System Analysis and Comparison Between a 2 MW Conventional Liquid Cooling System and a Novel Two-Phase Cooling System for Fuel Cell-Powered Aircraft
System Analysis and Comparison Between a 2 MW Conventional Liquid Cooling System and a Novel Two-Phase Cooling System for Fuel Cell-Powered Aircraft
Date
2025
Authors
Gerner, H.J. van
Luten, T.
Resende, W.
Mühlthaler, G.
Buntz, M.B.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Hydrogen-powered fuel cells are the preferred energy source for electric aircraft. However, for aircraft applications, it is of upmost importance to reduce the mass of the fuel cell system. A considerable amount of the total system mass is due to the fuel cell cooling system. In this paper, the analysis of a 2 MW cooling system for fuel cell-powered aircraft is discussed. A detailed comparison is made between a conventional liquid cooling system with ethylene glycol–water (EGW) and a novel two-phase cooling system that uses the evaporation of a liquid to remove waste heat from the fuel cells. For this novel two-phase cooling system, several refrigerants were analyzed, and methanol resulted in the lowest system mass. The mass of a liquid EGW system is 35% higher than for two-phase methanol with accumulator and 2.4 times higher than for two-phase methanol without accumulator. Because of this large mass benefit, a demonstrator for a two-phase methanol cooling system without accumulator with a capacity of 200 kW is currently being built.
Description
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Keywords
Citation
van Gerner, H. J., Luten, T., Resende, W., Mühlthaler, G., & Buntz, M.-B. (2025). System Analysis and Comparison Between a 2 MW Conventional Liquid Cooling System and a Novel Two-Phase Cooling System for Fuel Cell-Powered Aircraft. Energies, 18(4), 849. https://doi.org/10.3390/en18040849