
Nationaal Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR

NLR-TP-2005-066

Prototyping interactive cockpit applications

R.P.M. Verhoeven and A.J.C. de Reus

This report has been based on a paper presented at the 23rd Digital Avionics System
Conference, Salt Lake City, Utah, U.S.A., October 24-29, 2004.

This report may be cited on condition that full credit is given to NLR and the authors.

Customer: National Aerospace Laboratory NLR
Working Plan number: AT.1.G.3
Owner: National Aerospace Laboratory NLR
Division: Air Transport
Distribution: Unlimited
Classification title: Unclassified
 February 2005

Approved by author:

Approved by project manager: Approved by project managing
department:

-2-

NLR-TP-2005-066

Summary

In the early phases of a cockpit application development process prototypes are built for initial
evaluation and demonstration purposes. It is in this phase that innovative ideas are made more
concrete, and a base for the specification is created. The prototypes are improved by performing
several design-review cycles. The iterative nature of prototyping demands a flexible and
customizable design and evaluation environment.
Using the experience obtained in a variety of research projects during the last decade, NLR has
developed a prototyping environment that facilitates the rapid development and evaluation of
avionics display formats. It supports a component based design strategy, enabling efficient re-
use of previous work and facilitating parallel activities of several project team members. The
resulting display formats can be rapidly deployed to the appropriate evaluation platform,
ranging from desktop test environments, via cockpit mock-ups, up to high-fidelity flight
simulator and even flight test aircraft.
The tools have been successfully applied in several cockpit application development projects.
They have allowed to drastically reduce the effort and duration involved with implementing the
prototypes, so that customer research issues can be addressed earlier and in a more cost-efficient
way. Furthermore, the tools enable evaluated prototypes to be used as a base for further
development towards a certified cockpit application running on an avionics target system.

-3-

NLR-TP-2005-066

Contents

1 Introduction 4
1.1 Background 4
1.2 Cockpit applications 4

2 Design methodology 5
2.1 Product development processes 5
2.2 Research processes 6
2.3 Supporting tool 6

3 Flexible prototyping 8
3.1 User requirements 8
3.2 Interpreter-based viewer 8
3.3 Integrated graphical and behavioral prototyping 9
3.4 Hybrid data-driven and event-driven communication 11
3.5 Component-based design strategy 12

4 Realistic evaluations 14

5 Base for further development 14
5.1 Using prototyping results 14
5.2 ARINC 661 compatible 14

6 Example application 15

7 Conclusion 16

References 16

(16 pages in total)

-4-

NLR-TP-2005-066

1 Introduction

1.1 Background
After the transition from electromechanical instruments to the glass cockpit, a new revolution is
rapidly taking place on the civil flightdeck. The introduction of interactive cockpit applications
allows the flight crew to operate the aircraft systems using a cursor control device in a way that
is very similar to operating personal computers. While this potentially allows a more user-
friendly working environment for the pilot, it imposes new and demanding challenges to the
industry and the aeronautical research community alike.
Various aircraft and avionics manufacturers are currently taking up the task of transforming
their design processes that are optimized for one-way information presentation into efficient
means to develop interactive cockpits. This includes changes in the interaction between avionics
integrators and equipment suppliers.
Manufacturers offering aircraft with truly interactive cockpits to their customers include Airbus
(with the A380), Dassault Aviation (Falcon 900EX and 2000EX), and Embraer (170 and 190
series), while Boeing will likely join with the 7E7 and former Fairchild Dornier offered the
728JET until its collapse. Not surprisingly, all major avionics manufacturers offer equipment
for interactive cockpits.

1.2 Cockpit applications
In this paper we are using the term cockpit applications instead of cockpit displays or cockpit
instruments. We feel that it better expresses the nature of the nowadays “software” flightdeck
and the generally accepted view that user-interface and systems are equally important.
In the electromechanical era, the flightdeck featured dedicated instruments for each system. In
the current glass cockpit, information is integrated and presented in a graphical way, but
essentially it is still one screen per system and dedicated hardware for each system. Modular
avionics radically transforms this concept into a network of generic hardware running software
applications that are specific for each system. The cockpit display system is part of this network
and the pilots are operating software in a way similar to an office worker with a computer
connected to a company network.
In a user-centered flightdeck design method, development of the user-interface and of the
underlying system is done side-by-side. They are equally important for reaching a system that is
effective, efficient and comfortable to use. For instance, in a flight management system (FMS)
with a very cumbersome user-interface pilots will most likely not exploit the system’s full
potential. On the other hand, an FMS with a very convenient user-interface but lacking
important functions will not be very helpful in optimizing the flight.

-5-

NLR-TP-2005-066

2 Design methodology

2.1 Product development processes
Design of cockpit applications usually consists of several design-review cycles (Figure 1).
These cycles are intended to improve and finally validate the user interface, both in a technical
sense and for efficient operation by the pilots. The aim is to get the user interface right first
time, so that costly re-engineering after the product is introduced on the market can be avoided.
These design-review cycles are formalized by new regulation on human factor aspects of
flightdeck design.
The first cycle normally starts with a very simple prototype, or a quick adaptation of an existing
design. Such a design could be done on paper or using a computer presentation tool. The review
is then performed utilizing the paper or electronic means.
In later cycles the design is gradually improved and completed. The evaluations are also
gradually more encompassing or realistic. Naturally the more complete – and often more
complex – later cycles are also more costly. This way of working is also known as iterative and
incremental development (IID)[1].
By performing evaluations with users early in the process, potential problems can be discovered
and solved at a relatively low cost. This way, the number of problems appearing in the later –
more costly – cycles can be drastically reduced.
A process such as this can only be cost-effective when the prototypes can be efficiently adapted
and extended throughout the complete prototyping phase. Optimally, the best prototype should
also be directly usable in specification and design, and for (automatic) coding.

do

check

act

plan

determine
improvement

potential

establish
display

requirements

first display concept

improved display concept

human factors
evaluation

Figure 1. Design-review cycle

-6-

NLR-TP-2005-066

2.2 Research processes
Although the objectives and the end product are not the same, in itself the design iterations
performed in a – customer focused – research environment are not fundamentally different from
those in product development.
Also in a research environment a requirement exists to develop a first prototype of the human-
machine interface rapidly, at a low cost and often in a few variations. In an efficient process the
most promising HMI “sketches” can then be easily extended and completed for evaluation with
pilots in a more realistic environment like a flight simulator, and if needed, used as a base for
the specification phase.
For example, at NLR we develop cockpit human-machine interfaces on desktop PC’s and this is
also the platform for informal reviews early in the process. We usually perform the first formal
evaluations in a cockpit mock-up. For more advanced evaluations and for validations, we can
use a full-flight research simulator or one of our aircraft (Figure 2). With a variety of evaluation
platforms, it is evident that we have aimed to optimize our process, so that transitions of HMI
concepts from one platform to the other require only a minimal effort.

2.3 Supporting tool
To accommodate the prototyping process in a research environment, NLR has developed a
prototyping tool - called Vincent1 – which fulfils three important requirements:

• Enable flexible prototyping

• Support realistic evaluation

• Serve as base for further development

The following sections will discuss Vincent in more detail with respect to these requirements.

1 Visual Interface design of New Control concepts for Effective and Natural Task performance, also referring to
Vincent van Gogh, Dutch painter, 1853-1890.

-7-

NLR-TP-2005-066

Desktop Evaluation Environment (“Airsim”)

• Displays and control panels on one PC
• Typically early, low-fidelity evaluations
• Review with experts and team members

1
Cockpit Mock-Up (“Apero”)

• Three LCD’s, one PC per LCD
• Typically early, medium fidelity evaluations
• Review with experts and test pilots

2

Full-Flight Research Simulator Cockpit (“Grace”)

• Fully reconfigurable cockpit, displays PC-based
• Typically high-fidelity validations of mature concepts
• Evaluations with airline pilots

3

Laboratory Aircraft Cockpit (“PH-LAB”)

• One large LCD at F/O position, one LCD in the back, PC-based
• Typically in-flight validations and demonstrations
• Evaluation by test or airline pilots

4

Vincent

Figure 2. Vincent displays in four evaluation environments

-8-

NLR-TP-2005-066

3 Flexible prototyping

3.1 User requirements
The prototype phase is an important part of cockpit application development. The flightdeck
designer develops ideas and concepts that could meet the requirements and comply with the
flightdeck design guide. Usually there is no single solution for the user interface. Ideas and
concepts develop over time as insight in the issues grows and as a result of evaluations with test
pilots or pilots from the end-user population. Often ideas and concepts are combined to arrive at
a more optimal solution. All in all the prototyping phase is a highly creative process, with many
informal and formal review moments and consequently frequent changes to the prototypes.
Clearly, due to the highly iterative nature of the prototyping phase, it should be easy to build a
prototype and straightforward to change it. More specifically, it should be possible to

build or modify graphical design, •
•
•
•
•

•
•
•
•

add or change prototype behavior,
prototype symbology as well as interactive display applications,
re-use previous work, and
compare alternative designs.

During the development of the prototyping tool these requirements were the focus of attention
and have resulted in the following key characteristics of Vincent:

The tool is interpreter based.
The tool allows integrated graphical and behavioral prototyping.
The tool supports data-driven as well as event-driven communication.
The tool features an extensible framework of user-defined components.

Two important tools used in the Vincent prototyping environment are the Vincent editor and the
Vincent viewer (Figure 3). The editor is used to design prototypes. Both graphical as well as
behavioral aspects of a prototype can be addressed within the editor. The viewer is used to
evaluate the prototype within the desired simulation environment.

3.2 Interpreter-based viewer
Because the viewer is interpreting the prototype definition as produced by the editor, there is no
need for code generation and compilation to run the prototype. This significantly accelerates and
simplifies the design-review cycle, and therefore considerably increases the flexibility of the
prototyping process.
Interpretation usually comes at a cost: run-time performance is often significantly lower than
with code generator based tools. However, the Vincent viewer is highly optimized and it is
possible to obtain (very) high update rates on relatively modest hardware: a standard desktop

-9-

NLR-TP-2005-066

PC with hardware support of OpenGL is sufficient. The result is smooth display of even highly
dynamic information and more than sufficient responsiveness to user inputs.

The interpreter-based viewer has proven itself in a variety of cockpit application development
projects. Using the viewer, it was also possible to simply exchange dynamic displays with
project partners for review, evaluation and demonstration purposes.

Prototype
Definition

Vincent Editor

User Application

Vincent Viewer

Figure 3. Vincent tool chain with Editor and Viewer

3.3 Integrated graphical and behavioral prototyping
A Vincent display prototype is described by a hierarchical scene graph structure. This type of
data structure is often used in graphical programming models (i.e. VRML [2]), because it
establishes a clean boundary between display representation and display rendering [3].
The scene graph contains nodes that describe objects and their properties. Objects may represent
a geometrical primitive (e.g. line, polyline, rectangle, ...) which can be visualized. However,
they may also represent other functionality, such as a sensor to detect user input, or a camera to
control how the graphical objects should be projected on the screen.
Nodes can contain fields of various types, dependent of the object property they represent. The
fields are the inputs and the outputs of the nodes. Using the input fields the standard behavior of
a node can be overruled. Specific fields may contain for example a position, scaling factor or
visibility flag. Other specific fields may contain one or more children nodes. With the exception
of the topmost root node, every node in the scene graph describing the prototype has one or
more parents (directed acyclic graph).

-10-

NLR-TP-2005-066

Vincent supports a large variety of built-in nodes, giving the HMI designer the required
flexibility. One group of nodes was not mentioned yet: the traversal control nodes. An example
of a powerful traversal control object is the Loop node. This node has an input field count and
an output field i and its children are traversed count times during rendering. Children of the
Loop node can refer to i, which is incremented after each iteration. This way rendering can be
iteration-dependent.
The transformation hierarchy includes all nodes and their relationships that are responsible for
the graphical part of the application design. The behavior graph describes the connections
between fields and the flow of events through the prototype. It is common practice during the
design to build the transformation hierarchy and the behavior graph simultaneously. In the
Vincent editor, the transformation hierarchy is built with drag-and drop. Behavior is added by
defining the interface fields of the prototype and connecting them to the appropriate node fields
within the scene graph.

The relationship in between an interface field and a node field may be a direct connection, but it
may also involve an expression. Expressions are useful because they allow for defining a purely
functional interface. Such an interface is fully tailored to the underlying application, and
independent of the coordinate system in which the graphical objects are defined.
The ability to model the graphical and behavioral part of a prototype within the same
environment eases the design and evaluation process significantly. For example, a Vincent
Primary Flight Display (PFD) prototype (Figure 4) can be fully controllable by functional
inputs, such as roll in degrees, pitch in degrees, and altitude in feet.

Figure 4. PFD with purely functional interface

-11-

NLR-TP-2005-066

3.4 Hybrid data-driven and event-driven communication
Generally, two types of cockpit applications can be distinguished: symbology applications and
interactive applications. Symbology applications present information one-way to the pilot.
Examples of symbology display applications are the Primary Flight Display and Navigation
Display (ND) as can be found on most current flightdecks.
Typically symbology displays are data-driven applications. Interactive applications enable the
pilot to react on the information shown by means of, for example, a toggle button, push button
or combo box. This type of information exchange has an event-driven character. Some
applications contain both data-driven symbology and event-driven parts. For instance, the
navigation symbology in an interactive ND (Figure 5) is data-driven, while it also responds to
pilot inputs with the cursor control device.

Figure 5. Interactive ND prototype2

To enable prototyping both types of application, Vincent supports a hybrid data-driven and
event-driven communication model. Data-driven behavior is modeled using expressions, as
discussed in the previous section. Event-driven behavior can be modeled using scripts. Each
time an event occurs, the associated script will be executed.
Figure 6 (next page) shows a conceptual execution model of the Vincent viewer. A design-time
scene graph is built by parsing the prototype definition. The design-time graph contains the
complete prototype, including the prototype behavioral described by expressions and scripts.

2 This display prototype was developed by NLR in the EU-funded MA-AFAS project.

-12-

NLR-TP-2005-066

Synchronized with the User Application providing input data, a run-time scene graph is built by
evaluating the expressions contained in the design-time scene graph, and rendered to obtain a
visualization of the prototype.
The pilot may inject events in the system by moving the cursor or selecting an object. These
events are "transmitted" by output event fields of particular nodes. The scripts attached to these
fields will be executed a-synchronously, and may cause other scripts to be fired as well. After
all scripts have been executed, a new evaluate-render cycle will be made to update the prototype
visualization.

Expression
Evaluation

and

Script
Execution

Visualisation

Design-Time
Scene Graph

Expressions

Scripts

Nodes

User and
User Application

Data Events

Prototype
Definition

Parse

Run-Time
Scene Graph

Figure 6 Execution model of the Vincent Viewer

3.5 Component-based design strategy
By allowing for using user-defined nodes besides the built-in nodes in the scene graph, Vincent
enables a component-based design strategy, which has many advantages. One of their main
advantages is that components hide their internal complexity to the user (encapsulation). Only
the component interface is relevant to the user of the component.
User-defined components can be of any size from very small to very large, and behave just like
built-in nodes. An example of a very small component is a digital readout with a specific
formatting according to the value displayed. A somewhat larger example is a complete speed
tape. In fact, a display itself can also be used as component in a larger structure, like a complete
cockpit layout. Vincent components can be made completely self-contained, due to the ability to
hold graphics as well as functional behavior.

-13-

NLR-TP-2005-066

The ability to use components stand-alone or as part of a bigger structure without any
modification, increases the flexibility of the prototyping process significantly. Each display
component communicates directly with its own User Application, as if it is running stand-alone
(multi-channel communication; see Figure 7 and Figure 8). Optionally, the interface of a sub-
component may be extended with interface fields exchanging information with its parent
component (in this case the top-level component).

Figure 7 Four displays in a larger structure

User Application 1

User Application 2

User Application 3

Display (top level
component)

Component

Component

Figure 8. Multi-channel communication

-14-

NLR-TP-2005-066

4 Realistic evaluations

The Vincent viewer is a high-performance interpreter, built on the advanced graphics library
OpenGL. To give an impression of the performance, a fully modeled PFD including behavior
and communication (e.g. Figure 4), renders at least with 120 frames per second (fps) with
today's PC hardware and graphical board; the display in Figure 7 with 30 fps or more.
These performance characteristics of the interpreter enable prototype evaluation in a realistic
simulation environment. Depending on the level of realism required, display prototypes can be
implemented on a variety of platforms, ranging from a desktop configuration, up to high fidelity
moving base flight simulators, like for example the GRACE simulator at NLR (Figure 2). Note
that in case of a desktop configuration, the relevant pilot controls are also simulated using
Vincent.

5 Base for further development

5.1 Using prototyping results
In a product development process, prototyping results serve as a base for further development.
In the IMCAD project [4], it is investigated how to improve the cockpit application
development process, primarily focussing on the prototyping and specification phases. Effective
use of prototyping results reduces overall development costs, and speed-up time-to-market.

In the context of this project, Vincent has been made capable of exporting the prototyping
results of symbology displays – in an extensible, human readable XML format – for further use
in the development process. Also interactive applications requiring compliance with the new
ARINC 661 standard [5] can be prototyped using Vincent.

5.2 ARINC 661 compatible
The ARINC 661 standard defines two interfaces in between Cockpit Display System (CDS) and
avionics equipment (user system). The first one is the interface between the avionics equipment
and the display system graphics generators. The second one is a means by which symbology
and its related behavior is defined.

The standard relies on a basic set of graphical user interface objects, the so-called ARINC 661
HMI Widget Library. The standard describes the widgets in a purely functional way, without
any reference to a visual representation, allowing any company style. Because some of these
widgets enable user input, by means of cursor control devices or keyboards, interactive displays
can be specified based upon the ARINC 661 standard.

-15-

NLR-TP-2005-066

The capability of Vincent to define and instantiate graphical components with encapsulated
behavior allows building an ARINC 661 compatible widget library, with a user-defined look
and feel. This ARINC 661 compatible widget library can be used to prototype interactive
cockpit applications. After design and evaluation, the prototype can be saved in an XML
format3, and serve as a base for further development.

6 Example application

Vincent has been used successfully in a variety of flightdeck design and display development
projects, both military and civil. One of the projects exploiting much of the potential of Vincent
is the flightdeck design prototype developed in the NEWSCREEN project [6]. In this interactive
concept, component-based design and the capabilities of the multi-channel, interpreter-based
viewer were fully exploited. This has dramatically reduced the development duration and effort
and has resulted in a favorable concept (Figure 9).

Figure 9. NEWSCREEN flightdeck concept

3 A draft version of this format has been proposed by the ARINC 661 Working Group, and sent to the ARINC committee for
approval.

-16-

NLR-TP-2005-066

7 Conclusion

The prototyping phase of a cockpit application development process demands a flexible
prototyping environment, in which prototypes can be easily adjusted and realistically evaluated
in the appropriate simulation environment.
The ability of Vincent to prototype graphical and behavioral aspects within a single hierarchical
component-based data structure has proven to be very effective. Also the use of an interpreter to
evaluate the candidate prototypes has significantly increased the flexibility of the prototyping
process. Furthermore the possibility to define hybrid data-driven and event-driven
communication has broadened the application domain. Finally, re-use of prototyping results in
the next phases of a cockpit application development process, makes the prototyping effort even
more efficient.

References

[1] Mark van Harmelen (editor), Object Modeling and User Interface Design, Addison-
Wesley, March 2001, ISBN 0-201-65789-9

[2] Virtual Reality Modeling Language, VRML, Web3D Consortium, http://www.web3d.org/
[3] Aaron E. Walsh, Understanding Scene Graphs, Dr. Dobb's Journal, July 2002
[4] Improving the Cockpit Application Development Process, IMCAD project website,

http://www.nlr.nl/public/hosted-sites/imcad
[5] Aeronautical Radio Inc, 2003, Arinc specification 661-1, Cockpit Display System

Interfaces to User Systems
[6] Three Large LCD Cockpit, NEWSCREEN project website,

http://www.nlr.nl/public/hosted-sites/newscreen

E-mail addresses
Ronald Verhoeven, Training, Human Factors and Cockpit Operations Department, Air
Transport Division, NLR, The Netherlands, verhoeve@nlr.nl
Antoine de Reus, Training, Human Factors and Cockpit Operations Department, Air Transport
Division, NLR, The Netherlands, dereus@nlr.nl

http://www.web3d.org/
http://www.nlr.nl/public/hosted-sites/imcad
http://www.nlr.nl/public/hosted-sites/newscreen
mailto:verhoeve@nlr.nl
mailto:dereus@nlr.nl

