p, so that Np =∑N
i=1 N i

p.
• For each i = 1, . . . , N sample N i

p initial state
values outside D̄1: xj

0 ∼ Px0|θ0(·|ei), θj
0 = ei,

set ξj
0 = (xj

0, θ
j
0) and assign initial weight:

ωj
0 = Pθ0 (ei)

Ni
p

, for

j ∈ {∑i−1
k=0 Nk

p +1, . . . ,
∑i−1

k=0 Nk
p +N i

p}, with
convention N0

p = 0.
• Then

π
Np

0 =
Np∑

i=1

ωi
0δ{ξi

0}.

Similarly, for the resampling step we also keep a
fixed number of particles per mode, i.e.:
Step 3H. Resampling step: pk −→ πk

• For each θ ∈M evaluate weights:

ω̃θ,i
k = ω̂i

k · 1{θi
τk

=θ}, i = 1, . . . , Np.

• For i = 1, . . . , Np set ξ̃i
k = ξ̂i

k, yielding
the empirical unnormalized distribution per
mode:

π
θ,Np

k
M=

Np∑

i=1

ω̃θ,i
k δ{ξ̃i

k
}, (12)

and the total weight per mode equals
∑Np

j=1 ω̃θ,j
k .

• For all θ ∈M, resample with replacement Nθ
p

values ξi
k according to the empirical measure

(12), and assign per θ weights to particles:

ωθ
k =

∑Np

j=1 ω̃θ,j
k

Nθ
p

.

• If k < m then repeat steps 2 and 3H for
k := k + 1.

• Otherwise stop, with Phit(0, T ) ≈ ∏m
k=1 γ

Np

k .

6. IMPORTANCE SWITCHING

The possibility of small mode probabilities is cov-
ered well by resampling per mode. However for
rarely switching diffusion the required number
of particles increases when the switching rates
decrease. During a prediction step the random
paths (ξi

k−1:k)Np

i=1 = (xi
τk−1:τk

, θi
τk−1:τk

)Np

i=1 are be-
ing generated to approximate the distribution pk

(k = 1, . . . , m). If the probability of some transi-
tions (switches) is very small then, most probably,
there will be few switches observed during the gen-
eration of these random paths. In order to avoid
the need to increase the number of particles when
the switching rates are decreasing we introduce a
sequential importance switching technique.

Coefficients λij(·) in equation (2) are responsible
for switchings. In order to make the rare switches
less rare we replace λij(·) with λ̂ij(·), and denote
the changed process by {X̂t, θ̂t}. Then, for n > k,
n, k = 1, 2, . . . (Krystul and Blom, 2004, pp.33-
35) show for Euler approximations {Xh

t , θh
t } and

{X̂h
t , θ̂h

t } with time step h:

PXh
tn

,θh
tn
|Xh

tk
,θh

tk

(A,B|xk, θk)

=
∑

θn∈B

∫

A

· · ·
∑

θk+1∈M

∫

Rn

n∏

i=k+1

Lti|ti−1(θi|xi−1, θi−1)

× PX̂h
ti

,θ̂h
ti
|X̂h

ti−1
,θ̂h

ti−1
(dxi, θi|xi−1, θi−1).

with likelihood ratio:

Lt|s(θ|x′, θ′) M=
P

θh
t
|Xh

s ,θh
s

(θ|x′, θ′)
Pθ̂h

t |X̂h
s ,θ̂h

s
(θ|x′, θ′)

This means, an unbiased estimates of distribution
pk (k = 1, . . . , m) in the algorithm described in
the previous section can be obtained by generating
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random trajectories of the process {X̂h
t , θ̂h

t } (i.e.
sampling according to Px̂t,θ̂t|x̂s,θ̂s

(·|x′, θ′)) and ad-
justing the weight of each particle recursively:

ωi
tj

= ωi
tj−1

· Ltj |tj−1(θ
i
j |xi

j−1, θ
i
j−1). (13)

We use the importance switching method de-
scribed above to improve step 2 by forcing rare
switchings in discrete component for the case
that θt is a continuous time Markov chain, i.e.
Lt|s(θ|x, θ′) is x invariant.
Step 2H. Prediction step: πk−1 −→ pk ;

• For i = 1, . . . , Np simulate a new path
(see (Krystul and Bagchi, 2004)) starting at
(xi

τk−1
, θi

τk−1
) to the k-th set D̄k is reached or

till t = T ;
• This yields a new set of particles {ξ̂i

k, ω̂i
k}Np

i=1.
• For the i-th particle evaluate the likelihood

ratio Lτ i
k
|τ i

k−1
(θi

k|θi
k−1).

• The particles, which do not reach the set D̄k

are killed, i.e. we set ω̂i
k = 0 if xi

k /∈ Dk and
otherwise ω̂i

k = ωi
k−1 · Lτ i

k
|τ i

k−1
(θi

k|θi
k−1)

• The new set of particles is {ξ̂i
k, ω̂i

k}Np

i=1.
• Approximation of γk:

γk ≈ γ
Np

k =
Np∑

i=1

ω̂i
k.

• If in one of the modes all particles are killed,
then the algorithm stops without Phit(0, T )
estimate.

7. NUMERICAL EXAMPLE

This section illustrates the performance of the
Monte Carlo (MC) approach, the IPS algorithm of
(Cérou et al., 2002) and the effect of the alterna-
tive steps 1H, 2H and 3H for a switching diffusion.
Table 1 presents the list of tested algorithms.
There IPS stands for the algorithm of (Cérou et
al., 2002) in case of a switching diffusion (section
4); HIPS 1 is IPS with improved initial sampling
step 1H and with resampling per mode step 3H
(section 5); and HIPS 2 is HIPS 1 plus importance
switching (section 6). For the example consider
a Markovian switching diffusion (xt, θt) ∈ R ×
{e1, e2, e3}, the evolution of which is governed by
the following SDE

dxt =
(
µ(θt) +

σ(θt)2

2

)
xtdt + σ(θt)xtdWt, (14)

Pθt+δ|θt,xt
(θ|η, x) = ληθ(x)δ + o(δ), η 6= θ. (15)

Table 1. Tested Algorithms

Algorithm Particle Initial Resamp- Impor-
system sampling ling tance

per mode per mode switching

MC − Yes (1H) − −
IPS Yes − − −
HIPS 1 Yes Yes (1H) Yes (3H) −
HIPS 2 Yes Yes (1H) Yes (3H) Yes (2H)
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Fig. 1. Probability to hit level d. MC stops at d4 =
490. IPS stops at the beginning. HIPS1 un-
derestimates the probability because it runs
on too few mode switched particles.

Initial conditions:

x0 = 1; Pθ0(e1) = 1− 10−7 − 10−9;

Pθ0(e2) = 10−7; Pθ0(e3) = 10−9;

Parameters:
µ(e1) = 1, µ(e2) = 4, µ(e3) = 3,
σ(e1) = 1, σ(e2) = 0.9, σ(e3) = 1.7,

and with the following rates (independent of xt):

λ12 = 1 · 10−4, λ13 = 1 · 10−6, λ21 = 5 · 10−5,
λ23 = 1 · 10−5, λ31 = 5 · 10−5, λ32 = 1 · 10−4.

We want to estimate the probability that con-
tinuous valued component {xt} will hit level d

before time T , i.e. P (τd(x) ≤ T ) where τd(x)
4
=

inf{t > 0 : xt ∈ [d, +∞); x0 = x}. For the IPS,
HIPS1 and HIPS2 the decreasing nested sets D =
Dm ⊂ · · · ⊂ D1 are as follows: Dj = [dj , +∞),
where the values dj are chosen experimentally so
that approximately 40% − 50% of particles that
start at level Dj−1 reach level Dj , j = 1, . . . , m.
For algorithm HIPS2 the importance rates are
λ̂ij = 1

30 for i 6= j. The likelihood ratio Lt|s(θ|θ′)
can be numerically evaluated as quotient of the
transition probabilities of {θt} and {θ̂t}. This done
by evaluating the matrix exponentials eQ·(t−s) and
eQ̂·(t−s), where Q and Q̂ are the transition rate
matrices of the continuous time Markov chains
{θt} and {θ̂t} respectively.

Figure 1 presents the estimated values of rare
event probability, obtained by running algorithms
listed in table 1. We run 1000 simulations with
1000 particles (500 for Mode 1, 3000 for Mode 2
and 200 for Mode 3) for IPS, HIPS1 and HIPS2
algorithms, and 107 simulations for MC approach.
The results in figure 1 show that MC stops at d4 =
490 (in Mode 1) and that IPS stops immediately.

Algorithm HIPS 1 allows to avoid loss of light par-
ticles in ”light” modes, e.g. in mode 3, and helps to
maintain fixed mumbler of particles in each mode.
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However, it is not able to cope with rare switches
and as a result of which it underestimates the rare
event probability.

Algorithm HIPS 2 copes well with both the prob-
lem of rare switches and the problem of ”light”
modes. It forces interaction between the modes
by making rare switches more frequent and prop-
erly adjusting the weights of particles. The re-
sults show that the increase of the frequencies of
switches has a considerable effect on probabilities
of mode 2 and 3 and thus on total probability (see
figure 1). This is what one should expect because
the heavy particles can leave the mode 1, although
very rarely, and have a great influence on modes
2 and 3. The interaction between modes 2 and 3
is not really noticeable but they have an influence
on mode 1.

8. CONCLUDING REMARKS

The paper extended the sequential Monte Carlo
approach of (Cérou et al., 2002) to estimating rare
events of rarely switching diffusions. First we have
formulated the approach of (Cérou et al., 2002) to
explicitly include the switching diffusion situation.
Then we have developed two extensions: sampling
per mode to cope with large differences in mode
weights, and importance switching to cope with
rare mode switching. Next we evaluated the al-
gorithms for a simple example. The algorithms
tested on switching diffusion are summarized in
Table 1. The obtained results show that all the
proposed extensions are in fact needed for esti-
mating rare events for a rarely switching diffusion.
The best performing algorithm (HIPS2) is able
to cope with differences in weights (sampling per
mode), rare switches of discrete component (im-
portance switching) and rare visits of continuous
component to the rare target set (decomposition
of rare event probability).
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