Multi-scale thermal modelling and variable scan parameter optimization framework for homogeneous and predictable PBF-LB aerospace components

dc.contributor.author Koenis, T.P.A.
dc.contributor.author Boheemen, S.
dc.contributor.author Montero Sistiaga, M.L.
dc.contributor.author Smit, M.J. de
dc.date.accessioned 2026-02-09T14:16:19Z
dc.date.available 2026-02-09T14:16:19Z
dc.date.issued 2026
dc.description.abstract In this study, a process optimization framework built around a multi-scale modelling approach to predict and prevent heat accumulation in the Laser-based Powder Bed Fusion (PBF-LB) processes is presented. A combination of low fidelity thermal Finite Element Model (FEM) and an Analytical Melt Pool Model (AMPM) is employed to optimize local scan parameters and interlayer time (ILT). The framework is validated experimentally using a WE43 magnesium alloy benchmark component, demonstrating its effectiveness in mitigating local overheating and strongly reducing porosity formation. However, combining the low fidelity FEM optimization and AMPM optimizations requires further refinement to fully leverage their strengths and improve accuracy. This research contributes to the development of more reliable and predictable PBF-LB processes for critical aerospace applications.
dc.identifier.citation T. Koenis, S. Boheemen, M. Montero-Sistiaga and M. De Smit, Multi-scale thermal modelling and variable scan parameter optimization framework for homogeneous and predictable PBF-LB aerospace components, in: SIM-AM2025. URL https://www.scipedia.com/public/Koenis_et_al_2026a
dc.identifier.uri https://hdl.handle.net/10921/1859
dc.language.iso en
dc.publisher Scipedia
dc.rights.license CC BY-NC-SA license
dc.title Multi-scale thermal modelling and variable scan parameter optimization framework for homogeneous and predictable PBF-LB aerospace components
dc.type Other
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
Sim_AM2025_Paper_Koenis.pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format
Description: