Thermal Modelling of CubeSats in ESATAN-TMS

dc.contributor.author Nijenhuis, A.K. te
dc.contributor.author Brouwer, H.S.B.
dc.contributor.author Jonsson, M.
dc.contributor.author Bloem, E.A.
dc.contributor.author Benthem, R.C. van
dc.contributor.author Volmuller, G.J.
dc.date.accessioned 2020-10-07T12:59:41Z
dc.date.available 2020-10-07T12:59:41Z
dc.date.issued 2020
dc.description This report is based on a presentation that was planned to be held at the 50th International Conference on Environmental Systems, in Lisbon, 12th -16th of July 2020. However, due to COVID-19, the conference was postponed to 2021, but the proceedings for 2020 were still published. en_US
dc.description.abstract Miniaturization has allowed CubeSats to enter the domains of Earth observation, RF-oriented missions, and astronomy, surpassing its original intention of being an educational instrument. With the increase in power density, thermal control measures are needed for CubeSats, requiring low-cost hardware and software solutions, which are currently hardly available. The deficit of thermal control solutions for CubeSats is inherently related to their short development time resulting in suboptimal thermal designs. Miniaturization and application of thermal control systems is being worked on (1,2), however evaluating design iterations is hindered by the lack of thermal analysis imposing large uncertainties in the thermal design of CubeSats. The conventional method of validation and model correlation to reduce model uncertainties takes too much time and is therefore excluded for CubeSats. ISIS - Innovative Solutions in Space and the Royal Netherlands Aerospace Centre, NLR have worked together on an innovative modular approach for CubeSat thermal analyses in ESATAN-TMS. Key of this approach is the interchangeability and scalability of validated thermal sub-models allowing for fast and more accurate analysis for LEO missions. Any design of a CubeSat can be quickly evaluated in ESATAN-TMS by implementation of a combination of validated and correlated thermal sub-models in the CubeSat frame model. Over time a library of validated thermal sub-models will be created in ESATAN-TMS, allowing for fast and accurate orbital analysis, which results in improved thermal designs of CubeSats.
dc.identifier.other NLR-TP-2020-284
dc.identifier.uri http://hdl.handle.net/10921/1542
dc.language.iso en en_US
dc.publisher Netherlands Aerospace Centre NLR en_US
dc.relation.ispartofseries NLR Technical Publication;2020-284
dc.subject Space technology en_US
dc.title Thermal Modelling of CubeSats in ESATAN-TMS en_US
dc.title.alternative A Modular Approach en_US
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
TP-2020-284.pdf
Size:
2.99 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections