Other publications
Permanent URI for this collection
Other than NLR reports
Browse
Recent Submissions
1 - 5 of 82
-
ItemTransient Modelling of Pumped Two-Phase Cooling Systems: Comparison between experiment and simulation with R134a( 2017)Two-phase pumped cooling systems are applied when it is required to maintain a very stable temperature in a system, for example in the AMS02, which was launched with a space shuttle (in May 2011) and subsequently mounted on the International Space Station. However, a two-phase pumped cooling system can show complex transient behavior in response to heat load variations. For example, when the heat load is increased, a large volume of vapor is suddenly created, which results in a liquid flow into the accumulator and an increase in the pressure drop. This will result in variations in the temperature in the system, which are undesired. It is necessary to calculate these temperature variations before an application is being built. For this reason, a software tool for transient two-phase systems has been developed by NLR. This tool numerically solves the one-dimensional time-dependent compressible Navier-Stokes equations, and includes the thermal inertia of all the components. In this paper, the numerical results from the model are compared to experimental results obtained with the NLR two-phase test facility with R134a as refrigerant.
-
ItemLightweight Two-Phase Pumped Cooling System with aluminium components produced with Additive Manufacturing( 2019)The amount of waste heat that is generated in electronic components in aerospace application is increasing because of higher electrical power demands. As a result, conventional cooling methods are not able to maintain the electronic component below its maximum temperature. For this reason, a two-phase Mechanically Pumped Fluid Loop has been developed for high-power electronic components in a commercial aerospace application. These electronic components generate a waste heat of 1200 W that is divided over several hotspots while the temperature gradient over the component has to be kept to a minimum. The developed cooling system uses R245fa as refrigerant and is made from aluminum components produced with additive manufacturing. The use of this novel production technique results in an unprecedented low system mass (2.5 kg) and small system dimensions. Measurements show that the system has an excellent thermal performance and is able to cool 2400W.
-
ItemTesting of high heat flux 3D printed aluminium evaporators( 2018)The amount of waste heat that is generated in electronic components in aerospace application is increasing because of higher electrical power demands. As a result, conventional cooling methods are not able to maintain the electronic component below its maximum temperature. For this reason, a two-phase Mechanically Pumped Fluid Loop is being developed for high-power electronic components in a commercial aerospace application. These electronic components generate a heat load of 722 W on a 3.8 cm x 3.8 cm surface, resulting in a heat flux of 50 W/cm2. Tests with 8 different evaporator samples were carried out to determine the heat transfer coefficients and pressure drop and to select the optimal evaporator sample that is further developed in the detail design phase of the project. The tests show that the 3D printed aluminium evaporators are able to keep the heat source well below its maximum temperature.
-
ItemA Heat Pump for Space Applications( 2015)In commercial communication satellites, waste heat (5-10kW) has to be radiated into space by radiators. These radiators determine the size of the spacecraft, and a further increase in radiator size (and therefore spacecraft size) to increase the heat rejection capacity is not practical. A heat pump can be used to raise the radiator temperature above the temperature of the equipment, which results in a higher heat rejecting capacity without increasing the size of the radiators. A heat pump also provides the opportunity to use East/West radiators, which become almost as effective as North/South radiators when the temperature is elevated to 100°C. The heat pump works with the vapour compression cycle and requires a compressor. However, commercially available compressors have a high mass (40 kg for 10kW cooling capacity), cause excessive vibrations, and are intended for much lower temperatures (maximum 65°C) than what is required for the space heat pump application (100°C). Dedicated aerospace compressors have been developed with a lower mass (19 kg) and for higher temperatures, but these compressors have a lower efficiency. For this reason, an electrically-driven, high-speed (200,000 RPM), centrifugal compressor system has been developed in a project funded by the European Space Agency (ESA). This novel 3-stage compressor system has a mass of just 2 kg and a higher efficiency than existing aerospace compressors. The compressor system has been incorporated in a heat pump demonstrator, which uses isopentane (R601a) as refrigerant. Due to the exposure of isopentane to radiation in a space application, other substances will form. However, a literature study shows that the amounts of the formed substances are so small, that no significant influence on the performance of the heat pump is expected. Tests were carried out with the heat pump, and at the target setting (saturation temperature of 45°C at the evaporator, 100°C at the condenser, and a payload heat input of 5 kW), the measured COP is 2.3, which is higher than the original requirement of 2.
-
ItemFluid selection for space thermal control systems( 2014)The selection of a suitable fluid is one of the first and most important steps for the design of a thermal control system. For example, for a heat pipe it is important to use a fluid with a high surface tension and heat of evaporation, and a low viscosity. These characteristics can be combined in a ‘figure of Merit’. This figure of Merit is used to pre-select a number of fluids, after which these fluids are further investigated for material compatibility, safety, radiation hardness etc. This systematic approach results in the selection of the most favourable fluid for each application. In this paper, the fluid selections for heat pumps and pumped loops (both single- and two-phase) are discussed. It is explained for instance why CO2 is used in the thermal control system of AMS02 (which was launched with the space shuttle in May 2011 and subsequently mounted on the International Space Station). Also discussed is the selection of Galden HT80 for ESA’s single-phase Mechanically Pumped Fluid Loop (MPFL) and the selection of isopentane for an ESA Heat Pump application.