
NLR-TP-2000-428

Piecewise Deterministic Markov ProcessesPiecewise Deterministic Markov ProcessesPiecewise Deterministic Markov ProcessesPiecewise Deterministic Markov Processes
represented by Dynamically Coloured Petrirepresented by Dynamically Coloured Petrirepresented by Dynamically Coloured Petrirepresented by Dynamically Coloured Petri
NetsNetsNetsNets
Revised edition

M.H.C. Everdij and H.A.P. Blom

NLR-TP-2000-428

Piecewise Deterministic Markov ProcessesPiecewise Deterministic Markov ProcessesPiecewise Deterministic Markov ProcessesPiecewise Deterministic Markov Processes
represented by Dynamically Coloured Petrirepresented by Dynamically Coloured Petrirepresented by Dynamically Coloured Petrirepresented by Dynamically Coloured Petri
NetsNetsNetsNets
Revised edition

M.H.C. Everdij and H.A.P. Blom

NationaalNationaalNationaalNationaal Lucht- en Ruimtevaartlaboratorium Lucht- en Ruimtevaartlaboratorium Lucht- en Ruimtevaartlaboratorium Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR

This research has been carried out under NLR's basic research programme, Work Plan
number L.1.B.2.

The contents of this report may be cited on condition that full credit is given to NLR and
the authors.

Division: Air Transport
Issued: December 1999
Classification of title: Unclassified

- 2 -
NLR-TP-2000-428

DOCUMENT CONTROL SHEET

Report Title Piecewise Deterministic Markov Processes represented by Dy-

namically Coloured Petri Nets

Version 0.3

Date 21-03-2003

Customer NLR Order No. 5091922

Project DYNAMO NLR division Air Transport

Document change log

Version Nr Issue date Details of changes

0.1 28-12-1999 IEEE anonymous peer review comments incorporated

0.2 15-09-2000 Review comments of NLR reviewer incorporated

0.3 21-03-2003 Technical update

Version 0.3 Signature Date

Authors M.H.C. Everdij

H.A.P. Blom

Internal reviewer M.B. Klompstra

- 3 -
NLR-TP-2000-428

Summary

Piecewise Deterministic Markov Processes (PDPs) are known as the largest class of Markov

processes virtually describing all continuous-time processes not involving diffusions. In general

the state space of a PDP is of hybrid type, i.e. a tensor product of a discrete set and a

continuous-valued space. Since Stochastic Petri Nets have proven to be extremely useful in

developing continuous-time Markov Chain models for complex practical discrete-valued

processes, there is a clear need for a type of Petri Nets that can play a similar role for developing

PDP models for complex practical problems. To fulfil this need, the paper defines a new type of

Petri Net, named Dynamically Coloured Petri Net (DCPN), and proves that there exist

into-mappings between PDPs and DCPNs.

This report version (dated 2003) is a slightly revised edition of a report (dated 2000) with the

same title, authors and report number.

- 4 -
NLR-TP-2000-428

Contents

1 Introduction 8

2 Piecewise Deterministic Markov Processes 9

3 Main Petri Nets extensions 11

4 Dynamically Coloured Petri Nets 12

5 Example DCPN 15

6 Piecewise Deterministic Markov Processes into Dynamically Coloured Petri Nets 17

7 Dynamically Coloured Petri Nets into Piecewise Deterministic Markov Processes 20

8 Example PDP 23

9 Conclusions 24

10 References 24

1 Figure

Appendices 27

A Formal definition of Dynamically Coloured Petri Nets 27

B Characterisation of Q in terms of DCPN 30

(32 pages in total)

- 5 -
NLR-TP-2000-428

List of acronyms

DCPN Dynamically Coloured Petri Net

ECPN Extended Coloured Petri Net

HLHPN High-Level Hybrid Petri Net

PDP Piecewise Deterministic Markov Process

PN Petri Net

RG Reachability Graph

RRG Reduced Reachability Graph

List of symbols

∪θ : Unity

∩θ : Intersection

| · | : Number of elements in a set

IRn : n-dimensional rational numbers

IN : Natural numbers

∂E : Boundary of open subset E

R0 – R4 : Rules

D1 – D3 : Conditions

xt : Continuous state

θt : Discrete state

ξt : Hybrid state

Eθ : Open subset of IRd(θ)

E : Disjoint unity of all subsets Eθ

E : Borel-measurable subsets of E

Γ∗ : Reachable boundary of E

K : Countable domain for process {θt}

d(·) : Function that maps K into IN

gθ(·) : Lipschitz continuous function

φθ,x0 : Flow

λ(θt, xt) : Rate of Poisson point process

Gξ(·) : Survivor function

IA : Indicator function

Q(·; ξ) : Transition measure

- 6 -
NLR-TP-2000-428

t : Time

τ , τk : Stopping times

∆ : Time

t∗(θ, x) : Time until first boundary hit

t∞(θ, x) : Explosion time of flow φθ,x(·)

σk, ζk : Samples from probability distributions

Nt : Number of jumps until time t

P : Set of places

P(A) : The place that is connected to arc A

T : Set of transitions

TG : Set of guard transitions

TD : Set of delay transitions

TI : Set of immediate transitions

T (A) : The transition that is connected to arc A

A : Set of arcs

AO : Set of ordinary arcs

AE : Set of enabling arcs

AI : Set of inhibitor arcs

A(T) : Set of arcs connected to transition T

Ain(T) : Set of input arcs of transition T

Ain,O(T) : Set of ordinary input arcs of transition T

Ain,OE(T) : Set of input arcs of transition T that are either ordinary or enabling

Aout(T) : Set of output arcs of transition T

N : Node function

S : Set of colour types

C : Colour function

I : Initial marking

V : Set of token colour functions

VP : Token colour function for place P

G : Set of transition guards

GT : Transition guard for transition T

D : Set of transition delays

DT : Transition delay for transition T

- 7 -
NLR-TP-2000-428

F : Set of firing measures

FT : Firing measure for transition T

P , Pi : Place

P (A(T)) : Set of places connected to T by the set of arcs A(T)

T , Ti : Transition

TG
i : Guard transition

TD
i : Delay transition

A, Ai : Arc

C(P)ms : Set of all multisets over C(P)

c, ct : Colour of token or vector of colours

δT : Rate of transition delay

zt : Vector containing position and velocity of aircraft

vt : Velocity of aircraft

u : Random number

pB|C : Conditional probability density function

α` : Auxiliary variable

f : Vector of zeros and ones

ϑi, mi : Element of K

vi,t, vi : Number of tokens in place Pi

V , V i : Nodes of reachability graph

xi,j,t : Colour of jth token in place Pi at time t

L : Set of paths characterised by labels

L : Set of transitions, element of L

- 8 -
NLR-TP-2000-428

1 Introduction

The motivation for this research stems from the following unsolved issue in air traffic: under

which conditions is it possible to reduce established criteria for separation between aircraft

without sacrificing safety in the form of collision risk. Studying this issue is most urgent for those

regions in the world where air traffic is most dense, and consequently where the interplay

between aircraft and air traffic management centres is most complex.

During an earlier study (Bakker and Blom, 1993) a clear relation has been established between

collision risk and the evolution of the density of the joint states of two or more flying aircraft.

During the subsequent search for Markov process models to characterise the evolution of such

densities the class of Piecewise Deterministic Markov Processes (PDPs) was identified as a very

useful one (Everdij et al., 1996). At this moment, this type of modelling and evaluation has been

accomplished for several air traffic management situations (Blom et al., 1998). It appeared to be

less straightforward to develop an appropriate PDP model for a process as complex as air traffic

management. For this reason a Petri Net has been developed (Everdij et al., 1997) that supports

the modelling of PDPs for complex practical problems, similarly as Stochastic Petri Nets support

the development of a Markov Chain for discrete valued complex problems. This new Petri Net

and its precise relation with PDPs form the subject of this paper.

Davis (1984, 1993) has introduced PDPs as the most general class of continuous-time Markov

processes which include both discrete and continuous processes, except diffusion. A PDP

consists of two components: a discrete valued component and a continuous valued component.

The discrete valued component models the mode process {θt}. At discrete times, {θt} may

switch to another mode value which is selected according to some probabilistic relation. The

continuous valued component models the drift process {xt}, as a solution of a θt-dependent

differential equation. At discrete moments in time, {xt} may jump according to some relation,

which makes it only piecewise continuous. The PDP state is given by ξt = Col{θt, xt}, and is

called a hybrid state. A switch and/or a jump occurs either when a doubly stochastic Poisson

process generates a point or when {xt} hits the boundary of a predefined area. If {xt} also makes

a jump at a time when {θt} switches, this is said to be a hybrid jump. PDPs are defined such that

their sample paths are right-continuous and have left-hand-side limits, often shortened as càdlàg,

which is an acronym for the French ‘continu à droite, limites à gauche’, see e.g. Protter (1990).

Branicky (1995) identified a close relation between PDPs and Hybrid Automata. The latter have

been shown useful for application in problems of decidability, formal verification and control

synthesis (Alur et al., 1993; Lygeros et al., 1998; van Schuppen, 1998; Sipser, 1997; Tomlin et

al., 1998; Weinberg et al., 1996). An important limitation, however, is that Poisson type of events

- 9 -
NLR-TP-2000-428

of PDPs are not covered by Hybrid Automata, which makes them less effective in modelling

stochastic effects than PDPs.

A Petri Net representing a PDP should make direct use of the specific PDP structure in order to

have an advantageous modelling power. The established Petri Net descriptions (see David and

Alla (1994) for a good overview) appear not to have this property. The newly developed

Dynamically Coloured Petri Net (DCPN) presented in this paper does. The values of the mode

process can be mapped to the distribution of tokens among the places in the DCPN. As long as

the tokens remain where they are, the mode keeps the same value. The continuous process values

are directly coupled to the token colours but they are evaluated while the tokens reside in the

places and not during the transport of tokens. These colours may however influence the mode

switches, both in time and in value. In this way, the continuous valued processes and the discrete

valued processes are coupled and decoupled at the same level as they are in Piecewise

Deterministic Markov Processes. This makes that into-mappings between PDPs and DCPNs

exist. The key result of this paper is the proof of the existence of these into-mappings. An issue

that deserves special attention when relating PDPs to Petri Nets is that for PDP, at each moment

in time, there is a unique realisation of the state, while a Petri Net may make a sequence of jumps

at a single moment in time. The into-mappings between PDPs and DCPNs we develop in this

paper take care of this issue.

The organisation of this paper is as follows. First, in Section 2, Piecewise Deterministic Markov

Processes are described briefly. Next, Section 3 discusses how the main Petri Nets extensions

from literature relate to PDPs. Subsequently, Section 4 defines Dynamically Coloured Petri Nets.

Section 5 presents a DCPN example for a practical situation. Section 6 shows that a PDP can be

represented by a DCPN. Section 7 shows that a DCPN can be represented by a PDP. Section 8

gives an example PDP that models the same process as the one described by the example DCPN

in Section 5. Finally, Section 9 draws conclusions.

2 Piecewise Deterministic Markov Processes

A Piecewise Deterministic Markov Process is defined as follows (see Davis (1993)): For each θ

in its countable domain K, let Eθ be an open subset1 of IRd(θ), where d is a function that maps K

into IN . For each θ ∈ K, consider the ordinary differential equation ẋt = gθ(xt), with x0 ∈ Eθ,

where gθ : IRd(θ) → IRd(θ) is a locally Lipschitz continuous function. Given the initial value x0,

this differential equation has a unique solution given by the flow φθ,x0 . Suppose at some time

instant τ the PDP state ξτ assumes value ξ = (θ, x) = (θ, φθ,x(0)). If no jumps occur, the

1Note that Davis writes Eθ = E0
θ ∪∂1E

0
θ , with E0

θ an open subset of IRd(θ), and ∂1E
0
θ those points on the boundary

of E0
θ from which E0

θ can be reached (by the flow φ), but which cannot be reached from the interior of E0
θ .

- 10 -
NLR-TP-2000-428

process state at t ≥ τ is given by ξt = (θt, xt) = (θ, φθ,x(t − τ)). At some moment in time,

however, the process state value may jump. Such moment is generated by either one of the

following events, depending on which event occurs first:

1. A Poisson point process with jump rate λ(θt, xt), t > τ generates a point.

2. The piecewise continuous process xt is about to hit the boundary ∂Eθ of Eθ , t > τ .

This yields for the survivor function of the first jump (i.e. the probability that the first jump

occurs at least t − τ time units after τ), starting from point ξ = (θ, x) at t = τ :

Gξ(t − τ)4I(t−τ<t∗(θ,x)) · e−
∫ t

τ
λ(θ,φθ,x(s−τ))ds, (1)

where I is an indicator function and t∗(θ, x) denotes the time until the first boundary hit after

t = τ , which is given by t∗(θ, x) 4 inf{t− τ > 0 | φθ,x(t − τ) ∈ ∂Eθ}. The first factor in (1) is

explained by the boundary hitting process: after the process state has hit the boundary, which is

when t − τ = t∗(θ, x), this first factor ensures that the survivor function evaluates to zero. The

second factor in (1) comes from the Poisson process: this second factor ensures that a jump is

generated after an exponentially distributed time with a rate λ that is dependent on the PDP state.

The time until the first jump is calculated by drawing a sample from Gξ(·). Also available is a

transition measure Q, which is the probability measure of the hybrid state after the jump, given

the value of the hybrid state immediately before the jump.

With this, the algorithm to determine a sample path for the hybrid state process ξt, t ≥ 0, from

the initial state ξ0 = (θ0, x0) on, is in two steps; define τ0 4 0 and let for k = 0, ξτk
= (θτk

, xτk
)

be the initial state, then for k = 1, 2, . . .:

Step 1: Draw a sample σk from survivor function Gξτk−1
(·), then the time τk of the kth jump is

τk = τk−1 + σk. The sample path up to the kth jump is given by

ξt = (θτk−1
, φθτk−1

,xτk−1
(t − τk−1)), τk−1 ≤ t < τk and τk ≤ ∞.

Step 2: Draw a multi-dimensional sample ζk from transition measure Q(·; ξ ′τk
), where ξ′τk

=

(θτk−1
, φθτk−1

,xτk−1
(τk − τk−1)). Then, if τk < ∞, the process state at the time τk of the kth

jump is given by

ξτk
= ζk.

Following Section 24.8 of Davis (1993), the PDP conditions are:

C1 gθ is a locally Lipschitz continuous function, which, for each initial state (θ, x), determines

a flow φθ,x(·). If t∞(θ, x) denotes the explosion time of the flow φθ,x(·), i.e.

|φθ,x(t)| → ∞ as t ↑ t∞(θ, x), then it is assumed that t∞(θ, x) = ∞ whenever

t∗(θ, x) = ∞. In other words, explosions are ruled out.

- 11 -
NLR-TP-2000-428

C2 With E = ∪θEθ, λ : E → IR+ is a measurable function such that for all ξ ∈ E, there is

ε(ξ) > 0 such that t → λ(θ, φθ,x(t)) is integrable on [0, ε(ξ)[.

C3 With E as above and Γ∗ the reachable boundary of E, Q maps E ∪ Γ∗ into the set of

probability measures on (E, E), with E the Borel-measurable subsets of E, while for each

fixed A ∈ E , the map ξ → Q(A; ξ) is measurable and Q({ξ}; ξ) = 0.

C4 If Nt =
∑

k I(t≥τk), then it is assumed that for every starting point ξ and for all t ∈ IR+,

IENt < ∞. This means, there will be a finite number of jumps in finite time.

3 Main Petri Nets extensions

This section discusses how the main Petri Nets extensions from literature relate to PDPs.

One interesting Petri Net extension is named Hybrid Petri Net (Le Bail et al., 1991), which is a

generalisation of Continuous Petri Net (David and Alla, 1987). Besides places that may contain

discrete tokens, the Hybrid Petri Net has places that may contain a non-negative real-valued

amount of tokens. Transitions connected to these places consume continuous amounts of these

tokens at certain quantities per time unit and next produce these amounts for other continuous

places. The state of the Hybrid Petri Net at each time instant t is written as a vector giving for

each place its marking, i.e. the amount of tokens it contains. The marking of a place at a later

time instant is equal to the marking at time t, minus the amount of token consumed by output

transitions of the place, plus the amount produced by input transitions of the place. Since a

change of marking for one place automatically incorporates a change of marking for another

place, and since all amounts of tokens should be non-negative, into-mappings between PDPs and

Hybrid Petri Nets are far from obvious.

Related to Hybrid Petri Net is Fluid Stochastic Petri Net (Trivedi and Kulkarni, 1993), which also

moves fluid tokens between continuous places and discrete tokens between discrete places. The

transition times for the discrete tokens are exponentially distributed (possibly depending on the

fluid level) such that the discrete Petri Net part gives rise to a continuous time Markov process.

The discrete token marking influences the continuous flow rate between the continuous places. In

the continuous net conservation of token mass is to be preserved. Hence, into-mappings between

PDPs and Fluid Stochastic Petri Nets are generally not feasible.

In Extended Coloured Petri Net (ECPN), as introduced by Yang et al. (1995), the token colours

are real-valued vectors that may follow the solution path of a difference equation. The token

colour is updated in an external loop around its residence place by an additional updating

transition. The state of the ECPN is given by the current colours of all tokens and the places they

reside in. PDPs might be represented by ECPN but only in an approximate way: the mode values

- 12 -
NLR-TP-2000-428

might be mapped to the places and the drift process might be mapped to the colours of the tokens;

however, the continuous-time drift process component has to be approximated by means of a

discrete-time difference equation. This makes that a boundary hitting can never be exactly timed.

Moreover, the necessary presence of updating transitions may result in a very large Petri Net

graph when modelling a complex process.

High-Level Hybrid Petri Net (HLHPN) has been introduced by Giua and Usai (1996) as a further

elaboration of Hybrid Petri Net. In an HLHPN there are two kinds of places: the usual places for

discrete tokens and a new type of places storing real-valued tokens which follow the solution path

of a differential equation. A token switch between discrete places may generate a jump in the

value of the real valued vector. Advantage of this extension with respect to Hybrid Petri Net is

that continuous valued processes can be modelled that do not need to have a positive value.

Advantage with respect to ECPN is the avoidance of the time discretisation. Similarly as with

ECPN, HLHPNs use updating transitions which still may result in a very large Petri Net graph

when modelling a complex process.

Related to HLHPN are Differential Petri Nets (Demongodin and Koussoulas, 1998), which have

discrete places (having a non-negative integer marking), differential places (having a real valued

marking, which can also be negative), discrete transitions and differential transitions. A

differential transition is enabled if its discrete input places contain a number of tokens that is

larger than or equal to the weight of the corresponding arcs. An enabled differential transition

that fires yields a change of marking equal to the speed of the transition, times the weight of the

corresponding arc. This speed may be a constant, a linear combination, or a non-linear function

of the markings connected to the transition (the speed may also be negative). The facts that time

is discretised and that the markings are one-dimensional, may result in a very large Petri Net

graph when modelling a complex process. Moreover, mode switches are enabled by integer

bounds only.

This overview leads to the conclusion that there are many valuable Petri Net extensions available

in literature that are related to PDPs; however, for none of these the existence of into-mappings

with PDPs has been proven.

4 Dynamically Coloured Petri Nets

This section presents a definition of Dynamically Coloured Petri Net. Since the formal definition

is notationally cumbersome, in this section only an informal description is given. In Appendix A

the formal definition is described.

- 13 -
NLR-TP-2000-428

Definition 1:

A Dynamically Coloured Petri Net (DCPN) is an 11-tuple DCPN = (P , T , A, N , S , C, I , V , G,

D, F), together with some rules R0 – R4, where:

1. P is finite a set of places. In a graphical notation, places are denoted by circles:

Place: �
��

2. T is a finite set of transitions, which consists of three disjoint sets: 1) a set TG of guard

transitions, 2) a set TD of delay transitions and 3) a set TI of immediate transitions.

Notations are:

Guard transition: Delay transition: Immediate transition:

3. A is a finite set of arcs, which consists of three disjoint sets: 1) a set AO of ordinary arcs,

2) a set AE of enabling arcs and 3) a set AI of inhibitor arcs. Notations are:

Ordinary arc: - Enabling arc: s Inhibitor arc: c
4. N is a node function, which uniquely maps each arc A in A to an ordered pair of one

transition and one place. Enabling arcs and inhibitor arcs always point from a place to a

transition, ordinary arcs may point from a place to a transition or from a transition to a

place. If a pair of nodes (P, T) is directly connected by an inhibitor arc, it cannot also be

directly connected by another arc.

Components P , T , A and N determine the DCPN graph. A place is current if a token (denoted

by a dot •) resides in it. Multiple tokens may reside in the DCPN, even inside one place. In a

DCPN, the tokens may have values, also named colours. These colours can be of particular types

only. The set of allowed token colour types is denoted by S . The function that maps each place to

such type is denoted by C.

5. S is a finite set of colour types. Each colour type is to be written in the form IRn, with n a

natural number.

6. C is a colour function, which maps each place P ∈ P to a specific colour type in S . Each

token residing in place P must have a colour of type C(P).

The set of tokens initially residing in the DCPN, together with their colours, is specified by

component I .

7. I defines the initial marking of the net, i.e., for each place P ∈ P it specifies the number of

tokens (possibly zero) initially in it, together with the colours these tokens have (these

colours must be of type C(P)). The initial marking is such, that no immediate transition is

immediately enabled.

In DCPN, the colour of a token may change through time while the token is residing in its place.

This behaviour is described by component V below.

- 14 -
NLR-TP-2000-428

8. V is a set of token colour functions. For each place P ∈ P it contains a locally Lipschitz

continuous function VP . If a token in place P has colour c at time τ , and if it stays in that

place up to time t > τ , then the colour ct at time t equals the unique solution of the

differential equation ċt = VP (ct) with initial condition cτ = c.

Tokens can be removed from places by transitions that are connected to these places by incoming

ordinary arcs. A transition can only remove tokens if two conditions are both satisfied. If this is

the case, the transition is said to be enabled. The first condition is that the transition must have at

least one token per ordinary arc and one token per enabling arc in each of its input places and

have no token in the input places to which it is connected by an inhibitor arc. When the first

condition holds, the transition is said to be pre-enabled. The second condition differs per type of

transition. For immediate transitions the second condition is automatically satisfied if the

transition is pre-enabled. For guard transitions the second condition is specified by the set of

transition guards G and for delay transitions it is specified by the set of transition delays D. The

evaluation of G and D may depend on a vector of colours of input tokens. This vector is formed

by taking one token per incoming ordinary arc and enabling arc from the input places of the

transition and listing their colours in one vector. If this vector is not unique (for example, if one

input place contains several tokens per arc), all possible vectors are evaluated in parallel and the

transition is enabled if one of these vectors satisfies the second condition. The value of the

vector(s) may still change through time according to the corresponding token colour functions.

Both G and D are described below:

9. G is a set of transition guards. For each T ∈ TG, it contains a boolean-valued transition

guard GT . The guard of T evaluates to True when the vector containing the colours of the

input tokens (see above) enters a T -specific boundary ∂GT for the first time. When the

guard evaluates to True, the second condition holds and the transition is enabled. Guard

evaluation of transition T immediately stops when T is not pre-enabled anymore;

evaluation is restarted when it is.

10. D is a set of transition delays. For each T ∈ TD, it contains a transition delay DT , which

specifies the time between when T is pre-enabled and when it is enabled. This waiting time

is exponentially distributed, with a rate δT which is an integrable function of the vector of

colours of the input tokens (see above). As for the guard, the delay evaluation immediately

stops when T is not pre-enabled anymore; evaluation is restarted when it is.

When a transition is enabled, it removes one token along each ordinary arc from its input places

(rules R1 and R2 below are used if this token is not unique, e.g., if several vectors of input

colours have been evaluated in parallel and two of them enable T at exactly the same time).

Tokens are not removed along enabling arcs and should not be existent in a place connected to T

- 15 -
NLR-TP-2000-428

by an inhibitor arc.

Next, at time τ , T produces zero or one token along each output arc (note that output arcs are

always ordinary arcs). The colours of the tokens produced and the arcs along which they are

produced are specified by component F :

11. F is a set of probability measures, named firing measures. For each T ∈ T it contains a

probability measure FT which is assumed continuous. If cτ denotes the vector of colours

of tokens that enabled T , then a sample from FT (·, ·; cτ) contains a vector f of zeros and

ones, and a vector c of output token colours. The vector f holds a 1 for each output arc of

T along which a token is produced, and a zero for each output arc of T along which no

token is produced. Vector c contains the colours of the corresponding new tokens. The

colours of the new tokens have sample paths that start at time τ .

Finally, there are some rules R0 – R4:

12. R0 The firing of an immediate transition has priority over the firing of a guard or a delay

transition.

R1 If one transition becomes enabled by two or more disjoint sets of input tokens at

exactly the same time, then it will fire these sets of tokens independently, at the same

time.

R2 If one transition becomes enabled by two or more non-disjoint sets of input tokens at

exactly the same time, then the set that is fired is selected randomly (i.e. each set has

an equal probability to be selected).

R3 If two or more transitions become enabled at exactly the same time by disjoint sets of

input tokens, then they will fire at the same time.

R4 If two or more transitions become enabled at exactly the same time by non-disjoint

sets of input tokens, then the transition that will fire is selected randomly.

Here, two sets of input tokens are considered disjoint if they have no tokens in common

that are ‘reserved’ by ordinary arcs, i.e., they may have tokens in common that are

‘reserved’ by enabling arcs.

Remark:

The firing of any transition “stops the time”, i.e. if a transition becomes enabled at time τ , it also

fires tokens in its output places at time τ . And if, for example, there is a sequence of immediate

transitions that enable each other with their firing, then their consecutive firings all take place at

this same time instant τ .

With this, the (informal) DCPN definition ends. For a more formal definition, see Appendix A.

- 16 -
NLR-TP-2000-428

5 Example DCPN

To illustrate the advantages of DCPN when modelling a complex system, consider a very

simplified model of the evolution of an aircraft in one sector of airspace.

Assume the deviation of this aircraft from its intended path depends on the operationality of two

of its aircraft systems: the engine system, and the navigation system. Each of these aircraft

systems can be in one of two modes: Working (functioning properly) or Not working (operating

in some failure mode). Both systems switch between their modes independently and on

exponentially distributed times, with rates δ3 (engine repaired), δ4 (engine fails), δ5 (navigation

repaired) and δ6 (navigation fails), respectively. The operationality of these systems has the

following effect on the aircraft path: if both systems are Working, the rate of change of the

position and velocity of the aircraft is given by function V1 (i.e. if zt is a vector containing this

position and velocity then żt = V1(zt)). If either one, or both, of the systems is Not working, the

rate of change of the position and velocity of the aircraft is given by V2. Initially, the aircraft has

a particular position x0 and velocity v0, while both its systems are Working. The evaluation of

this process may be stopped when the aircraft position crosses the boundary ∂G to a

neighbouring airspace sector.

A DCPN instantiation for this example can be constructed in three phases. In the first phase the

local Petri Net graphs (local PNs) are instantiated, based on the modes identified above. The

result is presented below:

n

n

n
�
�
��
C
C
CW �

�
��
C
C
CO

QQs
��3

Nominal

Non-nominal

Out

Z
ZZ~

�
��>

V1

V2

∂G

∂G

δ3

δ4

δ5

δ6

n
Not working

n
Working

����: XXXXz
����9XXXXy

n
Not working

n
Working

����: XXXXz
����9XXXXy

Evolution
Engine Navigation

Or, with all places and transitions given abbreviated names:

n
P3

n
P4

����: XXXXz
����9XXXXy

n
P5

n
P6����: XXXXz

����9XXXXy

n

n

n
�
�
��
C
C
CW �

�
��
C
C
CO

QQs
��3

P1

P2

P7

Z
ZZ~

�
��>

T1 T2

T3

T4

T5

T6

T7

T8

In the second phase of constructing the DCPN instantiation, the effect of the Engine and

Navigation local PN on the Evolution local PN is made explicit by coupling the local PNs by

additional arcs (and, if necessary, additional places or transitions). Here, removal of a token from

- 17 -
NLR-TP-2000-428

one local PN by a transition of another local PN is prevented by using enabling arcs instead of

ordinary arcs. The resulting graph is presented below. Notice that transition T1 is replaced by two

transitions T1a and T1b.
�
��

P1

�
��P2

hP3 hP4

h
P5

h
P6

�
��P7

T1a T1b

T2

T3

T4

T5

T6

T7

T8

���: XXXz
���9XXXy

���: XXXz
���9XXXy

J
J
JĴ

�

��� ?
6

HHY

PPqZZ~

@@R

���

qq q q

The graph above completely defines DCPN elements P , T , A and N , where TG = {T7, T8},

TD = {T3, T4, T5, T6} and TI = {T1a, T1b, T2}. In the third phase, the other DCPN elements are

specified (note that in practice, phases 2 and 3 are applied iteratively until a satisfactory result is

obtained):

S: One colour type is defined; S = {IR6}.

C: C(P1) = C(P2) = C(P7) = IR6. The first three colour components model the longitudinal,

lateral and vertical position of the aircraft, the last three components model the

corresponding velocities. For places P3 through P6, no colour type needs to be defined

(one might define a dummy colour type for these places, but this is not pursued further).

I: Place P1 initially has a token with colour z0 = (x0, v0)
′ ∈ IR6. Places P4 and P6 initially

each have a token with no colour.

V: The token colour functions for places P1, P2 and P7 are defined by VP1 = V1, VP2 = V2

and VP7 = 0. For places P3 – P6 the token colour function is not applicable.

G: Transitions T7 and T8 have a guard that is defined by ∂GT7 = ∂GT8 = ∂G × IR3.

D: The jump rates for transitions T3, T4, T5 and T6 are δT3(·) = δ3, δT4(·) = δ4, δT5(·) = δ5

and δT6(·) = δ6, respectively.

F : Each transition has a unique output place, to which it fires a token with a colour (if

applicable) equal to the colour of the token removed, i.e. for all T , FT (1, ·; ·) = 1.

The resulting DCPN is easily understood and verified, mainly because it is constructed in several

(in practice, iterative) phases, which is constructive if the process to be modelled is very complex.

- 18 -
NLR-TP-2000-428

In the first phase, local Petri Net graphs are constructed. In the second phase these local graphs

are connected into one graph. In the third phase the non-graphical DCPN elements are specified.

6 Piecewise Deterministic Markov Processes into Dynamically Coloured Petri

Nets

This section shows that each Piecewise Deterministic Markov Process can be represented by a

Dynamically Coloured Petri Net, by providing an into-mapping from PDP into the set of DCPNs.

Notice that we do not claim the into-mapping to be unique; there may be other DCPN

instantiations describing the same PDP.

Theorem 1:

Each Piecewise Deterministic Markov Process with a finite domain K can be represented by a

Dynamically Coloured Petri Net.

Proof:

The proof is completed by considering an arbitrary PDP, and constructing a DCPN that

represents it. Consider an arbitrary PDP described by a finite set K, θt, xt, d(θ), ξ0, ∂Eθ, gθ, λ

and Q. A DCPN representing this PDP is first described intuitively, next all DCPN elements are

specified in detail.

In the DCPN instantiation we constructed to represent the PDP, only one token resides. Figure 1

presents a small part of this DCPN. The space of the mode process is assumed to be

K = {ϑ1, . . . , ϑ|K|}. The figure shows the situation at some time τk−1, when the PDP is given

by (θτk−1
, xτk−1

). The token resides in place Pϑi
, which models that θτk−1

= ϑi. This token has

colour xτk−1
. The colour of the token up to and at the time of the next jump is determined in two

steps: ...

�
��tPϑi

������

HHHHHj

TG
ϑi

TD
ϑi

�
��

...

Pϑ1 . . . �
��

...

Pϑi−1

�
��

...

Pϑi+1. . . �
��

...

Pϑ|K|

��:

�
�

�
�

�
��

B
B
B
B
B
BN

@
@

@
@

@
@@R

HHHHHHHHHHHHj

�������������

�
�

�
�

�
��	

�
�

�
�

�
�

A
A
A
A
A
AU

XXy

Fig. 1 Part of a Dynamically Coloured Petri Net representing a Piecewise Deterministic Markov

Process.

Step 1: While the token is residing in place Pϑi
, its colour xt changes according to the flow

- 19 -
NLR-TP-2000-428

φϑi,xτk−1
, i.e., xt = φϑi,xτk−1

(t − τk−1). Transitions T G
ϑi

and T D
ϑi

are both pre-enabled and

compete for this token which resides in their common input place Pϑi
. Transition T G

ϑi

models the boundary hitting generating a mode switch, while transition T D
ϑi

models the

Poisson process generating a mode switch. The transition that is enabled first, determines

the kind of switch occurring. The time at which this is happens is denoted by τk.

Step 2: Next, with one of the transitions enabled, its firing measure is evaluated. This firing

measure is such, that if a sample ζk from transition measure Q(·;ϑi, φϑi,xτk−1
(τk − τk−1)),

would appear to be ζk = (ϑj , x), then the enabled transition would produce one token with

colour xτk
= x for place Pϑj

. The other places get no token.

After this, the process starts again in the same way from the new state on.

On the basis of this representation, all DCPN elements P , T , A, N , S , C, I , V , G, D, F and the

rules R0 – R4 are characterised in terms of the PDP as follows:

P: The set of places contains |K| elements Pθ , θ ∈ K.

T : The set of transitions contains for each θ ∈ K two elements T G
θ and T D

θ , with T G
θ ∈ TG and

TD
θ ∈ TD. The set TI of immediate transitions is empty.

A: There are no inhibitor or enabling arcs: AI = ∅ and AE = ∅, while AO contains

2|K| + 2|K|2 ordinary arcs.

N : The node function maps each arc in A to a pair of nodes. For each element θ ∈ K, there are

two of these pairs: (Pθ, T
G
θ) and (Pθ, T

D
θ), and additionally for each ordered combination

(θ, ϑ), with θ, ϑ ∈ K, there are two pairs of nodes (T G
θ , Pϑ) and (T D

θ , Pϑ).

S: The set of colour types contains the elements IRd(θ), where θ runs through K.

C: For all θ ∈ K, C(Pθ) = IRd(θ).

I: All places in the DCPN initially contain zero tokens, except for place Pθ0 , which contains one

token with colour x0.

V: For all θ ∈ K, VPθ
(·) = gθ(·).

G: For all θ ∈ K, ∂GT G
θ

= ∂Eθ.

D: For all θ ∈ K, δT D
θ

(·) = λ(θ, ·).

F : If x denotes the colour of the token removed from place Pθ , (θ ∈ K), at the transition firing,

then for all ϑ′ ∈ K, x′ ∈ Eϑ′ : FT G
θ

(e′, x′;x) = Q(ϑ′, x′; θ, x), where e′ is the vector of

length |K| containing a one at the component corresponding with arc (T G
θ , Pϑ′) and zeros

elsewhere. For all θ ∈ K, FT D
θ

= FT G
θ

.

R0 – R4: Since there are no immediate transitions in the constructed DCPN instantiation, rule

R0 holds true. Since there is only one token in the constructed DCPN instantiation, R1 –

R3 also hold true. Rule R4 is in effect when for particular θ, transitions T G
θ and T D

θ

become enabled at exactly the same time. Since λ is integrable, the probability that this

- 20 -
NLR-TP-2000-428

occurs is zero, yielding that R4 holds with probability one. However, if this event should

occur, then due to the fact that the firing measures for the guard transition and the delay

transition are equal, rule R4 always holds.

This shows that for any PDP we are able to construct a DCPN instantiation representing it, which

completes the proof of Theorem 1.

Remark 1:

The DCPN instantiation defined above has many places, and only one token. An interesting

problem is to find another into-mapping, in which the DCPN instantiation has fewer places and

more tokens. Addressing this problem falls outside the scope of this paper.

7 Dynamically Coloured Petri Nets into Piecewise Deterministic Markov

Processes

Under some conditions, each Dynamically Coloured Petri Net can be represented by a Piecewise

Deterministic Markov Process. In this section this is shown by providing an into-mapping from

DCPN into the set of PDPs. Notice that we do not claim the into-mapping to be unique; there

may be other PDP instantiations describing the same DCPN.

Theorem 2:

Each Dynamically Coloured Petri Net can be represented by a Piecewise Deterministic Markov

Process, if conditions D1 – D3 are satisfied:

D1 There are no explosions, i.e. the time at which a token colour equals +∞ or −∞

approaches infinity whenever the time until the first guard transition enabling equals

infinity.

D2 After a transition firing (or after a sequence of firings that occur at that same time instant),

at least one place must contain a different number of tokens, or the colour of at least one

token must have jumped.

D3 In a finite time interval, each transition is expected to fire a finite number of times.

Proof:

The proof is completed by considering an arbitrary DCPN that satisfies conditions D1 – D3, and

constructing a PDP that represents it. Consider an arbitrary DCPN described by the tuple (P , T ,

A, N , S , C, I , V , G, D, F) and the rules R0 – R4, and assume that the conditions D1 – D3 are

satisfied. In order to represent this DCPN by a PDP, all PDP elements K, θt, xt, d(θ), ξ0, gθ,

∂Eθ, λ, Q and the PDP conditions are characterised in terms of this DCPN:

K: The domain K for the mode process {θt} can be found from the reachability graph (RG) of

the DCPN graph. The nodes in the RG are vectors V = (v1, . . . , v|P|), where vi equals the

number of tokens in place Pi, i = 1, . . . , |P|. The RG is constructed from DCPN

- 21 -
NLR-TP-2000-428

components P , T , A, N and I . The first node V0 is found from I , which provides the

numbers of tokens initially in each of the places1 . From then on, the RG is constructed as

follows: If it is possible to move in one jump from token distribution V0 to, say, either one

of distributions V 1, . . . , V k unequal to V0, then arcs are drawn from V0 to (new) nodes

V 1, . . . , V k. Each of V 1, . . . , V k is treated in the same way. Each arc is labelled by the

(set of) transition(s) fired at the jump. If a node V j can be directly reached from V i by

different (sets of) transitions firing, then multiple arcs are drawn from V i to V j . The nodes

of the RG become the elements of K, with one restriction: Nodes that enable immediate

transitions are excluded from K. To emphasise them, these nodes are given in italics. Since

the number of places in the DCPN and the number of nodes in the RG are both countable,

K is a countable set, which satisfies the PDP conditions.
As an example, consider the following DCPN graph, which initially has a token in places P1 and

P4, such that V0 = (1, 0, 0, 1, 0). This vector forms the first node of the reachability graph.
r

�
��

�
��

�
��

T1 T2

T5

T6

T3

T4

T8

T7

r�
��

�
��

�
�

�
��
A
A
AAU

6

6

���1

�

S
So

PPPi
J
JĴ

XXXXz
����

�

���*HHHHj

�
�

��+HHHY

r

b

P1

P2

P3

P4 P5

Both T1 and T3 are pre-enabled. Their guard or delay is ignored. If T1 fires, it removes the token

from P1 and produces a token for P2 (we assume that all firing measures are such, that each

transition will fire a token when enabled, i.e., FT (0, ·; ·) = 0), so the new token distribution is

(0, 1, 0, 1, 0). In the reachability graph an arc labelled by T1 is drawn from (1, 0, 0, 1, 0) to the new

node (0, 1, 0, 1, 0). If transition T3 fires before T1 does, the token distribution becomes

(0, 0, 1, 1, 0). Subsequently, the immediate transition T7 is enabled; its firing leads to (0, 0, 1, 0, 1).

Since (0, 0, 1, 1, 0) enables an immediate transition it is drawn in italics and is excluded from K.

The eventual reachability graph for this example is:
(1,0,0, 1,0)

(0, 1,0,1, 0) (0,0, 1,0,1)(0 , 1 , 0 , 0 , 1)

(0 , 0 , 1 , 1 , 0) (1 , 0 , 0 , 0 , 1)

�

?

�
�

�
��3 HHHHHHj@

@
@I

A
A

A
AAK

�

� �

T2 T1

T3 T8

T6
T4T7

T5T8

So, for this example, K = {(1, 0, 0, 1, 0), (0, 1, 0, 1, 0), (0, 0, 1, 0, 1)}.

1Notice that K can also be constructed independent of I by following the proposed procedure for each possible

instantiation of the initial token distribution.

- 22 -
NLR-TP-2000-428

θt: The mode process {θt} is characterised by the vector θt = (v1,t, . . . , v|P|,t) of length |P|,

taking values in K, where vi,t denotes the number of tokens in place Pi at time t. This

characterisation is unique at most time instances, except on those instants at which a

transition fires. Uniqueness is constructed as follows: Suppose that τ is such time instant at

which one transition or a sequence of transitions fires. Next, assume without loss of

generality, that this sequence of transitions is {T1, T2, . . . , Tm} and that time is running

again after Tm (note that T1 must be a guard or a delay transition, and T2 through Tm must

be immediate transitions). Then {θτ} is defined as that vector (v1,t, . . . , v|P|,t) ∈ K that

occurs after Tm has fired. This construction also ensures that the process {θt} has limits

from the left and is continuous from the right, such that it satisfies the càdlàg property.

xt: If θt = (v1,t, . . . , v|P|,t) ∈ K is the distribution of the tokens among the places of the DCPN

at time t, then xt is a vector containing the colours of these tokens. Within a place the

colours of the tokens are ordered according to some given algorithm (e.g. according to the

time at which they entered the place). Since {θt} is uniquely characterised, so is {xt}.

Since {θt} satisfies the càdlàg property, {xt} does too. An additional case occurs, however,

when θt jumps to the same value again, so that only the process xt makes a jump at time τ .

In that case, let xt be defined according to the timing construction as described for θt

above. With this, xt satisfies the càdlàg property.

d(θ): The colour of a token in a place P is an element of C(P) = IRn(P), therefore if θt assumes

value θ = (θ1, . . . , θ|P|) ∈ K, then xt ∈ IRd(θ), with d(θ) =
∑|P|

i=1 θi × n(Pi).

ξ0 = (θ0, x0): The DCPN initial marking I provides the places the tokens are initially in, from

which the initial mode θ0 follows (see θt), and the colours of these tokens, from which the

initial continuous state x0 follows (see xt).

gθ: The colour xi,j,t of the jth token in place Pi at time t is determined by the ordinary

differential equation ẋi,j,t = VPi
(xi,j,t). So, if xt denotes the vector of all token values

xi,j,t, where j runs through 1, . . . , θi and i runs through 1, . . . , |P|, then gθ(xt) can be

characterised by the corresponding vector with elements VPi
(xi,j,t). Since, for all Pi, VPi

is locally Lipschitz continuous, gθ is also locally Lipschitz continuous.

∂Eθ: The boundary ∂Eθ of subset Eθ is determined from the transition guards corresponding

with the set of transitions in TG that, under token distribution θ, are pre-enabled (this set is

uniquely determined). Without loss of generality, suppose this set of transitions is

T1, . . . , Tm. A boundary is hit when any transition of this set becomes enabled. By DCPN

definition, transition Ti becomes enabled if there is a vector of colours of input tokens ci
t

that enters boundary ∂GTi
. This yields ∂Eθ = ∂G′

T1
∪ . . . ∪ ∂G′

Tm
, where

G′
Ti

= [GTi
× IRd(θ)−|ci

t|] ∈ IRd(θ), where |ci
t| denotes the number of elements in ci

t and [·]

- 23 -
NLR-TP-2000-428

denotes that all vector components are ordered corresponding with the positions of the

tokens in vector xt.

λ: The jump rate λ(θ, ·) is equal to the sum of the functions δT (·) of the set of transitions

T ∈ TD that, under token distribution θ, are pre-enabled (this set is uniquely determined).

This equality is due to the fact that the combined arrival process of individual Poisson

processes is again Poisson, with an arrival rate equal to the sum of all individual arrival

rates. Since δT is integrable for all T ∈ TD, λ is also integrable.

Q: For each θ ∈ K, x ∈ Eθ, θ′ ∈ K and x′ ∈ Eθ′ , Q(θ′, x′; θ, x) is characterised by the

reachability graph and the set F . This characterisation is given in Appendix B.

C1: This condition (no explosions) follows from assumption D1.

C2: This condition (λ is integrable) follows from the fact that δT is integrable for all T ∈ TD.

C3: This condition (Q measurable and Q({ξ}; ξ) = 0) follows from the assumption that F is

continuous and from assumption D2.

C4: This condition (IENt < ∞) follows from assumption D3.

This shows that for any DCPN satisfying conditions D1 – D3, we are able to construct a PDP

instantiation representing it, which completes the proof of Theorem 2.

8 Example PDP

This section presents a PDP that describes the same process as modelled by a DCPN in Section 5,

i.e. the path of an aircraft influenced by its engine and its navigation system.

For this example, the PDP mode process {θt} has three components: θt = (θ1
t , θ2

t , θ3
t)’, where:

θ1
t is the Engine system mode, taking values in {Working, Not working}.

θ2
t is the Navigation system mode, taking values in {Working, Not working}.

θ3
t is the Aircraft mission mode, taking values in {Not completed, Completed}.

This yields that the set K has 23 = 8 elements m1, . . . ,m8 with:

m1= (Working,Working,Not completed)’ m5= (Working,Working,Completed)’

m2= (Not working,Working,Not completed)’ m6= (Not working,Working,Completed)’

m3= (Not working,Not working,Not completed)’ m7= (Not working,Not working,Completed)’

m4= (Working,Not working,Not completed)’ m8= (Working,Not working,Completed)’

The initial mode equals θ0 = m1. For θ ∈ {m1,m2,m3,m4}, ∂Eθ = ∂G × IR3, while for

θ ∈ {m5,m6,m7,m8}, Eθ equals IR6. The piecewise continuous process part {zt} has two

components: zt = (xt, vt)’, with xt the position and vt the velocity of the aircraft. The first table

below gives, for each θ ∈ K, the locally Lipschitz continuous function gθ(·) and the jump rates λ

of the Poisson point process. In the second table below, Q(ζ; ξ) = p denotes that if ξ is the value

- 24 -
NLR-TP-2000-428

of the PDP before the hybrid jump, then, with probability p, ζ is the value of the PDP

immediately after the jump.

θ gθ(·) λ

m1 V1(·) δ4 + δ6

m2 V2(·) δ3 + δ6

m3 V2(·) δ3 + δ5

m4 V2(·) δ4 + δ5

m5 0 δ4 + δ6

m6 0 δ3 + δ6

m7 0 δ3 + δ5

m8 0 δ4 + δ5

For z /∈ ∂Em1
: Q(m2, z; m1, z) = δ4

δ4+δ6

, Q(m4, z; m1, z) = δ6

δ4+δ6

.

For z ∈ ∂Em1
: Q(m5, z; m1, z) = 1.

For z /∈ ∂Em2
: Q(m3, z; m2, z) = δ6

δ3+δ6

, Q(m1, z; m2, z) = δ3

δ3+δ6

.

For z ∈ ∂Em2
: Q(m6, z; m2, z) = 1.

For z /∈ ∂Em3
: Q(m4, z; m3, z) = δ3

δ3+δ5
, Q(m2, z; m3, z) = δ5

δ3+δ5
.

For z ∈ ∂Em3
: Q(m7, z; m3, z) = 1.

For z /∈ ∂Em4
: Q(m3, z; m4, z) = δ4

δ4+δ5

, Q(m1, z; m4, z) = δ5

δ4+δ5

.

For z ∈ ∂Em4
: Q(m8, z; m4, z) = 1.

For all z, Q(m6, z; m5, z) = δ4

δ4+δ6

, Q(m8, z; m5, z) = δ6

δ4+δ6

.

For all z, Q(m7, z; m6, z) = δ6

δ3+δ6

, Q(m5, z; m6, z) = δ3

δ3+δ6

.

For all z, Q(m8, z; m7, z) = δ3

δ3+δ5

, Q(m6, z; m7, z) = δ5

δ3+δ5

.

For all z, Q(m7, z; m8, z) = δ4

δ4+δ5
, Q(m5, z; m8, z) = δ5

δ4+δ5
.

It may be clear that the PDP is less simple to comprehend and verify than the DCPN representing

the same system in Section 5.

9 Conclusions

Piecewise Deterministic Markov Processes (PDPs) can be used to describe virtually all complex

continuous-time stochastic processes not involving diffusions. However, for complex practical

problems it is often difficult to develop a PDP model. This paper has shown that any PDP with a

finite discrete state domain can be represented by a newly developed type of Petri Net, named

Dynamically Coloured Petri Net (DCPN). Moreover, it has shown that under some conditions

each DCPN can be represented by a PDP. A corollary of both results is that there exist

into-mappings between PDP and DCPN. The development of a DCPN model for practical

situations is similarly simple as it is for a Coloured Petri Net (Jensen, 1992).

The key result of this paper is that this is the first time that proof of the existence of

into-mappings between PDPs and Petri Nets has been established. For other Petri Nets such

mappings have never been studied, and are often even unfeasible.

10 References

1. Alur, R., Courcoubetis, C., Henzinger, T., Ho, P-H. (1993) Hybrid Automata: An algorithmic

approach to the specification and verification of hybrid systems, Hybrid Systems I, Lecture

notes in computer science, pp. 209-229, Springer-Verlag.

2. Bakker, G.J., Blom, H.A.P. (1993) Air Traffic Collision risk modelling, Proceedings of the

32nd IEEE Conference on Decision and Control, pp. 1464-1469, NLR report TP 93292 L.

- 25 -
NLR-TP-2000-428

3. Blom, H.A.P., Bakker, G.J., Blanker, P.J.G., Daams, J., Everdij, M.H.C., Klompstra, M.B.

(1998) Accident risk assessment for advanced ATM, 2nd USA/Europe Air Traffic

Management R&D Seminar, Orlando, NLR report TP 99015.

4. Branicky, M.S. (1995) Studies in Hybrid Systems: Modelling, analysis and control, PhD

thesis, M.I.T., Cambridge, MA.

5. David, R., Alla, H. (1987) Continuous Petri Nets, 8th European workshop on application

and theory of Petri Nets, Saragosse, pp. 275-294.

6. David, R., Alla, H. (1994) Petri Nets for the modeling of dynamic systems — A survey,

Automatica, Vol. 30, No. 2, pp. 175-202.

7. Davis, M.H.A. (1984) Piecewise Deterministic Markov Processes: a general class of

non-diffusion stochastic models, Journal Royal Statistical Soc. (B), Vol. 46, pp. 353-388.

8. Davis, M.H.A. (1993) Markov models and optimization, Chapman & Hall.

9. Demongodin, I., Koussoulas, N.T. (1998) Differential Petri Nets: Representing continuous

systems in a discrete-event world, IEEE Transactions on Automatic Control, Vol. 43, No. 4.

10. Everdij, M.H.C., Klompstra, M.B., Blom, H.A.P. (1996) MUFTIS WP3.2, Final report on

safety model, Part II: Development of mathematical techniques for ATM safety analysis,

NLR report TR 96197 L.

11. Everdij, M.H.C., Blom, H.A.P., Klompstra, M.B. (1997) Dynamically Coloured Petri Nets

for Air Traffic Management safety purposes, Proceedings 8th IFAC Symposium on

Transportation Systems, Chania, Greece, pp. 184-189, NLR report TP 97493 L.

12. Giua, A., Usai, E. (1996) High-level Hybrid Petri Nets: a definition, Proceedings 35th

Conference on Decision and Control, Kobe, Japan, pp. 148-150.

13. Jensen, K. (1992) Coloured Petri Nets: Basic concepts, analysis methods and practical use,

Volume 1, Springer-Verlag.

14. Le Bail, J., Alla, H., David, R. (1991) Hybrid Petri Nets, European Control Conference,

Grenoble, France, pp. 1472-1477.

15. Lygeros, J., Pappas, G.J., Sastry, S. (1998), An approach to the verification of the

Center-TRACON automation system, Proceedings 1st International Workshop Hybrid

Systems: Computation and Control, pp. 289-304.

16. Protter, P. (1990), Stochastic integration and differential equations, a new approach,

Springer-Verlag.

17. van Schuppen, J.H. (1998) A sufficient condition for controllability of a class of hybrid

systems, Proceedings 1st International Workshop Hybrid Systems: Computation and

Control, pp. 374-383.

18. Sipser, M. (1997) Introduction to the theory of computation, PWS publishing company,

Boston.

- 26 -
NLR-TP-2000-428

19. Tomlin, C., Lygeros, J., Sastry, S (1998) Synthesising controllers for nonlinear hybrid

systems, Proceedings 1st International Workshop Hybrid Systems: Computation and

Control, pp. 360-373.

20. Trivedi, K.S., Kulkarni, V.G. (1993) FSPNs: Fluid Stochastic Petri Nets, Lecture notes in

Computer Science, Vol. 691, M. Ajmone Marsan (ed.) Proceedings 14th International

Conference on Applications and theory of Petri Nets, pp. 24-31, Springer Verlag, Heidelberg.

21. Yang, Y.Y., Linkens, D.A., Banks, S.P. (1995) Modelling of hybrid systems based on

Extended Coloured Petri Nets, Hybrid Systems II, P. Antsaklis et al. (eds.), pp. 509-528,

Springer.

22. Weinberg, H.B., Lynch, N., Delisle, N. (1996) Verification of automated vehicle protection

systems, Hybrid Systems III, Verification and control, R. Alur et al. (eds.) pp. 101-113,

Springer.

- 27 -
NLR-TP-2000-428

Appendices

A Formal definition of Dynamically Coloured Petri Nets

This appendix presents a formal definition of Dynamically Coloured Petri Net. As much as

possible, the notation introduced by Jensen (1992) for Coloured Petri Net is used.

Definition:

A Dynamically Coloured Petri Net (DCPN) is an 11-tuple DCPN = (P , T , A, N , S , C, V , G, D,

F , I), together with some rules. Below, first the structure of the components in the tuple is given,

next the DCPN evolution through time is explained.

Structure of DCPN elements:

1. P is a finite set of places.

2. T is a finite set of transitions, such that T ∩ P = ∅. The set T consists of 1) a set TG of

guard transitions, 2) a set TD of delay transitions and 3) a set TI of immediate transitions,

with T = TG ∪ TD ∪ TI , and TG ∩ TD = TD ∩ TI = TI ∩ TG = ∅.

3. A is a finite set of arcs such that A∩P = A∩ T = ∅. The set A consists of 1) a set AO of

ordinary arcs, 2) a set AE of enabling arcs and 3) a set AI of inhibitor arcs, with

A = AO ∪AE ∪AI , and AO ∩AE = AE ∩AI = AI ∩AO = ∅.

4. N : A → P × T ∪ T × P is a node function which maps each arc A in A to a pair of

ordered nodes N (A). The place of N (A) is denoted by P (A), the transition of N (A) is

denoted by T (A), such that for all A ∈ AE ∪AI : N (A) = (P (A), T (A)) and for all

A ∈ AO: either N (A) = (P (A), T (A)) or N (A) = (T (A), P (A)). Further notation:

• A(T) = {A ∈ A | T (A) = T} denotes the set of arcs connected to transition T , with

A(T) = Ain(T) ∪ Aout(T), where

• Ain(T) = {A ∈ A(T) | N (A) = (P (A), T)} is the set of input arcs of T and

• Aout(T) = {A ∈ A(T) | N (A) = (T, P (A))} is the set of output arcs of T .

Moreover,

• Ain,O(T) = Ain(T) ∩AO is the set of ordinary input arcs of T ,

• Ain,OE(T) = Ain(T) ∩ {AE ∪AO} is the set of input arcs of T that are either

ordinary or enabling, and

• P (A(T)) is the set of places connected to T by the set of arcs A(T).

Finally, {Ai ∈ AI | ∃A ∈ A, A 6= Ai : N (A) = N (Ai)} = ∅, i.e., if an inhibitor arc

points from a place P to a transition T , there is no other arc from P to T .

5. S is a finite set of colour types. Each colour type is to be written in the form IRn, with n a

natural number.

- 28 -
NLR-TP-2000-428

6. C : P → S is a colour function which maps each place P ∈ P to a specific colour type in

S . Further notation: C({P1, P2}) is short for C(P1) × C(P2).

7. I : P → C(P)ms is an initialisation function, where C(P)ms for P ∈ P denotes the set of

all multisets over C(P). It defines the initial marking of the net, i.e., for each place it

specifies the number of tokens (possibly zero) initially in it, together with the colours they

have. The initial marking is such, that no immediate transition is immediately enabled.

8. V is set of a token colour functions. For each place P ∈ P it contains a locally Lipschitz

continuous function VP : C(P) → C(P).

9. G is a set of transition guards. For each T ∈ TG, it contains a transition guard GT :

C(P (Ain,OE(T))) → {True, False}. GT (ct) evaluates to True when ct enters ∂GT for the

first time, where GT is an open subset in C(P (Ain,OE(T))).

10. D is a set of transition delays. For each T ∈ TD, it contains a transition delay DT :

C(P (Ain,OE(T))) → IR+
0 , which, if evaluated from stopping time τ on, follows

DT (ct) = inf{t | 1 − e−
∫ t

τ
δT (cs)ds ≥ u}, where δT : C(P (Ain,OE(T))) → IR+

0 is

integrable and u is a random number drawn from U [0, 1] at τ .

11. F is a set of firing measures. For each T ∈ T it specifies a probability measure FT which

maps C(P (Ain,OE(T))) into the set of probability measures on

{0, 1}|Aout(T)| × C(P (Aout(T))).

DCPN evolution:

Each token residing in place P has a colour of type C(P). If a token in place P has colour c at

time τ , and if it remains in that place up to time t > τ , then the colour ct at time t equals the

unique solution of the differential equation ċt = VP (ct) with initial condition cτ = c.

A transition T is pre-enabled if it has at least one token per incoming ordinary and enabling arc in

each of its input places and has no token in places to which it is connected by an inhibitor arc;

denote τ1 = inf{t | T is pre-enabled at time t}. Consider one token per ordinary and enabling

arc in the input places of T and write ct ∈ C(P (Ain,OE(T))), t ≥ τ1, as the column vector

containing the colours of these tokens; ct may change through time according to its

corresponding token colour functions. If this vector is not unique (for example, in case one input

place contains several tokens per arc), all possible such vectors are evaluated in parallel.

A transition T is enabled if it is pre-enabled and a second condition holds true. For T ∈ TI , the

second condition automatically holds true. For T ∈ TG, the second condition holds true when

GT (ct) = True. For T ∈ TI , the second condition holds true DT (ct) units after τ1. Guard or delay

evaluation of a transition T stops when T is not pre-enabled anymore, and is restarted when it is.

If T is enabled, suppose this occurs at time τ2, it removes one token per arc in Ain,O(T) from

each of its input places. At this time τ2, T produces zero or one token along each output arc: If

- 29 -
NLR-TP-2000-428

cτ2 is the vector of colours of tokens that enabled T and (f, aτ2) is a sample from FT (·; cτ2), then

vector f specifies along which of the output arcs of T a token is produced (f holds a one at the

corresponding vector components and a zero at the arcs along which no token is produced) and

aτ2 specifies the colours of the produced tokens. The colours of the new tokens have sample

paths that start at time τ2.

In case of ambiguities, the following rules are used:

R0 The firing of an immediate transition has priority over the firing of a guard or a delay

transition.

R1 If one transition becomes enabled by two or more disjoint sets of input tokens at exactly

the same time, then it will fire these sets of tokens independently, at the same time.

R2 If one transition becomes enabled by two or more non-disjoint sets of input tokens at

exactly the same time, then the set that is fired is selected randomly.

R3 If two or more transitions become enabled at exactly the same time by disjoint sets of input

tokens, then they will fire at the same time.

R4 If two or more transitions become enabled at exactly the same time by non-disjoint sets of

input tokens, then the transition that will fire is selected randomly.

Here, two sets of input tokens are disjoint if they have no tokens in common that are reserved by

ordinary arcs, i.e., they may have tokens in common that are reserved by enabling arcs.

Remark:

The firing of any transition “stops the time”, i.e. if a transition becomes enabled at time τ , it also

fires tokens in its output places at time τ . And if, for example, there is a sequence of immediate

transitions that enable each other with their firing, then their consecutive firings all take place at

this same time instant τ .

With this, the DCPN definition ends.

- 30 -
NLR-TP-2000-428

B Characterisation of Q in terms of DCPN

In this appendix, Q is characterised in terms of DCPN, as part of the characterisation in Section 7

of PDP in terms of DCPN.

