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Summary

This report presents results of a study into PSD gust design load calculation methods. A

Stochastic Simulation procedure based on the probability of exceeding the design level is

developed. The probability of design level exceedance is equal for linear and nonlinear aircraft

systems, so that the method produces equivalent design conditions for linear and nonlinear

systems. The Stochastic Simulation procedure is defined such, that estimations for the attained

accuracy can be given.

The results with Stochastic Simulation are compared to Deterministic PSD methods that have

been studied in previous phases of this project. The MFB and the IDPSD methods produce

results that approach the Stochastic Simulation results in some way, however there are still

significant differences. The SG method results deviate considerably from the results of the other

Deterministic methods as well as from Stochastic Simulation results.

It is felt that the NLR Stochastic Simulation procedure is a good representation of the PSD

Continuous Turbulence concept that is applicable equivalently to linear and nonlinear aircraft

systems.
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List of symbols and abbreviations

A weighted average aircraft response factor for turbulence

b1,2 turbulence intensity parameters

f frequency [Hz]

G von Karman gust filter transfer function [s½]

H transfer function

Iy aircraft inertia around lateral axis [kgm2]

j -1

k impulse strength

K feedback gain

Keq multiplication factor to feedback gain in IDPSD method

L turbulence scale length [m]

Mb wing root bending moment [Nm]

Mt wing root torsion moment [Nm]

ma/c aircraft mass [kg]

N(0) number of positive zero-level crossings per second [s-1]

∆n load factor

P1,2 parameters in the probability density function of turbulence

s "first system" output

t time [s]

tp probability parameter, defined by tp=x/σx with x=N(0;σx)

T Deterministic gust length [s]

Tg length of Stochastic gust patch [s]

Uσ PSD design gust velocity [ms-1]

V aircraft speed (TAS) [ms-1]

w gust speed [ms-1]

W gust speed signal in frequency domain [m]

y an output (aircraft load) of an aircraft system

centre of gravity acceleration of Noback model [m/s2]

z an output of an aircraft system

centre of gravity acceleration by controller action of Noback model [m/s2]

ρ correlation coefficient

σw turbulence intensity [ms-1]

σwr representative turbulence intensity: the turbulence intensity that gives [ms-1]

the largest contribution to the probability of design level exceedance

Φ Power Spectral Density

Φn
ww normalized von Karman turbulence spectrum [s]
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ϕ phase angle

[ ] * complex conjugate

Abbreviations

cor correlated

des design

IDPSD Indirect Deterministic Power Spectral Density method

LAS Load Alleviation System

max maximum

MFB Matched Filter Based method

nocon for the open loop system

nolim for the closed loop system with linear (unlimited) load alleviation

nonlin for the closed loop system with nonlinear (limited) load alleviation

PSD Power Spectral Density

SG Spectral Gust method
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1 Introduction

Under contract with the Netherlands Department of Civil Aviation RLD, NLR has been carrying

out studies into PSD gust load calculation methods for application to nonlinear aircraft. The

results of this investigation in 1995 are given in reference 6. The present report describes the

work done in 1996 and 1997; a Stochastic Simulation procedure has been developed and

analysed, that defines design levels by the proportion of time that the level is exceeded. Such

a definition makes it possible to apply the procedure to aircraft models with nonlinear control

systems.

Some Deterministic PSD methods exist that aim to comply with the Continuous Turbulence

(PSD) airworthiness requirement. These Deterministic methods have been studied in the previous

phases of this RLD project. In the present investigation, the Deterministic methods Matched

Filter Based 1-Dimensional Search (MFB), Indirect Deterministic PSD (IDPSD), and Spectral

Gust (SG) are applied to three aircraft models, comparing the results with the Stochastic

Simulation procedure. Appendix C discusses the Deterministic PSD methods investigated. The

three aircraft models are described in appendix B, and they are the following models:

- A model with two degrees of freedom (pitch and plunge) of a large aircraft, provided with

a gust load alleviation system that controls the centre of gravity acceleration by symmetric

aileron deflection (called "Noback model" here).

- A model with Fokker-100-like characteristics, consisting of two rigid (pitch and plunge) and

ten flexible symmetric degrees of freedom, has been equipped with a Load Alleviation System

(LAS) that feeds back the aircraft centre of gravity acceleration to a symmetric aileron

deflection in order to reduce the wing root bending moment when a gust is encountered.

- A model of the A310 aircraft that has been distributed among the Gust Specialists to serve

as a universal reference model. This symmetric model consists of two rigid and three elastic

modes and has a Load Alleviation System using symmetric aileron and spoiler deflection.

These aircraft models are linear, and nonlinearities are only introduced by limited controller

action. Calculations have been carried out for the linear systems as well as for the nonlinear

systems.

Chapter 2 describes the Continuous Turbulence concept and how the present JAR/FAR

Continuous Turbulence Design Envelope Analysis airworthiness requirement (Ref. 9 and 10) for

nonlinear systems has been interpreted in this report. Design levels are defined in such a way

that the amount of time that the design level is exceeded is the same for linear and non-linear

aircraft systems (sometimes referred to as PEC, Probability of Exceedance Criteria). In the line

of this interpretation, a Stochastic Simulation procedure is discussed that can be applied to

nonlinear systems. As the method is stochastic, attention is paid to possible scatter in the results,
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and estimations for the attained accuracy are formulated.

Results of Stochastic Simulation are compared to results of the Deterministic PSD methods in

chapter 3, and the implications of differences in the results are discussed.

Conclusions are given in chapter 4.
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2 The Continuous Turbulence concept and Stochastic Simulation

2.1 The PSD turbulence model

In the Continuous Turbulence, or Power Spectral Density (PSD), approach as developed in

reference 3, turbulence is regarded as a continuous random process. Its Gaussian statistical

properties are considered to vary only slowly, so that the process is stationary over short periods

of time (up to e.g. 10 minutes). In this way, the various relations of output to input developed

for a stationary Gaussian process still apply for these periods.

The stochastic turbulence process w(t) describing the occurring turbulence velocities as function

of time has a mean velocity of zero. The turbulence standard deviation or intensityσw is

assumed to vary slowly, and can also be described as a stochastic variable with a Gaussian

distribution. The probability density function ofσw is specified by the following expression:

The quantities P1, P2, b1, and b2 are parameters that depend on altitude.

(1)
p(σw)
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π
e
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2 , σw > 0.

Analyses of measured turbulence patches (Noback, Ref. 4) indicate that the normalized von

Karman spectrumΦn
ww gives a fairly good description of the power spectrum shape of

atmospheric turbulence and gusts:

where L = turbulence scale length = 2500 ft.

(2)Φn
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6

V = aircraft speed (TAS).

f = frequency (the above spectrum covers positive andnegative frequencies, the so-

called two-sided spectrum).

This power spectrum contains a scale parameter L that is set to 2500 ft here, in conjunction with

reference 3.

The above Power Spectral Density describes the distribution of the total power of the turbulence

over all frequencies. Integration of the normalizedvon Karman power spectrum yields a total
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power of 1 for the turbulence signal. The energy per unit time (i.e. the power) of turbulence is

defined byσw
2, whereσw is the RMS value of the gust velocities. The total power spectrum of

turbulenceΦww(f) is therefore represented by:

Φww(f) = σw
2Φn

ww(f).

2.2 PSD aircraft loads in Design Envelope Analysis

Note that in this report, the Mission Analysis approach will not be discussed.

2.2.1 The definition of PSD design loads

The response of output quantity y of a linear aircraft system represented by transfer function H

to a Gaussian stochastic turbulence input with power spectrumΦww will have a power spectrum

Φyy of:

If the aircraft system behaves linearly, aircraft responses to a Gaussian stochastic input will be

(3)Φyy(f) Hy( jf ) 2Φww(f ) .

Gaussian too. The variance of this Gaussian output signal y then is equal to the total power of

y:

Taking into account only changes in output quantities (and not the stationary values), the mean

(4)σ2
y ⌡

⌠
∞

∞

Φyy( f )df ⌡
⌠
∞

∞

Hy( jf ) 2Φww(f )df σ2
w ⌡

⌠
∞

∞

Hy( jf ) 2Φn
ww( f )df .

of the output signal will be zero, because the mean of the turbulence input signal is zero.

The ratio of output standard deviation and turbulence standard deviation is called A, and can be

regarded as a weighted average response factor, because it is an integration of the multiplication

of two functions that describe aircraft response sensitivity and turbulence contents, see

equation 4:

In the linear PSD method, this response factor is used to define design loads due to continuous

(5)σy

σw
⌡
⌠
∞

∞

Hy( jf ) 2Φn
ww( f )df A y .

turbulence, by prescribing a design value for a parameter Uσ (depending on altitude) and
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calculating the design level of load quantity y by multiplication of the response factor A by the

design parameter Uσ:

In the PSD approach, a design load condition of an aircraft consists not only of design values

(6)yd A yUσ .

for the load quantities, but one load quantity will have its design value, while all the other loads

in the aircraft structure (or major component) are equal to their correlated or matchedvalues.

In linear PSD theory, the correlated value of a load z with design load y is defined as:

where ρzy = correlation coefficient between load z and load y.

(7)zc ρzyzd ρzyA zUσ

The correlation coefficient is defined by:

(8)
ρzy ρyz

⌡
⌠
∞

∞

Hz( jf )H y ( jf) Φn
ww( f )df

A zA y

.

2.2.2 PSD design loads definition that can be applied to nonlinear systems

For the application of the PSD requirement to nonlinear systems, both FAR 25 and JAR 25 state

that: "When a stability augmentation system is included in the analysis, the effect of system

nonlinearities on loads at the limit load level must be realistically or conservatively accounted

for". In the line of reference 3, an interpretation of the Continuous Turbulence (CT) requirement

will be given here, so that nonlinearities can be "realistically accounted for".

As follows from equations 5 and 6, the design load level yd can also be regarded as the standard

deviation of the Gaussian stochastic response of y to the Gaussian stochastic turbulence input

with intensity Uσ. This definition of the design value as a standard deviation of the stochastic

output process y indicates that the probability of y exceeding the design load level yd is equal

to a Gaussian process exceeding its standard deviation, if the standard deviation of the turbulence

input process is Uσ. If the standard deviation of the input process is k*Uσ, the design level is

defined by the probability:

(9)P(y>yd) P(y> 1

k
σy) P(w>Uσ ) .
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For nonlinearsystems, the transfer functions H(jf) are dependent of the input, so A andρ cannot

be calculated. However, the concept of a design load level being defined by a certain probability

of exceedance can be applied to nonlinear systems by calculating the nonlinear system time

responses to stochastic turbulence. Counting procedures can than be used to identify the load

levels with the desired probability of exceedance. The intensity (standard deviation) of the

stochastic turbulence signal to be applied in such a nonlinear time simulation has been studied

thoroughly by Noback in reference 1. The results of that study will be discussed in

subchapter 2.3.

When a linear aircraft model response to a stochastic patch of turbulence is calculated, the load

z can have any value at the moment that load quantity y reaches its design value. As y and z

are responses of the same aircraft to the same turbulence signal, there will be a certain

correlation between y and z, defined byρzy. Outputs y and z have a certain combined probability

density function. The values of z at the moments that y is equal to yd will have a Gaussian

probability distribution in this case of a Gaussian stochastic turbulence input. It can easily be

verified, see also reference 2 and chapter 2.5.2, that the load value of z as defined in equation 7

is the most probable(or, in this Gaussian case, the mean) value of z if y has its design value.

In other words, a PSD design case is defined by one load value yd that is exceeded a certain

fraction of time, and all other loads z having their most probable values if y=yd, when flying

through a patch of Gaussian stochastic turbulence having the von Karman power spectral density:

These definitions of yd and correlated load zc can be applied to time responses of a nonlinear

(10)P(y>yd) P(w>Uσ ) p(zc y yd) max p(z y yd) .

system.

2.3 Stochastic Simulation methodology

In the definition of linear PSD design and correlated loads, a value is prescribed for the

continuous turbulence design parameter Uσ. It has been shown that the linear PSD design loads

can also be regarded as load levels with a certain probability of exceedance if the turbulence is

assumed to be a Gaussian stochastic process. Design parameter Uσ then becomes a measure for

the turbulence standard deviation or intensity. If the turbulence intensity is taken equal to Uσ,

the design load level coincides with the standard deviation of the load output. But if the

turbulence intensity is taken equal to k*Uσ, the design load level coincides with 1/k times the

standard deviation of the load output. This is a consequence of the linearity of the aircraft

system: the response characteristics (H(jf)) are independent of the input intensity. In order to

formulate a Stochastic Simulation procedure that is also applicable to nonlinear systems (where

the response characteristics depend on the intensity of the input), a rational choice has to made



-15-
NLR-TP-98240

with regard to the turbulence input standard deviation. In the following, a review will be given

of Noback’s study with respect to turbulence intensity in Stochastic Simulation (Ref. 1).

In the PSD philosophy, it is assumed that the intensityσw of atmospheric turbulence varies

slowly; it is a stochastic variable. The probability density ofσw is given by equation 1.

For a linear system, the probability density function p(y) of (incremental) load y in response to

Gaussian stochastic turbulence (µ=0,σ=σw) will be Gaussian:

whereσw is not a constant value, but a stochastic variable with a probability density function

(11)
p(y) 1

2π σy

e











y 2

2σ2
y 1

2π A yσw

e











y 2

2A2
yσ2

w

as given in equation 1. The probability that y exceeds level y for a certain value ofσw is:

The probability of exceeding y whenσw is a stochastic variable can be found by multiplying

(12)
P(y>y σw) ⌡

⌠
∞

y

1

2π A yσw

e











y 2

2 A2
yσ2

w dy 0.5erfc










y

2 A yσw

equation 12 by p(σw) from equation 1 and integrating over all values ofσw:

The non-storm contribution (defined by P1 and b1) in this equation is negligible (for altitudes

(13)

P(y>y)
P1

b1

2

π ⌡
⌠
∞

0

e

σ2
w

2b2
1 0.5erfc











y

2 A yσw

dσw

P2

b2

2

π ⌡
⌠
∞

0

e

σ2
w

2b2
2 0.5erfc











y

2 A yσw

dσw.

up to 17000 m or 55000 ft), so only the second part of the expression remains. Noback found

in reference 1, that the result of the integration in equation 13 is determined by a relatively

narrow band ofσw-values. A good approximation of the maximum of the integrand in
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equation 13 is found at aσw-value of:

The total probability of exceeding level y is thus determined by a narrow band ofσw-values

(14)

σw b2

1 1 4










y

Ab2

2

2

around the above value ofσw. The design level of a linear aircraft load y is yd = AUσ, so the

band of turbulence intensities contributing the most to the probability of exceeding the design

level y=yd is located around the following "representative"σw-value:

It is suggested to use this property of the linear aircraftoutput distribution functions for the

(15)

σwr b2

1 1 4










yd

Ab2

2

2
b2

1 1 4










Uσ

b2

2

2
.

calculation of continuous turbulence design loads for nonlinear aircraftsystems: The value of

σwr according to 15 is to be used as the intensity of a Gaussian stochastic turbulence patch that

serves as input to the nonlinear aircraft equations of motion. The output probability distribution

will not be Gaussian.

The design value of a load quantity y can for a linear system be defined by its probability of

exceedance:

The probability of exceeding the design level is equal to the probability that w(t) exceeds level

(16)P(y>yd σwr) 0.5erfc










yd

2 A σwr

0.5erfc










Uσ

2 σwr

P(w>Uσ σwr) .

Uσ in the turbulence patch. This unambiguous definition of the design level in terms of a

probability of exceedance can be used directly for nonlinear systems.

Thus, a "Stochastic Simulation" procedure has been defined to determine design levels of

nonlinear aircraft loads, using a rational value of turbulence intensity,σwr.
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Noback proposes in reference 1 to define the nonlinear correlated load zc as the value of z

having a probability of exceedance of 0.5 when the design load quantity y has its design level

yd:

In the case of a linear aircraft system, this means that zc is the most probablevalue of z when

(17)P(z>zc y yd) 0.5.

y is equal to yd; this need not be true for a nonlinear system. It may be more consistent to use

this "most probable" criterion, as given in equation 10, for correlated loads in nonlinear cases

too. It has been decided in this report to maintain Noback’s proposal of P=0.5.

2.4 Practical implementation of the Stochastic Simulation procedure

2.4.1 Generation of a Gaussian stochastic turbulence patch

Simulation of aircraft responses to a stochastic gust patch (Stochastic Simulation) is carried out

by generating a gust patch of a certain length that serves as input to the aircraft equations of

motion. The power spectral density of the gust speed is the von Karman spectrum, and the

intensity equal toσw. This means that the amplitude of the frequency domain turbulence signal

W(jf) is prescribed, but that the phase angleϕ(f) is arbitrary, because the power spectrum of a

frequency domain signal W(jf) is:

where Tg = length of gust patch.

(18)Φww(f ) W( jf )W ( jf )

Tg

W(jf ) 2

Tg

The turbulence signal must have a Gaussian distribution. To generate a stochastic Gaussian

signal, the phase angle of W(jf) should be a random value at every frequency. The gust speed

input signal w(t) as function of time in a limited interval Tg is the inverse Fourier transform of

W(jf):

where j2 = -1

(19)
w(t ) 1







σw Tg Φn

ww( f ) e jϕ ( f )

ϕ = phase angle, in this case random between 0 and 2π.

In computational procedures, this Fourier transform is performed by application of a Fast Fourier

Transform algorithm to a W(jf) signal that is known at a limited number of equidistant

frequencies. The resulting discrete time domain turbulence signal w(t) thus contains contributions
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of frequencies according to the von Karman spectrum,σ2
wΦn

ww, and the gust speed exceedance

curve has the shape of the normal distribution.

When generating a patch of stochastic turbulence, the following aspects have to be taken into

account:

1. The lowest frequency present in the turbulence signal should not be less than 1/Tg. If a

lower frequency is present, the mean of the signal may not be zero, which means a shift of

the probability distribution function (more positive than negative gust velocities, for

instance).

2. Due to the description of the gust signal in the frequency domain W(jf) at a finite number

of discrete frequencies, with 1/Tg the lowest frequency, the gust patch is in fact an infinite,

but periodic, stochastic process with time period Tg. As the aircraft time response should be

periodic with the same time period as the input signal (in order to make the time signal be

the response to the periodic input signal), it is necessary that transient response behaviour

has died out at the beginning of the turbulence patch at t=0. This can be achieved by starting

the simulation "long enough before t=0". This means that the simulation is started with the

last few seconds of turbulence from the "former" patch of length Tg in the infinite range of

patches with this period. About 10 s of time to let the transient behaviour of the aircraft die

out will generally be sufficient in aircraft simulation applications.

The patches are continuous from one period Tg to another, because the patch contains

contributions from frequencies that are multiples of 1/Tg only.

3. A patch of a certain length cannot be split up into several shorter patches. One reason for

this is the effect discussed under point 1. Furthermore, the frequency content of a part of a

longer patch is different from the frequency content of the total patch, because beginning

and end of the shorter patch do not fit continuously: the shorter patch contains a step from

t=Tg to t=0. The frequency domain signal (and thus the power spectrum) of the shorter patch

will contain contributions of this discontinuity (a step) over the entire frequency range.

It depends on the quality (the "randomness") of the random number generator generating the

random phase angles in equation 19 whether the Gaussian distribution is approximated well or

not, see also subchapter 2.5.1. An example of a distribution of turbulence velocities of a

generated turbulence patch of 500 seconds is compared to a Gaussian distribution in figure 1 on

probability paper. The generated turbulence approaches the straight line of the normal

distribution reasonably well, but significant deviations occur above about 2.5*σ (probability

parameter tp=2.5). The occurrence of higher levels of turbulence velocity (w(t) > 2.5σw) does

not have a Gaussian distribution. This phenomenon caused by the limitations of the random

number generator and the limited number of realizations of w(t) (a finite number of points)

should be considered in the choice for the value ofσw applied in the simulation.
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It has been demonstrated in subchapter 2.3 (equation 16) that the probability of exceedance of

a design load level is equal to the probability of exceedance of Uσ in the turbulence input.

Therefore, the turbulence input probability distribution should be sufficiently Gaussian up to

level Uσ. According to figure 1,σw should thus not be lower than Uσ/2.5.

In reference 1, the Stochastic Simulation with turbulence intensityσw=σwr is presented as a

procedure to obtain a good first estimateof the design load, and the estimate can be refined by

a procedure that requires two more simulations with turbulence intensitiesσwr/1.25 and

σwr*1.25. In the present investigation, a turbulence intensity ofσw=Uσ/2.5 is selected for the

Stochastic Simulation procedure, as this is a practical value not very different fromσwr.

Figure 2 showsσw/Uσ as function of altitude forσw=σwr and forσw=Uσ/2.5, and it can be seen

that σw=Uσ/2.5 results in a turbulence intensity close to the "optimum" valueσwr according to

equation 15 in an altitude band of about 22,000 ft - 35,000 ft. At lower altitudes, the constant

ratio of 2.5 leads to higherσw-values thanσwr, which implies a certain conservatism when

applyingσw=Uσ/2.5 at these altitudes.

The response of a linear aircraft system to the Gaussian turbulence input will theoretically also

have a normal distribution, see figure 3 where the distribution of the wing root bending moment

response of the uncontrolled A310 aircraft model to the patch of 500 seconds is compared to the

corresponding normal distribution. The normal distribution is approached even a bit better by

this response than by the turbulence input signal. The higher frequencies of the turbulence signal

are filtered out by the aircraft transfer functions; the approximation of sharp peaks with only a

limited number of time points will therefore be better for the (low frequency) output signals than

for the (high frequency) input signal. This observation means, thatσw could in effect be chosen

lower than Uσ/2.5 in a Stochastic Simulation, depending on the extent to which the output

signals contain high frequencies. It is safest, however, to apply not lower than the recommended

value ofσw=Uσ/2.5.

2.4.2 Determination of design and correlated load levels

In the Stochastic Simulation procedure, the load level that has the same probability of

exceedance as Uσ in the input signal is the design level of the load quantity under consideration.

In order to determine this design load level, the (theoretical) probability of exceedance of Uσ in

the turbulence input signal is multiplied by the number of realizations (time points) of the output.

The resulting number N is the number of output realizations above the design level.

The array of output realizations is therefore sorted from high to low values, and the design level

now is the Nth element of this sorted array. A linear interpolation is applied in the sorted array

of the output signal if the calculated rank number N is not an integer. It should be noted, that
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the output signal must be given at a constant time step, because otherwise the levels where the

simulation time step is small will have a relatively higher probability density than the levels

where the simulation time step is large. The number of realizations above a level can only be

related to a probability of exceedance if one realization (time point) represents one fixed amount

of time (time step).

Having found the design level of a load y, the correlated level of another load z can be

determined. The moments in time where the output signal of y has the value yd are searched in

the time response of y; linear interpolation between two values is applied if one value is lower

than yd and the next higher than yd (or vice versa). At these moments in time (again applying

linear interpolation if necessary) the values of load z are collected in a new array. A probability

distribution can now be determined of this array, and the level with probability of exceedance

P=0.5 can be found, which defines the correlated value of z. More practical is again to sort the

correlated array of z-values from high to low, and find the correlated load zc by the

corresponding rank number, in the same manner as how the design level of y was found.

Appendix A.4 describes a computer procedure that comprises the selection of the turbulence

patch length on the basis of a desired accuracy and Stochastic Simulation according to the

procedure discussed above.

2.5 Accuracy of Stochastic Simulation results

2.5.1 Random number generator limitations

The random phase angle of the frequency domain turbulence signal in order to establish the

Gaussian stochastic turbulence time signal is a first limitation to the accuracy of the Stochastic

Simulation method. Random phase angles are generated using a random generator, that always

has a limited "randomness" and a limited amount of "random" numbers. The random number

generator used in this research is the standard (Workstation-)Matlab algorithm, based on a linear

congruential method. The basic algorithm is:

The quality of the random number generator can be evaluated by inspection of the probability

(20)seed (77 seed) mod (231 1) .

distribution of the generated time signal. As could be seen in figure 1, the present random

number generator performs satisfactorily up to values of about 2.5 times the standard deviation.

At some point increasing the number of realizations (increasing Tg or decreasing the time step)

will not lead to a better approximation of the Gaussian distribution. As stated before, it is

recommended to chooseσw not lower than Uσ/2.5, so that the design level of an output is not

higher than 2.5 times the standard deviation of that output.
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2.5.2 Number of realizations at or above design level

The accuracy of a statistical method like Stochastic Simulation will depend on the number of

realizations of the different stochastic variables. A large number of realizations of a stochastic

variable will lead to a better approximation of the theoretical probability distribution. For

instance, let m be the mean of N realizations of the Gaussian stochastic variable x. The

variable m will then also be a Gaussian stochastic variable with the following parameters:

In the same way, in the determination of design and correlated loads by Stochastic Simulation

(21)µm µx , σm

σx

N
.

of a gust patch of a certain length, the loads found are Gaussian stochastic variables. The

expected values are equal to the theoretical values yd and zc, and there will be a certain variation

(standard deviation,σ) around these values.

The standard deviations of the stochastic variables ’design load’ and ’correlated load’ are

measures for the attained accuracy of our results. The derivation of formulas for these standard

deviations will now be described, so that the accuracy of our Stochastic Simulation results will

be known. The formulas are verified by tests in Appendix A.

In the case of the ’design load found from Stochastic Simulation’, it was felt that the standard

deviation would be inversely proportional to the square root of the time that the load signal is

above the considered level. This is confirmed by the tests in Appendix A.

In the case of a ’correlated load found from Stochastic Simulation’, it can be derived

theoretically that the standard deviation is inversely proportional to the square root of the number

of realizations of the design load quantity at its design level.

The number of realizations of a stochastic output variable y above a level depends on:

- The turbulence patch length.

- The probability of exceedance of that level.

The number of realizations at a certain level y* is determined by Ny(y
*), where Ny(y*) is the

number of positive crossings of level y*, calculated from the equation of Rice for Gaussian

processes: Ny(y
*) = N(0) exp( -(y*)2 / (2σy

2) ).

N(0), the number of positive zero crossings, is a well-known PSD quantity that is a measure for

the roughness of a Gaussian stochastic signal. A low N(0) indicates that the signal is smooth,

which will mean that for instance theσy level is crossed only few times. Thus, with a low N(0),

there are few moments in time where the signal is equal to the design value, so there will be a
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small number of realizations of correlated load values.

In determining the design value of an output, the number of realizations above the design level

N(y>yd) is proportional to the stochastic simulation length, and to the corresponding "design"

probability of exceedance of equation 16:

where ∆t = the step width in the signal.

(22)N(y>yd)
Tg

∆t
0.5erfc











Uσ

2 σw

Choosing a smaller simulation time step will also increase the number of realizations above

design level, but these additional realizations will not add any information with regard to the

considered stochastic output probability distribution. If∆t has been chosen sufficiently small, an

output value between the points t1 and t1+∆t will be a linear interpolation between the output

values at t1 and t1+∆t, and therefore does not improve the estimation of the output probability

density function. The linear interpolation is implicitly assumed when determining the probability

distribution from the points at time step∆t.

So diminishing the simulation time step will not increase design load accuracy if the smaller step

does not imply a significant improvement of the discrete approximation of the continuous time

signals.

If we normalize to the theoretical linear PSD design level, the standard deviation of the design

value found for an output y will depend on Tg andσw according to equations 21 and 22:

This standard deviation is a measure for the accuracy of the design load found by Stochastic

(23)

σyd

A yUσ

Constant

Tg 0.5erfc










Uσ

2 σw

Constant

Tg P(w>Uσ )
.

Simulation, so the formula above can be used for the estimation of the design load accuracy.

Equation 23 implies that the accuracy of for instance the mean of the design values found from

four Stochastic Simulations of four patches of Tg/4 is the same as the accuracy of the design

value from one patch Tg. This is due to the fact that the number of realizations for the stochastic

variable is linearly proportional to the patch length.
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In the case of establishing a correlated value for a signal z, the number of times that y is equal

to its design value determines the accuracy, or the standard deviation, of the stochastic variable

"correlated load". Using the equation of Rice, this number of realizations (positive and negative

level crossings) can be calculated:

where Ny(0) = number of positive zero-crossings per second of output quantity y.

(24)

N(y yd) 2 TgNy(0) e











y 2
d

2σ2
y 2 TgNy(0) e











U 2
σ

2σ2
w

The number of positive zero-crossings Ny(0) is calculated with:

In the linear aircraft response to a Gaussian turbulence patch, the probability distribution of the

(25)Ny(0)























⌡
⌠
∞

∞

f 2Φyy( f )df

⌡
⌠
∞

∞

Φyy( f )df

1

2

.

correlated load z at the moment that another load y has its design value, p(z y=yd), is Gaussian

with parameters:

The value of µzc is equal to the correlated PSD value. The mean of the correlated load

(26)µzc
σzρyz

yd

σy

, σzc
σz 1 ρ2

yz A zσw 1 ρ2
yz .

distribution (the values of z when y=yd) is also equal to the correlated load according to the

definition of Noback, P(z>zc)=0.5, because P(z>µzc)=0.5 in this Gaussian correlated load

distribution.

Combining 24 and 26, and normalizing to the theoretical correlated load value, the variation of

the calculated correlated load with Tg, σw, and N(0) will be:

(27)

σzc

zc,PSD

1

2Tg Ny(0)
e









Uσ

2σw

2

A zσw 1 ρ2
yz

1

ρyz A zUσ

1

2Tg Ny(0)
e









Uσ

2σw

2

σw

Uσ

1 ρ2
yz

ρyz

.
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In Stochastic Simulation, the value y=yd also has a certain standard deviation, so that the actual

correlated load standard deviation will be somewhat higher than the above theoretical value.

The relations between the accuracy of Stochastic Simulation design and correlated loads and the

parameters Tg, N(0), σw, and ρ that follow from equations 23 and 27 can be verified by

performing a large number of Stochastic Simulation procedures. Design and correlated load

values can than be treated as stochastic variables, and we can establish the distributions of the

resulting design loads and correlated loads. The means of these distributions should be equal to

the theoretical linear PSD load levels, and the standard deviations will show a certain

dependence of Tg, N(0), σw, andρ, which should comply with equations 23 and 27. These tests

are discussed in appendix A. Practical correlated loads results usually show somewhat larger

standard deviations than indicated by equation 27, but it is concluded that equations 23 and 27

can be used as estimations of Stochastic Simulation results deviations.

It will be seen in appendix A that the accuracy of correlated loads is considerably less than the

accuracy of design loads. The desired accuracy of the correlated loads is therefore used to

determine the necessary patch length in a Stochastic Simulation, on the basis of equation 27.

2.5.3 Numerical quality of response calculations, simulation time step

A first check on the output standard deviations of an A310 model stochastic turbulence response

learned, that wing root bending moment standard deviation was slightly lower than according

to linear (frequency domain) PSD theory, and the torsion moment standard deviation quite

significantly lower. This effect will cause a systematic deviation of Stochastic Simulation design

levels from the theoretical PSD levels.

In this first response calculation, the sample frequency was 32.8 Hz (time step of about 0.03 s),

so that the highest frequency (Nyquist frequency) in the Fourier series of the turbulence signal

was 16.4 Hz. This 16.4 Hz was the highest frequency in the linear PSD calculation (for A) that

had been performed, so this could not be a cause for the errors observed above.

Due to the Fourier series representation of the turbulence signal in the frequency domain, the

time domain turbulence patch is the summation of a large number of sine-functions. A sine-

signal of a certain frequency that is given at a limited number of time points will be

approximated by straight lines between two time points. The frequency content of this

approximation will always be somewhat lower than the original continuous signal, see figure 4.

A 10-step approximation of a sine function has an amplitude in the frequency domain that is
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more than 3 % lower than the continuous signal.

The torsion transfer function of the A310 aircraft model has a pronounced peak at about 3.4 Hz

(Fig. 5). The sample frequency of 32.8 Hz in this case means that there are about 10 steps-per-

cycle in the time domain representation of the turbulence signal at the frequency of 3.4 Hz.

According to the effect of figure 4, the torsion response to this discrete time domain signal will

therefore be more than 6 % too low at this frequency (3 % reduction due to discrete input, 3 %

reduction due to discrete output). The same effect will be present at the other frequencies around

this peak. This is the reason why the torsion moment standard deviation in response to Gaussian

stochastic turbulence will have a lower intensity (standard deviation) than expected according

to linear frequency domain PSD theory.

For this reason, the sampling frequency has been doubled (time step of 0.015 s). The Nyquist

frequency of this turbulence signal will be 32.8 Hz, but the aircraft models used here will hardly

show any responses above 15 Hz. The discrete output signals of these simulations with twice

the amount of time steps will therefore be "smoother" approximations of the continuous signals.

Figure 6 presents the standard deviations (or RMS) of stochastically simulated torsion and

bending for the A310 model without the Load Alleviation controllers, as function of the time

step in the signal w(t). These standard deviations are divided by their theoretical (from A)

standard deviations. It can be seen that the simulated bending moment standard deviation does

not differ much from the theoretical value, but the torsion moment standard deviation gets a lot

better for smaller time steps. The twice as small time step results in aσ for Mt of within 0.5 %

of the theoretical value, so this time step can be accepted for this specific aircraft model and

these outputs.

It can be seen in appendix A.3 that the time step has even more influence on the accuracy of

correlated loads. A standard recipe for the selection of∆t can not be given;∆t should be

determined by means of a preliminary test with a linearized model, or it should simply be set

to a low value, such as 0.01 s, that will be sufficient for any aircraft response.

2.6 Review of the Stochastic Simulation procedure

The linear PSD method can be formulated as a procedure of finding output levels with a certain

probability of exceedance for an aircraft flying through Gaussian stochastic turbulence with

slowly varying intensity.

The probability of design level exceedance for a linear aircraft is determined mainly by a narrow

band of turbulence intensity (standard deviation) values aroundσwr.
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Assuming thatσwr will also deliver the main contribution to the probability of design level

exceedance of a nonlinear system, this turbulence intensity is to be used in a Stochastic

Simulation procedure for nonlinear systems. The value ofσwr is approximated by Uσ/2.5 in

practical application of the procedure.

A Stochastic Simulation procedure for nonlinear systems has been described. A general

formulation (equations 23 and 27) for the obtained accuracy of the results as function of

turbulence patch length, N(0), and turbulence intensity level has been given for linear systems,

where the results can be compared directly to the linear PSD design and correlated loads. The

Stochastic Simulation results for linear systems comply reasonably with equations 23 and 27,

as can be seen in appendix A.

For output quantities containing higher frequency contributions, the approximation of the

stochastic inputs and outputs by discrete signals may cause errors in the design levels, and

especially in the correlated levels. The time step should be chosen small enough, but a general

formula describing the necessary sample frequency cannot be given.

It is the desired accuracy of the correlated loads that determines the necessary values of both

patch length and step width in a Stochastic Simulation, because the correlated loads deviate more

from their theoretical values than the design loads.
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3 Comparison of Stochastic Simulation and Deterministic PSD methods

3.1 Introduction

Three Deterministic PSD methods that have also been used in previous research (Ref. 5 and 6)

will be studied here:

- Matched Filter Based 1-Dimensional Search (MFB, Pototzky cs.).

- Indirect Deterministic Power Spectral Density method (IDPSD, Noback).

- Spectral Gust method (SG, Brink-Spalink).

A short description of these methods is given in appendix C.

For linear aircraft models, these Deterministic PSD methods and Stochastic Simulation result in

design and correlated load values yd and zc that are equal to the "standard" PSD loads:

For nonlinear aircraft models, the standard PSD method cannot be applied, because the model

yd A yUσ zc ρyzA zUσ .

transfer functions are then dependent on the input signal. The Stochastic Simulation method has

been proposed for the definition of design and correlated loads in nonlinear cases. This method

is based on the probability of exceedance of load levels. The Deterministic methods aim to

comply with this Stochastic Simulation procedure in nonlinear calculations.

By showing results of calculations for three aircraft models it will be demonstrated that the

Deterministic and the Stochastic Simulation procedures effectively lead to correct PSD loads in

linear cases. The results for three nonlinearaircraft models are also presented, and the degree

of compliance of the Deterministic methods with Stochastic Simulation will be investigated.

The three aircraft models used are the same as in reference 6, see also appendix B:

- Noback model: large transport with load alleviation through ailerons.

- F100 model: medium-sized transport with "Fokker-100-like" characteristics with load

alleviation through ailerons.

- A310 model: an A310 model with load alleviation through ailerons and spoilers.

Nonlinearity is introduced in these models by limits on control surface deflections. The A310

model control surfaces can only deflect upward (max. 10 deg.) in the nonlinear version, so that

a non-symmetrical nonlinearity is introduced.

3.2 Design and correlated loads calculation results

In Appendix C and in reference 5 it is explained that the considered Deterministic PSD methods

follow a more or less similar scheme. An essential part in the procedures is the so-called gust

filter.
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The Power Spectral Density of the gust filter response to a pulse input should have the von

Karman power spectrum shape. The impulse response power spectrum can be calculated directly

from the frequency-domain representation of the gust filter G(jf):

where T = length of impulse response.

Φ ( f ) G( jf )G ( jf )

T

Figure 7 shows the Power Spectra of the gust filter impulse response for the IDPSD filter (which

gives by definitionexactly the von Karman Spectrum), the original MFB gust filter ("NASA"),

and a new MFB gust filter that has been taken from Hoblit, reference 7. The Hoblit filter clearly

approaches the von Karman PSD better than the original NASA filter. The Hoblit gust filter has

therefore been implemented in the present MFB procedure, which will be seen to result in

correct PSD loads in linear cases, contrary to MFB with the original NASA gust filter, where

slight deviations from AUσ were found.

The parameters of the gust filter that is used in the original NASA MFB procedure and of the

Hoblit gust filter used in this report are given in table 1.

The bar-charts in figures 8-13 show the results of the calculations for the three aircraft models

and five calculation methods. The notation in the axis labels of these figures is as follows:

y,des = design load value of load quantity y.

y,cor z = correlated value of y if z has its design value.

nonlin = closed loop system, nonlinear (limited) load alleviation.

nolim = closed loop system, linear (unlimited) load alleviation.

nocon = open loop system (linear).

Stoch. Simul. = Stochastic Simulation result.

PSD = standard PSD result.

POS = "positive" design load case (A310 model only).

NEG = "negative" design load case (A310 model only).

Note that correlated load values in some cases are given with opposite sign, indicated by a minus

sign in the legend. The results for the linear and nonlinear versions of the A310 model are given

in separate figures, because there is a difference between "positive" and "negative" nonlinear

design load cases, due to the fact that ailerons and spoilers can only deflect upward in the

nonlinear version of this model.

These bar charts demonstrate that the three Deterministic PSD methods comply with the standard

PSD results in linear cases, so it may be concluded that all Deterministic procedures lead to
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correct results for linear aircraft models. Figure 8 for the linear A310 model shows standard PSD

results and Deterministic PSD results together with Stochastic Simulation results. It can be seen

that the present Stochastic Simulation procedure gives design loads close to the standard PSD

values, and correlated loads may deviate a few percent (of the design load value) from the

theoretical value, see for instance the correlated bending for the uncontrolled A310 model.

In nonlinear conditions, where controller actions are limited, the stochastic and Deterministic

methods lead to different results. MFB and IDPSD do not differ much, but especially correlated

load values are different in some cases. It could be attempted to add a second optimization loop

to MFB/IDPSD, calculating outputs at e.g. four more k/Keq values around the optimum found,

and find a higher maximum output with somewhat different correlated load values. However,

an even more rigorous search routine, the "multi-dimensional search" (Ref. 8), has already been

investigated by NASA. It was found that such a routine could change the design conditions by

not more than one percent with respect to the one-dimensional search.

MFB and IDPSD both approach the Stochastic Simulation results reasonably; only the correlated

value of∆n for the nonlinear F100 model is really very incorrect (wrong sign) for both methods,

see figure 10. The corresponding MFB/IDPSD design levels of the bending moment in figure 11

differ more than 10 % from the Stochastic Simulation value. The SG procedure design loads and

correlated loads can both deviate appreciably from Stochastic Simulation results.

The ailerons and spoilers of the A310 model can only deflect upward in the nonlinear version,

so that different gust design loads will occur in positive and negative directions. In the IDPSD

and MFB procedures, negative gust cases are created by reversing the sign of the gust inputs to

the "first system". In the SG procedure the sign of a design load is determined, as suggested in

reference 6, by calculating the sign of:

where y = the load quantity response to an SG input.

⌡
⌠
∞

0

y y dt

It can be seen in figure 9, that the positive and negative design load cases of wing bending do

not differ significantly, but the negative torsion design load is considerably lower than the

positive design load in the results of Stochastic Simulation, MFB, and IDPSD. It is a good point

for MFB and IDPSD that they appear to represent this effect in the same way as the Stochastic

Simulation method.
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As an indication of the relative computational effort required for each method, the amount of

CPU-time used to calculate design and correlated loads for the nonlinear A310 model is given

in table 2. The SG method is very fast, because only four time responses are calculated. The

IDPSD method takes some more calculation time than MFB, because the "first system" response

in IDPSD is twice as long as in MFB. Stochastic Simulation takes much more time than the

other methods (14 times the MFB time!), mainly due to the counting procedures for finding

design levels and correlated loads.

The following conclusions can be drawn from the comparison of Deterministic PSD methods

with the Stochastic Simulation and "standard" PSD methods:

- With the Hoblit gust filter, MFB is equivalent to IDPSD and "standard" PSD in linear cases.

- The results of MFB and IDPSD are reasonably similar in nonlinear cases; correlated loads

may deviate somewhat.

- MFB and IDPSD reasonably approach Stochastic Simulation results in nonlinear cases, but

this is not enough for design load calculations.

- The SG method deviates significantly from the other methods in nonlinear cases.

- Stochastic Simulation takes much more calculation time than the Deterministic methods.

3.3 Theoretical justification of the methods discussed

Although an approximation, Stochastic Simulation results in design loads with a certain

probability of exceedance (P(y>yd)), assuming turbulence to be a stochastic process with a

slowly varying statistical parameter (σw varies slowly). Noback has shown in reference 1 that

P(y>yd) for linear systems is determined mainly by a narrow band ofσw values. The

approximationis, that only the most influential turbulence intensity is considered, and not the

other intensities in the narrow band mentioned previously.

The assumptionof the Stochastic Simulation method as applied to nonlinear systems is:

- The probability of exceeding the design level is also for nonlinear systems determined

mainly by the turbulence intensityσwr ≈ Uσ/2.5.

It could be useful to investigate this assumption for some different aircraft models with different

nonlinearities.

The design level probability of exceedance P(y>yd) is equal for linear and nonlinear systems;

it is equal to the proportion of time that the turbulence velocity is higher than Uσ in the

stochastic turbulence patch with intensity Uσ/2.5. So the design load definition is based on a

probability of exceedance, taking into account the statistical variations in the intensity of

atmospheric turbulence. Thus, the Stochastic Simulation design loads are equivalentfor linear

and nonlinear systems, and they comply with AUσ in linear cases.
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The Deterministic PSD methods are expressions of the linear PSD method in the time domain,

without considering the probabilistic aspects of the turbulence intensity. There is no indication

at all that the probability of exceeding the design level will be equal for linear and nonlinear

systems. There is no equivalence between linear and nonlinear results.

The Deterministic formulations of the PSD method can be seen as "worst case" concepts that

search for the gust input shape giving the highest aircraft response. Some account is taken of the

turbulence energy content at different wavelengths (the von Karman Power Spectral Density),

but in MFB and IDPSD the gust shape itself (input to the "second system") does not have the

von Karman PSD. In this formulation, MFB, IDPSD, and SG are alternatives for a Tuned

Discrete Gust requirement, incorporating aspects of the Continuous Turbulence (PSD)

requirement.

The different philosophies for the Stochastic Simulation method (based on realistic probabilistic

aspects) and the Deterministic methods (based on imaginary worst case "design" conditions) can

both be defended very well. Design conditions traditionally are somewhat stylistic representations

of possible realistic events, so a worst case procedure would fit in well. The evolution of

airworthiness requirements however shows a tendency to represent limit load conditions more

and more realistically, so that design load cases become conditions that may occur with a certain

probability during aircraft service. The Stochastic Simulation philosophy would be more

appropriate in view of these latter developments. A Continuous Turbulence design level based

on a probability of exceedance also seems to be more in the spirit of the development of the

PSD approach in reference 3.
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4 Conclusions

The PSD method for gust design and correlated loads calculation can be formulated as a

procedure of finding output levels that are exceeded a certain proportion of time for an aircraft

flying through Gaussian stochastic turbulence. In this formulation, the PSD method can be

applied to nonlinear systems by means of Stochastic Simulation. The Stochastic Simulation

results are equivalent for linear and nonlinear aircraft models.

A Stochastic Simulation procedure for nonlinear systems has been described. A general (but in

practical applications approximate) formulation for the obtained accuracy of the results as

function of turbulence patch length, N(0), and turbulence intensity level has been given for linear

systems, where the results can be compared directly to the linear PSD design and correlated

loads. These formulas are used for an estimation of the accuracy when Stochastic Simulation is

applied.

The time step in the simulation should be chosen small enough to represent possible higher-

frequency contributions in the loads responses, but a general prescription of the necessary sample

frequency cannot be given.

MFB and IDPSD reasonably approach Stochastic Simulation results in nonlinear cases, but this

is not enough for design load calculations. The SG method deviates significantly from the other

methods in nonlinear cases. The present investigation was limited to three not very complex

aircraft models with nonlinearities introduced by control surface deflection limits only. Other

aircraft models with different types of nonlinearities may show larger differences between the

Deterministic methods and Stochastic Simulation.

Stochastic Simulation takes considerably more calculation time than the Deterministic methods;

for instance 14 times as much as MFB.

As the Stochastic Simulation definition of Continuous Turbulence design loads is based on

realistic probabilistic considerations, it is believed that Stochastic Simulation is more appropriate

than the worst case approach of the Deterministic PSD methods to comply with the Continuous

Turbulence requirement.
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Table 1 NASA and Hoblit gust filters for the MFB method
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πV

(1 n1
L

V
s)(1 n2

L

V
s)(1 n3

L

V
s)

(1 p1
L

V
s)(1 p2

L

V
s)(1 p3

L

V
s)(1 p4

L

V
s)

, with s jω .

n1 n2 n3 p1 p2 p3 p4

NASA 2.618 0.1298 0 2.083 0.823 0.0898 0

Hoblit 2.187 0.1833 0.021 1.339 1.118 0.1277 0.0146

Table 2 The necessary CPU-time for PSD methods applied to nonlinear A310 model

method total length of responses (s) CPU time (s)

Stochastic Simulation 1250 1067

IDPSD 540 86

MFB 450 76

SG 135 17
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Note:   The probability parameter tp is defined by  tp =        with  x = N (0;σx)x
σx

Fig. 1   Probability distribution of a generated patch of turbulence, 500 s
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Fig. 2   Three functions of rms gust velocity versus altitude
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Note:   The probability parameter tp is defined by  tp =        with  x = N (0;σx)x
σx

Fig. 3   Probability distribution of a A310 bending moment response to a turbulence patch of 500 s
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Fig. 6   Improvement of A310 output intensity with time step with respect to theoretical PSD value

C
515-01N

Mb
Mt

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0.98

0.985

0.99

0.995

1

1.005

time step  [s]

si
gm

a_
y 

/ s
ig

m
a_

y(
P

S
D

)
improvement of output intensity with time step, patch of 250 s

IDPSD 
Hoblit
NASA  

10
−2

10
−1

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

f  [Hz]

P
H

I

Power Spectra of gust filters impulse responses

Fig. 7   Power Spectra of three gust filters impulse responses



-41-
NLR-TP-98240

C
515-01N

Fig. 8   Stochastic, Deterministic and "standard" PSD results for linear A310 models
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C
515-01N

Fig. 9   Stochastic and Deterministic PSD results for nonlinear A310 model
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Fig. 10   Stochastic, Deterministic and "standard" PSD results for Fokker 100 models
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Fig. 11   Stochastic, Deterministic and "standard" PSD results for Fokker 100 models
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Fig. 12   Stochastic, Deterministic and "standard" PSD results for Noback models
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Fig. 13   Stochastic, Deterministic and "standard" PSD results for Noback models
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Appendices

A Design and correlated loads as stochastic variables: the accuracy of the

Stochastic Simulation procedure

In subchapter 2.5.2, equations 23 and 27 have been derived from stochastic process theory.

These equations represent the relations between design and correlated loads scatter and the

parameters gust patch length, gust intensity, and N(0) of the load quantity. In this appendix,

equations 23 and 27 will be validated, and a practically applicable formula will be derived to

estimate the attained accuracy of a Stochastic Simulation with certain length, gust intensity, and

loads N(0)’s.

A.1 Accuracy of the design load level

The Stochastic Simulation procedure will now be evaluated by applying it to linear aircraft

systems, for which design and correlated loads can also be calculated with the standard PSD

method using A andρ. So the results of Stochastic Simulation can be validated directly by

comparison with the linear PSD results.

The "design load level found by Stochastic Simulation" and the "correlated load level found by

Stochastic Simulation" are stochastic variables, as has been discussed in subchapter 2.5.2. They

are Gaussian for a linear system with Gaussian input. The probability distribution parameters

mean (µ) and standard deviation (σ) of these stochastic variables are investigated here. Mean and

standard deviation are determined from 100 results of the Stochastic Simulation procedure (100

simulations), thus providing reasonably accurate estimations of these probability characteristics.

For the design load level,σ is caused by the numerical limitations of the Stochastic Simulation:

limited patch length, limited number of points, and limited "randomness". For the correlated

load, µ andσ result from theoretical probability distributions; numerical limitations may cause

some deviations of µ andσ from the theoretical values.

The linear aircraft models used in these tests are discussed in appendix B:

- A310 model without Load Alleviation controllers.

- Large transport aircraft model ("Noback model") with unlimited controller.

- Model with characteristics similar to Fokker 100 without controller.

For these linear tests, the load alleviation control systems of the A310 and the Fokker 100

models have been switched off. In the linear Noback model, the control system is switched on

(without limits), because one of the two possible outputs of this model is the centre of gravity

acceleration caused by the controller.
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The 100 different turbulence patches are generated according to the procedure in 2.4.1. Each

patch is unique, because the phase relations of the frequency domain turbulence signals are all

different random functions.

The mean and standard deviation of design and correlated loads as found from 100 Stochastic

Simulations are divided by the corresponding linear PSD values of design load and correlated

load. The results for the A310 model are presented in tables A1a-A1c for 3 different patch

lengths Tg: 125 s, 250 s and 500 s. It can be seen in tables A1, that the "design level

probability" has been varied between P(y>1.75σy) and P(y>3σy). This is equivalent to varying

the turbulence input intensityσw between Uσ/1.75 and Uσ/3. We can thus verify the

relationships between the probability characteristics µ andσ of the PSD loads and the quantities

Tg, N(0), andσw from equations 23 and 27.

A first conclusion that can be drawn from the A310 results in table A1 is, that the means of the

design values of bending and torsion are sufficiently close to the theoretical values. The means

of the correlated loads, however, deviate systematically from the theoretical correlated loads. The

correlated torsion (when bending has its design value) is consistently too low, and the correlated

bending (when torsion has its design value) is consistently too high. These systematic errors in

the correlated loads are influenced to some degree by the simulation time step. This will be

studied in appendix A.2. Similar tests with the two other linear aircraft models did not show

these systematic errors in mean correlated load values, see table A2a-A2c for the Noback model

with unlimited controller and table A3 for the uncontrolled Fokker 100 model.

The accuracy of the results when simulating only one patch is determined by the standard

deviations in tables A1-A3. Figure A1 shows the relation between the standard deviation of the

positive and the negative design value of Mb and the length of the gust patch (1/ Tg) from the

A310 model results, at some levels of turbulence intensityσw. Figure A2 shows the same for

Mt. The linear relation betweenσyd and 1/ Tg from equation 23 is sustained reasonably by these

graphs, so that this part of equation 23 has been validated.

Figures A3 and A4 show the relations between the design loads standard deviations and the

function of turbulence intensity level as given in equation 23:

The validity of equation 23 is sustained again by these reasonably straight lines.

1

erfc










Uσ

2 σw

.
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Tables A1-A3 show a difference between design load standard deviations for different outputs

of an aircraft model. This difference may be due to the different smoothness of two output

signals, characterized by N(0). In the case of the uncontrolled A310 model, bending has an N(0)

of 1.0 s-1 and torsion of 3.0 s-1. Torsion has a lower design load standard deviation than

bending. Apparently, an output of a character with stronger variations (high N(0)) leads to more

accuracy in the design value. This difference in accuracy may be caused by the fact, that design

load exceedings of an output with low N(0) are more "clustered" than those of an output with

high N(0).

Figure A5 shows two stochastic responses to turbulence, one with low N(0) and one with high

N(0). The dashed line indicates the level with a certain prescribed probability of exceedance,

comparable to a design level for each load output. This figure shows that realizations above a

design level are more clustered (concentrated in only a few peaks) when N(0) is low than when

N(0) is high, and this can very well be a cause for less accuracy, but this influence cannot be

derived analytically using stochastic process theory.

In figures A6-A8, design load standard deviations for the three linear aircraft models have been

plotted, together with the line:

It can be seen that the design load standard deviation is about proportional to 1/ N(0) in some

σzd

zd,PSD

Ny(0)

Nz(0)

σyd

yd,PSD

.

cases, but the relation is not very clear. Especially the results of the Noback aircraft model

deviate from this relation.

Based on stochastic process theory, a relation between Stochastic Simulation design load

accuracy (or scatter) and N(0) is not expected; equation 23 therefore does not contain a

contribution from N(0). Figures A6-A8 indicate roughly a linear relation with 1/ N(0) , but this

can be seen not to be valid in all cases. This rather unpredictable influence of N(0) thus makes

equation 23 not very suitable for the estimation of Stochastic Simulation results accuracy. As

will be seen in A.2, the accuracy of correlated loads is always considerably less than the design

load accuracy, so that a general formula for accuracy estimation will be based on equation 27

for the correlated loads accuracy.

A.2 Accuracy of the correlated load level

The relation between the standard deviation of a Stochastic Simulation correlated load

(normalized to the theoretical PSD correlated load) and 1/ Tg in equation 27 is confirmed by

the reasonably straight lines of figures A9 and A10 for A310 bending and torsion respectively.
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The relation between correlated value standard deviation and turbulence intensityσw is given

in figures A11 and A12. The standard deviation is proportional to the function ofσw as given

in equation 27:

The standard deviation of the Stochastic Simulation correlated loads also depends on N(0) of the

σw

Uσ
e









Uσ

2σw

2

.

design output according to equation 27 (see Figs. A13-A15), or, more specifically, on Ny(yd) of

the design quantity. The number of positive and negative design level crossings of quantity y

is the number of realizations for correlated quantity z. The linear relation of the standard

deviation with 1/ N(0) from equation 27 is not confirmed very strongly by figures A13-A15.

The relation will however be used as an estimation for correlated loads accuracy. When

Stochastic Simulation is applied to nonlinear aircraft models, Ny(yd) cannot be calculated directly

from N(0) by Rice’s equation (24), so equation 27 must be reformulated using

into:

Ny(yd) Ny(0)e











U 2
σ

2σ2
w

For a nonlinear system response, Ny(yd) can be calculated by counting the crossings of yd in a

(A1)
σzc

zc,PSD

1

2Tg Ny(yd)

σw

Uσ

1 ρ2
yz

ρyz

.

time response.

Thus far, experience with the linear models results in tables A1-A3 learned, that the Stochastic

Simulation correlated load standard deviation will usually be 1.1 (for A310 model) to 2 (for

Noback model) times larger than the standard deviation from the formula above, due to the fact

that the practical dependence of N(0) (or Ny(yd)) andρ is not exactly according to theory.

Note that part of the correlated load standard deviation is caused by the error (σ) in the design

load level, so thatσzc will always be larger than the theoretical value. This latter effect can

however not be the cause for a deviation of 100 % from the value calculated with equation A1.
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A.3 The influence of simulation time step on correlated loads accuracy

It has been discussed in subchapter 2.5.3, that the approximation of continuous stochastic signals

by discrete signals may lead to some deviations of the output RMS (σy) values.

The time step also has an influence on the correlated loads of table A1. As can be seen, the

means of correlated Mb are consistently too high, and the means of correlated Mt are too low.

Figure A16 shows the mean of the 100 correlated bending moments that were found with 100

Stochastic Simulations of a gust patch of 250 seconds as function of the time step. Two levels

of turbulence input are depicted:σw=Uσ/2 andσw=Uσ/2.5. Figure A17 gives the mean of the

correlated torsion. These two figures show, that the relation between time step and mean

correlated load is not very well defined, but a tendency of improving results for smaller time

steps can be recognized. The error in mean correlated bending is larger than the error in mean

correlated torsion. A relative error of within about 10 % for the mean of the correlated (bending)

loads can be achieved with the time step of 0.015 seconds, that has been chosen as the time step

for the simulations in tables A1-A3.

It cannot be explained at this moment why there should be systematic errors in the A310

correlated loads, or why the bending moment error is larger than the torsion moment error.

The tests with the other two aircraft models give means of correlated load values that comply

much better with linear theory, see tables A2 and A3.

A.4 A procedure for doing Stochastic Simulation with prescribed accuracy

To arrive at a general procedure for attaining a prescribed accuracy of the Stochastic Simulation

method applied to any aircraft model, we can use the relations between design and correlated

loads standard deviations and Tg, σw, and N(0). Systematic errors like discussed in the previous

paragraph should not be present, so the time step should always be chosen small enough,

preferably based on an evaluation of a large number of Stochastic Simulations of a linearized

model. A time step of 0.01 s will probably be sufficient for any aircraft model.

For the turbulence signal intensityσw, the practical value of Uσ/2.5 has been chosen. This

intensity is reasonably close to the "representative"σwr as given by Noback in reference 1, and

it is a clear and simple definition of this design parameter, related in a simple way to the

existing design parameter Uσ.

So after having verified that the step width in the output signals is sufficiently small, the only

Stochastic Simulation parameter that has to be determined on the basis of a desired accuracy is

the length of the simulation, Tg.
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It has become clear from tables A1-A3 that the accuracy of the design load values is a lot better

than the accuracy of the correlated load values. The choice for the length of a turbulence patch

should therefore be based on the desired accuracy of the correlated loads. For a linear aircraft

model, equation A1 gives an estimate of the standard deviation of the correlated load level, and

thus of the accuracy of a correlated load that is calculated by one Stochastic Simulation patch.

If we for instance want to be 95 % confident that the calculated correlated load error is not more

than ± 10 % of the "theoretical" correlated load, then the standard deviation from equation A1

should be 0.05. The 2σ value that corresponds to 95 % confidence is then 0.1. As the correlated

load is sometimes low, it has been decided here to define the desired accuracy as 10 % of the

theoretical designload. The standard deviation from equation A1 should then be 0.05/ρ.

From the linear aircraft results it has been found that the design loads are a factor 1.5 to 5 more

accurate than the correlated loads, with the accuracy expressed as a percentage of the design

level. So if we express the accuracy in terms of the design level, the correlated load values still

determine the necessary turbulence patch length. For practical applications it can be assumed that

the design loads will be at least 1.5 times as accurate as the correlated loads.

Note that, as discussed previously, the "theoretical" equation A1 does not apply directly to

Stochastic Simulation results. The correlated loads standard deviations are usually 1.1 to 2 times

larger than what is calculated in equation A1. In the procedure proposed here, a multiplication

factor of 1.3 is used for equation A1:

This equation A2 is a general formula for estimating the accuracy of Stochastic Simulation

(A2)
σzc

zc,PSD

1.3

2Tg Ny(yd)

σw

Uσ

1 ρ2
yz

ρyz

σzd

zd,PSD

≤ 1

1.5

σzc

zc,PSD

.

results.

The least accurate correlated load in a Stochastic Simulation is the correlated load z for which

is maximal. For this load z, the correlated load standard deviationσzc/zc,PSDcan be calculated



-53-
NLR-TP-98240

for a patch length T1 according to equation A2. If the desired standard deviation is for instance

the necessary patch length can be calculated with:

For a linear system, the necessary patch length can be calculated directly from A2 and A3,

(A3)Tg











σzc

zc,PSD

2

T1









0.05

ρ

2
.

without having to perform the first simulation of T1 seconds, becauseρ and Ny(yd) can be

calculated from the model’s transfer functions.

For a nonlinear system, it is proposed to carry out a simulation of T1 seconds. The values for

Ny(yd) can then be determined by means of a counting procedure, and correlation coefficients

can be calculated with:

The determination of the appropriate Tg then follows the procedure as described above in

(A4)
⌡
⌠
T1

0

y( t ) z( t ) dt

⌡
⌠
T1

0

y 2( t ) dt ⌡
⌠
T1

0

z 2( t ) dt

.

equations A2 and A3.

As the linear theory for stochastic processes is not valid for nonlinear systems, the correlated

load distribution will not be Gaussian (Eq. 26) in nonlinear cases. Equation A2 can then only

be an estimation of the correlated load accuracy. It is assumed that this estimation is at least

reasonable.

A schematic overview of the proposed Stochastic Simulation procedure for nonlinear systems

is given in figure A18. The procedure starts with an "identification patch" in order to find the

necessary parameters for equation A2. The necessary total patch length is then calculated with

A2 and A3. The total patch consists of separately generated patches of 250 s each. Design and

correlated loads are calculated for each patch according to the procedure of subchapter 2.4. The
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final Stochastic Simulation results are the mean values of design and correlated loads from the

series of patches.
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Table A1 Results from A310 responses to 100 patches of stochastic gust

a Patches of 125 s

Uσ/ σw Prob. Mb des
+/PSD Mbdes

- /PSD Mt cor
+/PSD Mt cor

- /PSD
µ σ µ σ µ σ µ σ

1.75 0.04006 0.9960 0.0309 1.0007 0.0261 0.9467 0.3380 0.9486 0.2914
2.00 0.02275 0.9956 0.0347 1.0034 0.0304 0.9932 0.3594 0.9749 0.3893
2.25 0.01222 0.9925 0.0389 1.0016 0.0400 0.9740 0.4483 0.8746 0.4150
2.50 0.00621 0.9886 0.0500 1.0048 0.0549 0.9076 0.5262 0.9234 0.4914
2.75 0.00298 0.9899 0.0637 1.0036 0.0762 0.9257 0.5995 0.9248 0.6447
3.00 0.00135 0.9896 0.0856 0.9989 0.0879 0.8175 0.6778 0.9413 0.7416

Uσ/ σw Prob. Mt des
+/PSD Mt des

- /PSD Mbcor
+/PSD Mbcor

- /PSD
µ σ µ σ µ σ µ σ

1.75 0.04006 0.9974 0.0155 0.9974 0.0144 1.0988 0.2154 1.0948 0.2277
2.00 0.02275 0.9961 0.0192 0.9958 0.0164 1.1250 0.2799 1.0965 0.2672
2.25 0.01222 0.9935 0.0243 0.9966 0.0236 1.1417 0.3172 1.0691 0.3408
2.50 0.00621 0.9918 0.0292 0.9960 0.0289 1.0805 0.3991 1.0399 0.4354
2.75 0.00298 0.9891 0.0419 0.9947 0.0386 1.0836 0.4968 1.0165 0.4968
3.00 0.00135 0.9862 0.0525 0.9968 0.0501 1.0320 0.6656 0.9913 0.6791

b Patches of 250 s

Uσ/ σw Prob. Mb des
+/PSD Mbdes

- /PSD Mt cor
+/PSD Mt cor

- /PSD
µ σ µ σ µ σ µ σ

1.75 0.04006 1.0026 0.0220 1.0007 0.0233 1.0223 0.2215 0.9491 0.2513
2.00 0.02275 1.0026 0.0249 1.0007 0.0272 0.9795 0.2914 0.9704 0.2569
2.25 0.01222 1.0040 0.0292 1.0013 0.0317 0.9674 0.2980 0.9678 0.3170
2.50 0.00621 1.0070 0.0356 1.0025 0.0383 0.9958 0.3966 0.9592 0.3682
2.75 0.00298 1.0035 0.0460 1.0001 0.0457 0.9631 0.4447 0.8087 0.4751
3.00 0.00135 1.0015 0.0569 1.0010 0.0582 0.9982 0.6366 0.9101 0.5894

Uσ/ σw Prob. Mt des
+/PSD Mt des

- /PSD Mbcor
+/PSD Mbcor

- /PSD
µ σ µ σ µ σ µ σ

1.75 0.04006 0.9992 0.0100 0.9970 0.0111 1.1014 0.1716 1.0554 0.1593
2.00 0.02275 0.9985 0.0136 0.9989 0.0138 1.0961 0.1916 1.0747 0.1898
2.25 0.01222 0.9980 0.0158 0.9990 0.0172 1.0894 0.2437 1.0455 0.2611
2.50 0.00621 0.9982 0.0201 0.9970 0.0221 1.0797 0.2817 1.0663 0.3088
2.75 0.00298 0.9962 0.0244 0.9968 0.0294 0.9894 0.3942 1.1030 0.3407
3.00 0.00135 0.9991 0.0339 0.9985 0.0380 0.9816 0.5204 1.0455 0.4868
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Table A1 (Continued)

c Patches of 500 s

Uσ/ σw Prob. Mb des
+/PSD Mbdes

- /PSD Mt cor
+/PSD Mt cor

- /PSD
µ σ µ σ µ σ µ σ

1.75 0.04006 1.0013 0.0151 0.9978 0.0142 0.9528 0.1745 0.9895 0.1687
2.00 0.02275 1.0012 0.0166 0.9980 0.0163 0.9509 0.1901 0.9631 0.1851
2.25 0.01222 1.0021 0.0215 0.9975 0.0206 0.9817 0.2247 0.9904 0.2172
2.50 0.00621 1.0048 0.0246 0.9976 0.0259 0.9501 0.2726 0.9567 0.2503
2.75 0.00298 1.0062 0.0364 0.9997 0.0314 0.9656 0.3085 0.9839 0.3039
3.00 0.00135 1.0030 0.0522 0.9980 0.0399 0.9909 0.4761 0.8846 0.5090

Uσ/ σw Prob. Mt des
+/PSD Mt des

- /PSD Mbcor
+/PSD Mbcor

- /PSD
µ σ µ σ µ σ µ σ

1.75 0.04006 0.9955 0.0097 0.9951 0.0088 1.0875 0.1153 1.0780 0.1282
2.00 0.02275 0.9952 0.0107 0.9949 0.0104 1.0827 0.1413 1.0662 0.1601
2.25 0.01222 0.9950 0.0114 0.9959 0.0128 1.0791 0.1871 1.0767 0.1692
2.50 0.00621 0.9947 0.0161 0.9968 0.0154 1.1033 0.2324 1.0665 0.2175
2.75 0.00298 0.9947 0.0224 0.9967 0.0188 1.0498 0.2714 1.1060 0.2792
3.00 0.00135 0.9921 0.0298 1.0001 0.0267 1.0837 0.4065 1.1292 0.3637

Note: In these tables [ ]+
desmeans: positive design level.

[ ]+
cor means: correlated load with positive design load.
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Table A2 Results from Noback model responses to 100 patches of stochastic gust

a Patches of 125 s

Uσ/ σw Prob. y des
+/PSD y des

- /PSD z cor
+/PSD z cor

- /PSD
µ σ µ σ µ σ µ σ

1.75 0.04006 0.9930 0.0396 0.9956 0.0421 1.0257 0.1748 1.0187 0.1766
2.00 0.02275 0.9940 0.0513 0.9970 0.0559 1.0035 0.1729 1.0237 0.2237
2.25 0.01222 0.9959 0.0648 0.9966 0.0694 1.0076 0.2134 0.9988 0.2707
2.50 0.00621 0.9963 0.0873 0.9942 0.0852 1.0240 0.2382 0.9919 0.2595
2.75 0.00298 0.9901 0.0969 0.9881 0.0968 1.0438 0.2958 1.0012 0.3095
3.00 0.00135 0.9756 0.1020 0.9793 0.1025 1.0157 0.3119 1.0339 0.3399

Uσ/ σw Prob. z des
+/PSD z des

- /PSD y cor
+/PSD y cor

- /PSD
µ σ µ σ µ σ µ σ

1.75 0.04006 1.0046 0.0375 0.9964 0.0389 0.9922 0.2073 0.9972 0.2028
2.00 0.02275 1.0001 0.0479 0.9977 0.0489 0.9934 0.2219 1.0089 0.2044
2.25 0.01222 0.9965 0.0557 0.9999 0.0634 0.9738 0.2828 1.0320 0.2472
2.50 0.00621 0.9988 0.0707 0.9978 0.0775 0.9927 0.3697 1.0188 0.3040
2.75 0.00298 1.0072 0.1048 0.9970 0.0978 1.0018 0.4026 0.9856 0.3511
3.00 0.00135 0.9975 0.1154 0.9896 0.1236 0.9686 0.3928 0.9526 0.4177

b Patches of 250 s

Uσ/ σw Prob. y des
+/PSD y des

- /PSD z cor
+/PSD z cor

- /PSD
µ σ µ σ µ σ µ σ

1.75 0.04006 0.9966 0.0251 0.9967 0.0262 1.0252 0.1232 1.0280 0.1189
2.00 0.02275 0.9963 0.0300 0.9979 0.0335 1.0308 0.1307 1.0148 0.1368
2.25 0.01222 0.9982 0.0380 0.9973 0.0437 1.0366 0.1662 1.0119 0.1780
2.50 0.00621 1.0019 0.0492 0.9941 0.0547 1.0315 0.1979 1.0196 0.2082
2.75 0.00298 1.0015 0.0585 0.9902 0.0708 1.0655 0.2402 0.9883 0.2562
3.00 0.00135 0.9963 0.0741 0.9893 0.0824 1.1017 0.3260 0.9908 0.2783

Uσ/ σw Prob. z des
+/PSD z des

- /PSD y cor
+/PSD y cor

- /PSD
µ σ µ σ µ σ µ σ

1.75 0.04006 1.0024 0.0292 1.0017 0.0272 0.9686 0.1560 0.9996 0.1434
2.00 0.02275 1.0046 0.0369 1.0048 0.0299 0.9861 0.1806 1.0268 0.1727
2.25 0.01222 1.0017 0.0444 1.0032 0.0409 1.0176 0.2234 1.0282 0.1939
2.50 0.00621 1.0008 0.0528 1.0024 0.0613 1.0072 0.2209 1.0410 0.2027
2.75 0.00298 0.9969 0.0627 0.9999 0.0715 0.9808 0.2943 1.0310 0.2587
3.00 0.00135 0.9871 0.0738 0.9980 0.0774 1.0007 0.3269 1.0185 0.3564
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Table A2 (Continued)

c Patches of 500 s

Uσ/ σw Prob. y des
+/PSD y des

- /PSD z cor
+/PSD z cor

- /PSD
µ σ µ σ µ σ µ σ

1.75 0.04006 0.9943 0.0189 0.9967 0.0189 1.0323 0.0874 1.0246 0.0792
2.00 0.02275 0.9956 0.0257 0.9975 0.0226 1.0269 0.1009 1.0289 0.0966
2.25 0.01222 0.9962 0.0315 0.9984 0.0304 1.0298 0.1142 1.0215 0.1254
2.50 0.00621 0.9936 0.0374 0.9971 0.0420 1.0326 0.1417 1.0119 0.1481
2.75 0.00298 0.9923 0.0479 0.9958 0.0541 1.0381 0.1834 1.0070 0.1690
3.00 0.00135 0.9917 0.0659 0.9933 0.0646 1.0613 0.2673 1.0164 0.2347

Uσ/ σw Prob. z des
+/PSD z des

- /PSD y cor
+/PSD y cor

- /PSD
µ σ µ σ µ σ µ σ

1.75 0.04006 1.0010 0.0217 1.0037 0.0207 1.0107 0.1008 0.9863 0.1014
2.00 0.02275 0.9992 0.0261 1.0042 0.0218 0.9947 0.1270 0.9879 0.1180
2.25 0.01222 0.9989 0.0308 1.0044 0.0290 0.9986 0.1356 1.0011 0.1342
2.50 0.00621 1.0000 0.0401 1.0061 0.0379 0.9842 0.1822 0.9979 0.1833
2.75 0.00298 0.9965 0.0463 1.0070 0.0506 0.9956 0.1893 0.9806 0.2332
3.00 0.00135 0.9963 0.0612 1.0071 0.0697 0.9833 0.2660 1.0002 0.2942
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Table A3 Results from F100 model responses to 100 patches of stochastic gust

Patches of 125 s

Uσ/ σw Prob. ∆ndes
+/PSD ∆ndes

- /PSD Mbcor
+/PSD Mbcor

- /PSD
µ σ µ σ µ σ µ σ

1.75 0.04006 0.9979 0.0274 1.0001 0.0270 1.0129 0.0864 1.0099 0.0676
2.00 0.02275 0.9946 0.0340 1.0012 0.0332 0.9930 0.0892 1.0077 0.0798
2.25 0.01222 0.9945 0.0444 1.0038 0.0416 1.0037 0.1055 1.0163 0.0853
2.50 0.00621 0.9921 0.0530 1.0035 0.0539 1.0222 0.1114 1.0108 0.1146
2.75 0.00298 0.9853 0.0656 1.0007 0.0693 1.0102 0.1361 0.9749 0.1398
3.00 0.00135 0.9762 0.0847 0.9954 0.0945 1.0041 0.1737 1.0108 0.1626

Uσ/ σw Prob. Mb des
+/PSD Mbdes

- /PSD ∆ncor
+/PSD ∆ncor

- /PSD
µ σ µ σ µ σ µ σ

1.75 0.04006 0.9988 0.0217 0.9977 0.0213 0.9910 0.0606 0.9966 0.0647
2.00 0.02275 0.9952 0.0249 0.9978 0.0268 0.9908 0.0735 0.9908 0.0722
2.25 0.01222 0.9948 0.0266 0.9948 0.0295 0.9943 0.0931 0.9907 0.0931
2.50 0.00621 0.9945 0.0336 0.9949 0.0377 0.9664 0.1143 0.9944 0.1148
2.75 0.00298 0.9896 0.0438 0.9957 0.0492 0.9643 0.1320 1.0020 0.1305
3.00 0.00135 0.9826 0.0565 0.9933 0.0626 0.9701 0.1683 0.9896 0.1853
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Fig. A.1 Linear A310 bending moment design level standard deviation as function of turbulence
patch length
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Fig. A.2 Linear A310 torsion moment design level standard deviation as function of turbulence
patch length
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Fig. A.3 Linear A310 bending moment design level standard deviation as function of turbulence
intensity σw
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Fig. A.4 Linear A310 torsion moment design level standard deviation as function of turbulence
intensity σw
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Fig. A.5 Time responses to stochastic gust of two load quantities of an aircraft
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Fig. A.6 A310 torsion design level standard deviation as function of bending design level
standard deviation
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Fig. A.7 F100 bending design level standard deviation as function of load factor design level
standard deviation
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Fig. A.8 Noback model output z design level standard deviation as function of output y design
level standard deviation
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Fig. A.9 Linear A310 bending moment correlated level standard deviation as function of
turbulence patch length
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Fig. A.10 Linear A310 torsion moment correlated level standard deviation as function of
turbulence patch length
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Fig. A.11 Linear A310 bending moment correlated level standard deviation as function of
turbulence intensity σw
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Fig. A.12 Linear A310 torsion moment correlated level standard deviation as function of
turbulence intensity σw
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Fig. A.13 A310 torsion correlated level standard deviation as function of bending correlated
level standard deviation
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Fig. A.14 F100 bending correlated level standard deviation as function of load factor
correlated level standard deviation
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Fig. A.15 Noback model output z correlated level standard deviation as function of output
y correlated level standard deviation
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Fig. A.16 A310 mean correlated bending from 100 patches of 250 s
as function of time step, for two turbulence intensity levels
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Fig. A.17 A310 mean correlated torsion from 100 patches of 250 s
as function of time step, for two turbulence intensity levels
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Fig. A.18 The proposed Stochastic Simulation procedure
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B The aircraft models used

Three symmetrical aircraft models have been used in this research. These are the same models

as in reference 6. The first one is a simple model of a large transport aircraft with two degrees

of freedom, pitch and plunge, and a load alleviation system that feeds back the centre of gravity

acceleration to aileron deflection. The model is shown in figure B1. The functions C(s) and D(s)

are the transformed Wagner - and Küssner functions representing unsteady aerodynamic loads.

Output y in the figure is the centre of gravity acceleration, and output z is the centre of gravity

acceleration caused by aileron action only. This model is called the Noback-model in this report.

The second model represents an aircraft with "Fokker-100-like" characteristics. This model has

the two rigid degrees of freedom pitch and plunge, and ten symmetric flexible degrees of

freedom. This flexibility is represented by the first ten natural modes of the aircraft structure.

Aerodynamic forces are calculated with strip theory, and unsteady aerodynamics is accounted

for by Wagner - and Küssner functions. The wing has 27 strips and the tail 13; the fuselage is

considered as one lifting surface. The Wagner - and Küssner functions are calculated at 3

locations on the wing and at 1 location on the horizontal tail.

The gust penetration effect and the time delay of the downwash angle at the tail with respect to

the wing are included. Taking these two effects into account, makes it necessary to apply time

delays to the gust input, and to the state variables (because the angle of incidence at the

reference point on the wing is a function of all states) respectively. Especially the latter

considerably increases the total number of system states.

A Load Alleviation System is implemented in the model that feeds back the load factor to a

(symmetrical) aileron deflection. Figure B2 shows the aircraft system with the feedback loop to

the aileron input. The configuration of the Fokker 100 model used in this report is:

ma/c = 40,000 kg Iy = 1.782 106 kgm2

V = 220 m/s altitude = 7000 m

centre of gravity location at 25 % mean-aerodynamic-chord.

The third model has been distributed at the Gust Specialists Meeting of March 1995. It

represents an A310 aircraft, containing plunge, pitch, and 3 symmetric flexible degrees of

freedom. Unsteady response is assumed instantaneous, and gust penetration is not represented.

The aircraft with control system is depicted in figure B3. The centre of gravity acceleration is

fed back to both the ailerons and the spoilers through a feedback gain of 30 degrees per g load

factor. Ailerons and spoilers have the same authority: deflections between 0 and 10 degrees. This

means that the nonlinearity in this control system is "non-symmetric"; the control surfaces can
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only deflect upward. The load quantity outputs of this system are the increments of:

- Engine lateral acceleration [g].

- Wing bending moment [lb.ft].

- Wing torque [lb.ft].

- Load factor [g].
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Fig. B.1   Noback model with load alleviation system (from Ref. 1)
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Fig. B.2   Fokker 100 aircraft model with load alleviation using ailerons (Ref. 6)
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Fig. B.3   A310 model with load alleviation system (from Ref. 6)
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C Deterministic PSD methods

The three Deterministic PSD design load calculation methods studied here are:

- Matched Filter Based 1-Dimensional Search (MFB).

- Indirect Deterministic Power Spectral Density method (IDPSD).

- Brink-Spalink’s Spectral Gust procedure (SG).

Figure C1 and table C1 from reference 5 summarize the procedures. An input signal to the "first

aircraft system", H1, is generated by feeding a pulse through a (von Karman) gust filter G, with

G(jf)=[Φn
ww(f)]½. The power spectrum of the input to the first system will thus have the

shape of the von Karman spectrum. The pulse strength k is variable in the MFB method, and

constant in the IDPSD (k=Uσ) and SG (k=Uσ T, where T = length of gust input) methods. It

should be noted, that the gust filter in the MFB method is only an approximationof the

von Karman spectrum, and in the version used in this report it is the Hoblit approximation of

reference 7.

The first aircraft system, H1, represents the nonlinear aircraft equations of motion in MFB and

SG. In IDPSD, H1 is a linearized version of the nonlinear aircraft, by replacing the nonlinearity

by a linear element with an "equivalent gain", Keq. Keq is a multiplication factor to the original

gain in the feedback loop, with 0≤Keq≤1.

For the output y for which the design level is to be determined (output s of the first system), a

norm is calculated as follows:

It can easily be verified in table C1, that ynorm=AUσ T in the SG method, if H1 is a linear

ynorm ⌡
⌠
∞

0

s2( t )dt .

transfer function. The SG method now concludes by dividing ynorm by T, which is then equal

to the linear PSD design load ydes=AUσ if the system is linear.

In MFB and IDPSD, the first system response is now inverted in time (conjugation of the

frequency domain representation of the signal), normalized by ynorm, and multiplied by Uσ. The

resulting signal is fed through the gust filter again, and then serves as turbulence input to the

"second aircraft system", H2, which represents the nonlinear aircraft system in both methods. For

linear systems, H1 is equal to H2, and in table 1 it is shown that ynorm is equal to AUσ (the

linear PSD design load) if k=Uσ.
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The output of the second system in MFB and IDPSD can be described in the frequency domain

as:

For linear systems, H1 and H2 exist and are identical transfer functions of the linear system, H.

Y( jf )
Uσ

ynorm

Φn
ww( f ) H2( jf ) k Φn

ww( f ) H1 ( jf ) .

The value of ynorm is equal to kA, see table C1. The time domain signal y(t) can be found from

the frequency domain representation Y(jf) by inverse Fourier transformation:

The design load in MFB and IDPSD is now defined as the maximum of this output signal. The

y( t ) ⌡
⌠
∞

∞

Uσk

kA
H( jf ) 2 Φn

ww( f )e j2πft df .

maximum in this signal will be reached if the exponent j2πft is equal to zero for all frequencies.

This occurs at t=0, and the maximum output is:

This shows that MFB and IDPSD also result in the PSD design load in linear cases.

ymax y(0)
Uσ

A ⌡
⌠
∞

∞

H(jf ) 2 Φn
ww( f )df UσA ydes,PSD.

A correlated load zcor in MFB and IDPSD is the value of output z at the moment that y reaches

its maximum (design) value. In the linear case this results in the correlated value that would also

follow from the linear PSD method:

With the correlation coefficientρyz as defined in equation 8 of subchapter 2.2.1.

zcor z(0)
Uσ

A y
⌡
⌠
∞

∞

Hz( jf )H y ( jf ) Φn
ww( f )df ρyzA zUσ .

The correlated SG loads are calculated with:

zcor

ρyzznorm

T
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whereρyz is calculated from the deterministic time responses by:

The SG correlated load is equal toρyzAzUσ, which is the correct correlated load again, according

ρyz

⌡
⌠
T

0

sy( t )sz( t )dt

ynormznorm

.

to linear PSD theory.

For nonlinear systems, the three Deterministic methods apply different procedures:

- MFB varies the strength k of the input pulse to the first gust filter.

- IDPSD varies the value of the equivalent gain that represents the nonlinearity in the first

system.

- SG varies the phase relation of the gust filter, which is limited to only four different phase

relations.

The variation in each of these methods is used to find a maximum response of the aircraft

system. In the SG method, the maximum ynorm of the different simulations of the first system

is defined as the design load. In MFB and IDPSD, the maximum of the maxima (depending on

k and Keq respectively) in the responses of the second system is considered to be the design

load.
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Table C1 Elements of deterministic PSD-Procedures (Ref. 5)

Element Matched filter
(Scott e.a.)

IDPSD
(Noback)

Spectral Gust
(Brink-Spalink e.a.)

Impulse
strength k

k variable k = Uσ k = Uσ* T

Gust
Prefilter G(jf)

G(jf) ≈ Φn(f)
One setϕ(f)

G(jf) = Φn(f)
One setϕ(f)=0
for all f

G(jf) = Φn(f)
four setsϕ(f)

Aircraft
system H1(y)

(Nonlinear)
set of equations
for output y

Linearized
equations;
variable
"equivalent gain"

Nonlinear
set of equations
for output y

Calculation
y-norm: ynorm













⌡
⌠
∞

∞

s2(t)dt

1/2













⌡
⌠
∞

∞

s(jf) s (jf)df

1/2

-----------------------------------------------------
For linearsystem:

ynorm













k 2
⌡
⌠
∞

∞

H1.H1 G.G df

1/2

k Ay

if k Uσ → ynorm ydes

"Critical
gust
profile" w(t)

For linear systems
same profile for
matched filter and IDPSD

SG stops
here:
Four values
for ynorm,

ydes

ynorm(max)

T

Aircraft
system H2(y)

Nonlinear set
of equations

Ydes Variablek
ydes= [yt]max

Variable gain
of H1(y)
ydes= [yt]max
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