For each θ ∈ K, x ∈ Eθ, θ′ ∈ K and A ⊂ Eθ′ , the value of Q(θ′, A; θ, x) is a measure for the

probability that if a jump occurs, and if the value of the PDP just prior to the jump is (θ, x), then

the value of the PDP just after the jump is in (θ ′, A). Measure Q(θ′, A; θ, x) is characterised in

terms of the DCPN by the reachability graph (RG) (see Section 7) and the set F , as below.

In the RG, consider nodes θ and θ′ and delete all other nodes that are elements of K, including

the arcs attached to them. Also, delete all nodes and arcs that are not part of a directed path from

θ to θ′. The residue is named reduced RG (RRG). Then,

• Q(θ′, A; θ, x) = 0 if θ and θ′ are not connected in the RRG by at least one path.

If θ and θ′ are connected then in the RRG one or more paths from θ to θ ′ can be identified. Each

such path may consist of only one arc, or of sequences of directed arcs that pass nodes that enable

immediate transitions. All arcs are labelled by names of transitions, therefore the paths between θ

and θ′ may be characterised by the labels on these arcs, i.e. by the transitions that consecutively

fire in the jump from θ to θ′. Denote the set of paths, characterised by these labels, by L.

Examples of elements of L are T1 (if T1 is pre-enabled in θ and its firing leads to θ ′), T1 + T2 (if

there is a non-zero probability that T1 and T2 will fire at exactly the same time, and their

combined firing leads to θ′), T4 ◦ T3 (if T3 is pre-enabled in θ, its firing leads to the immediate

transition T4 being enabled, and the firing of T4 leads to θ′), etcetera.

If the set L contains only one path, then it is uniquely determined which transition (or set of

transitions) will fire in the jump. However, if there are several paths between θ and θ ′, then, even

with additional knowledge of x and A, the set of transitions that will actually fire is not always

uniquely determined. This makes that characterisation of Q(θ ′, A; θ, x) directly in terms of FT is

ambiguous. For this reason, we factorise Q by conditioning on this set.

Under the condition that a jump occurs:

Q(θ′, A; θ, x) =
∑
L∈L

pθ′,x′|θ,x,L(θ′, A | θ, x, L) × pL|θ,x(L | θ, x),

where pθ′,x′|θ,x,L(θ′, A | θ, x, L) denotes the conditional probability that the ‘DCPN state’

immediately after the jump is in (θ′, A), given that the ‘DCPN state’ just prior to the jump equals

(θ, x), given that the set of transitions L fires to establish the jump. Moreover, pL|θ,x(L | θ, x)

denotes the conditional probability that the set of transitions L fires, given that the ‘DCPN state’

immediately prior to the jump equals (θ, x).

- 31 -
NLR-TP-2000-428

In the remainder of this appendix, first pL|θ,x(L | θ, x) is characterised. Next,

pθ′,x′|θ,x,L(θ′, A | θ, x, L) is characterised.

Characterisation of pL|θ,x(L | θ, x)

First, assume that L does not contain immediate transitions. This yields: each L ∈ L either

contains one or more guard transitions, or one delay transition (other combinations occur with

zero probability). For each T , denote by cx
T the vector containing those components of x that

correspond with the input tokens of T . If this vector is not unique, then each such possible vector

is evaluated in parallel. Then for each L ∈ L, pL|θ,x(L | θ, x) is determined in two steps.

1. Consider the subset of paths in L that contain only guard transitions (this subset is denoted

by L ∩ TG, although this denotation is not entirely correct). For each L in this subset,

define the auxiliary variable αL by αL = 1 if cx
T ∈ ∂GT for all T ∈ L, and αL = 0 if there

is T ∈ L for which cx
T /∈ ∂GT . Next, if there are j and k for which αLj

= αLk
= 1 and for

which the transitions in Lj are a subset of the transitions in Lk, then redefine αLj
= 0.

Finally, for each L ∈ L ∩ TG: pL|θ,x(L | θ, x) = 0 if
∑

`∈L∩TG

α` = 0 and

pL|θ,x(L | θ, x) = αL/
∑

`∈L∩TG

α` otherwise.

2. For each L ∈ L ∩ TD: pL|θ,x(L | θ, x) = 0 if
∑

`∈L∩TG

α` > 0 and

pL|θ,x(L | θ, x) =
δL(cx

L)∑
T∈L∩TD

δT (cx
T)

if
∑

`∈L∩TG

α` = 0.

Next, consider the situations where the RRG may also contain nodes that enable immediate

transitions.

• If L is of the form L = Tj ◦ Tk, with Tj an immediate transition, then

pL|θ,x(L | θ, x) = pTk|θ,x(Tk | θ, x), with the right-hand-side constructed as above for the

case without immediate transitions. The same value pTk|θ,x(Tk | θ, x) follows for cases like

L = Tm ◦ Tj ◦ Tk, with Tj and Tm immediate transitions.

However, if the firing of Tk enables more than one immediate transition, then the value of

pTk|θ,x(Tk | θ, x) is equally divided among the corresponding paths. This means, for

example, that if there are L1 = Tj ◦ Tk and L2 = Tm ◦ Tk then

pL1|θ,x(L1 | θ, x) = pL2|θ,x(L2 | θ, x) =
1

2
pTk|θ,x(Tk | θ, x).

With this, pL|θ,x(L | θ, x) is uniquely characterised.

Characterisation of pθ′,x′|θ,x,L(θ′, A | θ, x, L)

For probability pθ′,x′|θ,x,L(θ′, A | θ, x, L), first notice that both (θ, x) and (θ ′, x′) represent states

of the complete DCPN, while the firing of L changes the DCPN only locally. This yields that in

general, several tokens stay where they are when the DCPN jumps from θ to θ ′ while the set L of

transitions fires.

- 32 -
NLR-TP-2000-428

• pθ′,x′|θ,x,L(θ′, A | θ, x, L) = 0 if for all x′ ∈ A, the components of x and x′ that

correspond with tokens not moving to another place when transitions L fire, are unequal.

In all other cases:

• Assume L consists of one transition T that, given θ and x, is enabled and will fire. Define

again cx
T as the vector containing the colours of the input tokens of T ; cx

T may not be

unique. For each cx
T that can be identified, a sample from FT (·, ·; cx

T) provides a vector e′

that holds a one for each output arc along which a token is produced and a zero for each

output arc along which no token is produced, and it provides a vector c′ containing the

colours of the tokens produced. These elements together define the size of the jump of the

DCPN state. This gives:

pθ′,x′|θ,x,L(θ′, A | θ, x, L) =
∑
cx
T

∫

(e′,c′)

FT (e′, c′; cx
T) × I(θ′,A;e′,c′,cx

T
),

where I(θ′,A;e′,c′,cx
T

) is the indicator function for the event that if tokens corresponding with

cx
T are removed by T and tokens corresponding with (e′, c′) are produced, then the

resulting DCPN state is in (θ′, A).

• If L consists of several transitions T1, . . . , Tm that, given θ and x, will all fire at the same

time, then the firing measure FT in the equation above is replaced by a product of firing

measures for transitions T1, . . . , Tm:

pθ′,x′|θ,x,L(θ′, A | θ, x, L) =
∑

cx
T1

,...,cx
Tk

∫

(e′1,c′1),...,(e
′
k
,c′

k
)

FT1(e
′
1, c

′
1; c

x
T1

) × . . .×

×FTk
(e′k, c

′
k; cx

Tk
) × I(θ′,A;e′1,c′1,cx

T1
,...,e′

k
,c′

k
,cx

Tk
),

where I(θ′,A;e′1,c′1,cx
T1

,...,e′
k
,c′

k
,cx

Tk
) denotes indicator function for the event that the combined

removal of cx
T1

through cx
Tk

by transitions T1 through Tk, respectively, and the combined

production of (e′1, c
′
1) through (e′k, c′k) by transitions T1 through Tk, respectively, leads to a

DCPN state in (θ′, A).

• If L is of the form L = Tj ◦ Tk, with Tj an immediate transition, then the result is:

pθ′,x′|θ,x,L(θ′, A | θ, x, L) =
∑
cx
Tk

∫

(e′
j
,c′

j
,cj ,e′

k
,c′

k
)

FTj
(e′j , c

′
j ; cj) ×FTk

(e′k, c
′
k; c

x
Tk

)×

×I(θ′,A;e′
j
,c′

j
,e′

k
,c′

k
,cx

T
),

where I(θ′,A;e′
j
,c′

j
,e′

k
,c′

k
,cx

T
) denotes indicator function for the event that the removal of cx

Tk

and the production of (e′k, c
′
k) by transition Tk leads to Tj having a vector of colours of

input tokens cj and the subsequent removal of cj and the production of (e′j , c
′
j) by

transition Tj leads to a DCPN state in (θ′, A).

• In cases like L = Tm ◦ Tj ◦ Tk, with Tj and Tm immediate transitions, the firing functions

of this sequence of transitions are multiplied in a similar way as above.

With this construction, Q is uniquely characterised in terms of DCPN.

